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Abstract: Hardware-based link quality estimators (LQEs) in wireless sensor networks generally use
physical layer parameters to estimate packet reception ratio, which has advantages of high agility and
low overhead. However, many existing studies didn’t consider the impacts of environmental
changes on the applicability of these estimators. This paper compares the performance of
typical hardware-based LQEs in different environments. Meanwhile, aiming at the problematic
Signal-to-Noise Ratio (SNR) calculation used in existing studies, a more reasonable calculation method
is proposed. The results show that it is not accurate to estimate the packet reception rate using
the communication distance, and it may be useless when the environment changes. Meanwhile,
the fluctuation range of the Received Signal Strength Indicator (RSSI) and SNR will be affected and
that of Link Quality Indicator (LQI) is almost unchanged. The performance of RSSI based LQEs may
degrade when the environment changes. Fortunately, this degradation is mainly caused by the change
of background noise, which could be compensated conveniently. The best environmental adaptability
is gained by LQI and SNR based LQEs, as they are almost unaffected when the environment changes.
Moreover, LQI based LQEs are more accurate than SNR based ones in the transitional region.
Nevertheless, compared with SNR, the fluctuation range of LQI is much larger, which needs a larger
smoothing window to converge. In addition, the calculation of LQI is typically vendor-specific.
Therefore, the tradeoff between accuracy, agility, and convenience should be considered in practice.

Keywords: link quality estimation; wireless sensor networks; environmental impact; physical
layer parameters; received signal strength indicator; signal-to-noise ratio; link quality indicator;
communication distance

1. Introduction

In the past few decades, wireless sensors networks (WSNs) have drawn much attention from
academia and industry. WSNs are multi-hop self-organizing networks composed of hundreds and
thousands of sensor nodes, which can monitor and collect various information from the deployed
area in real-time. They have been successfully used in many fields, such as military surveillance,
environmental monitoring, industrial control, and medical care [1]. Link quality estimation is crucial
for WSNs due to their self-organizing characteristics as an effective estimation of link quality is the
basis of high network performance. The packet reception rate (PRR) is the most direct metric for link
quality. Although the PRR could reflect link quality directly, it always takes a long time to obtain an
accurate estimation. Therefore, it is not sensitive to link changes and cannot adapt to the dynamic
characteristics of the wireless channel in WSNs [2].
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In view of this, finding more agile link quality metrics has become a hot topic in the past years.
Several studies have confirmed that certain mapping relationships exist between some link metrics
and PRR, such as the Received Signal Strength Indicator (RSSI), Signal-to-Noise Ratio (SNR), and Link
Quality Indicator (LQI). These metrics are easier to get than PRR itself. Therefore, link quality
could be estimated indirectly by constructing mapping models between these metrics and PRR,
which improves the estimating agility greatly. Such approaches are often called hardware-based Link
Quality Estimators (LQEs).

However, the experimental environment in which the mapping model was obtained in most
existing studies is relatively single, and the possible impacts of environmental changes are ignored.
There are two important questions to be considered: 1. How does the change of environment affect
the link metrics? 2. Can the mapping model be obtained in a specific environment be directly used
in other environments? To answer these questions, this paper compares the performance of typical
hardware-based LQEs in different environments. Then, the impacts of environmental changes on the
applicability of these estimators are analyzed quantitatively. The results show that some link metrics
will be affected when the environment changes. Depending on the metrics used, the hardware-based
LQEs constructed in a specific environment may not be directly applicable to other environments.
Consequently, it is necessary to fully consider the impacts of environmental changes in practice.

The contributions of this study are as follows: (1) A comprehensive survey on the experimental
environments and modeling methods in existing studies is presented. (2) Impacts of environmental
changes on RSSI, SNR, and LQI are discussed. The results show that the fluctuation range of
RSSI and SNR is more sensitive to environmental changes, while that of LQI is almost unaffected
when the environment changes. (3) Aiming at the problematic SNR calculation used in existing
studies, a more reasonable calculation method is proposed. It is shown that with the proposed method,
more accurate PRR estimation could be made, especially when SNR is low. (4) Impacts of environmental
changes on typical hardware-based LQEs are analyzed. The results show that the environmental
adaptability of hardware-based LQEs is completely different. LQI based LQEs is the least susceptible
to changing environments.

The rest of this paper is organized as follows. In Section 2, related works are given. This is followed
by an experimental setup in Section 3. Section 4 summarizes typical hardware-based LQEs which
are classified according to the link metrics they used, such as the RSSI, SNR, and LQI. The impacts
of environmental changes on these LQEs are fully analyzed in Section 5. Finally, conclusions are
presented and suggestions are made for future works.

2. Related Works

Knowing the PRR of neighbors could help sensor nodes to select the next-hop more effectively,
which will improve network efficiency. To reduce the fluctuation of PRR, some studies use an
exponentially weighted moving average (EWMA) to smooth PRR. Woo et al. [3] proposed WMEWMA,
which combines window averaging with EWMA for low pass filtering of PRR. Baccour et al. [4]
proposed F-LQE (Fuzzy-LQE), which uses fuzzy logic to fuse four link parameters, namely smoothed
PRR filtered by WMEWMA, link stability factor, link asymmetry level, and averaged SNR. As F-LQE
is too stable, Rekik et al. [5] and Jayasri et al. [6] adjusted the link parameters involved in fuzzy
logic respectively to achieve more agile and accurate estimations. Opt-FLQE (Optimized version
of F-LQE) replaces the link stability factor in F-LQE with the smoothed required number of packet
retransmissions [5]. ELQET (Enhanced LQE Technique) also uses four link parameters, namely
PRR obtained by LQI mapping, SNR obtained by Kalman filtering, coefficient of variation of PRR,
and averaged LQI, to characterize link quality [6]. Liu et al. [7] proposed FaLQE, which realizes link
adaptation by dynamically adjusting the smoothing factor according to the fluctuation of the link.
Although these works have effectively improved the accuracy and stability, the inherent problem of
PRR is still not resolved: It always needs to take a long time to obtain an accurate PRR estimation [8].
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The mapping models between the communication distance and PRR can be obtained by counting
the PRRs at different distances. Then, the communication distance could be used as an indirect
link quality metric. Zhao et al. [9] classified the wireless link into three regions according to PRR
values at different distances, which are connected region, transitional region, and disconnected region.
Although the range of transitional region is the largest, links within this region are extremely unstable.
Srinivasan et al. [10] found that the percentage of links in transitional region ranges from 5% to 60%,
and typical characteristic of these links is bursty. Liu et al. [11] established a mapping model between
the communication distance and packet loss rate (PLR) by data fitting. Sun et al. [12] proposed a
mapping model between the communication distance and PRR by combining the theoretical PRR
model and the log-normal path loss model.

As RSSI and LQI can be obtained from the physical layer directly and are related to PRR closely,
they have been widely used in LQEs. Popular radio transceivers used in WSNs, such as CC2420 [13]
and AT86RF230 [14] all provide RSSI and LQI measurements. By analyzing the correlations between
RSSI, LQI, and PRR, Bildea et al. pointed out that RSSI is not a good discriminator of link categories,
while LQI could effectively distinguish good, moderate, and bad links [15]. Jayasri et al. also pointed
out that the correlation coefficient of LQI and PRR is higher than that of RSSI [6]. By studying the
relationship between LQI and PLR in outdoor environments, Shu et al. [16] pointed out that there is
a definite relationship between LQI and PLR. Luo et al. [17] fitted a mapping model between LQI
and PRR using the Cubic model. Carles et al. [18] constructed a piecewise linear model of PRR as a
function of averaged LQI. Gomes et al. [19] pointed out that only using LQI may overestimate the link
quality under bad links. Meanwhile, there are also differences in the definition and implementation of
LQI in different radio transceivers. Ye et al. [20] constructed a mapping model between RSSI and PRR
based on logistic regression.

In the IEEE 802.15.4 standard, DSSS-OQPSK (Direct Sequence Spread Spectrum Offset-Quadrature
Phase Shift Keying) modulation scheme is used in the 2.4 GHz physical layer. Therefore, PRR could be
computed using the theoretical bit error rate model and SNR, which can be calculated by subtracting
background noise from RSSI. For instance, Sun et al. [21] and Chang et al. [22] respectively use the
theoretical model of DSSS-OQPSK for PRR estimation. When there are no co-channel interferences,
the background noise usually remains stable for a few seconds or even minutes. As a result, changes in
SNR with time are mainly caused by changes in RSSI [23]. On the other hand, some studies obtained
the mapping relationships between SNR and PRR through data fitting. For instance, Senel et al. [8] use
a locally available SNR-PRR curve to estimate the PRR. Some studies also use the combination of SNR
and LQI to estimate the link quality. Qin et al. [24] estimated the link quality by Effective-SNR, which
is produced by combining SNR and LQI with minimal additional overhead. Liu et al. [25] proposed a
lightweight multi-parameter fusion estimator, in which weighted Euclidean distance is used to fuse
SNR and LQI effectively.

Recently, machine learning algorithms began to be employed to optimize the mapping models,
to improve the agility and accuracy of LQEs. Liu et al. [26] proposed a machine learning-based
scheme 4C, which uses a naive Bayes classifier, artificial neural network, and logistic regression to train
historical data of RSSI, SNR, LQI and PRR offline and predicts PRR effectively. Liu et al. [27] proposed
a real-time link quality prediction model TALENT, which uses stochastic gradient descent online
learning algorithm to train logistic regression classifiers using LQI and PRR values. Marinca et al. [28]
took LQI as input and utilized a prediction game to construct an expert system model for link quality
estimation. Fu et al. [29] proposed RADIUS, a thresholding method based on Bayes theory, which
uses mean value and variance of RSSI to identify the degradation of links, namely, from good links to
bad links. Shu et al. [30] proposed a link quality classification model, which fuses two physical layer
parameters LQI and RSSI and trains the mean values of them by support vector machine. Sun et al. [22]
proposed WNN-LQE, which employs a wavelet neural network to predict SNR and its variance,
and then estimates link quality quantitatively using the theoretical model between SNR and PRR.
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Table 1 summarizes the main features of existing studies. It can be seen that most studies are
conducted in a single environment. Although some studies [5,7,9,10,12,20,21,23,25,26,28] considered
two or three different environments, they did not explore the impacts of environmental changes on the
applicability of hardware-based LQEs. In fact, WSN applications may face a variety of deployment
environments. Although existing studies have conducted an in-depth analysis of the relationships
between communication distance, RSSI, LQI, and PRR, their results still cannot answer the two
questions about environmental impacts presented in Section 1.

Table 1. Main features of existing studies.

Ref. RF Chip
(Node Type) Experimental Environment Parameters Modeling Method

[3] N/A (Berkeley Mote) indoor PRR N/A
[4] CC2420 (TelosB) outdoor (garden) SNR, PRR N/A

[5] CC2420 (TelosB)

outdoor (500 kV substation),
indoor (underground transformer

vault and main power control
room)

SNR, PRR, RNP N/A

[6] CC2550 (N/A) indoor (industrial environment) SNR, LQI, PRR N/A

[7] CC2420 (TelosB) indoor (corridor), outdoor
(rooftop and playground) PRR N/A

[8] CC2420 (N/A) indoor (office) SNR, PRR Pre-calibrated
SNR-PRR relationship

[9] RFM TR1000 (Mica) indoor (office), outdoor (park and
parking lot) Distance, PRR N/A

[10] CC2420 (MicaZ,
TelosB) indoor (office), outdoor (dry lake) RSSI, PRR N/A

[11] CC2420 (Imote2) outdoor (road) Distance, PRR Fitting model

[12] CC2530 (N/A)

outdoor (distribution substation,
low-voltage transformer,
and distribution lines in

residential area)

Distances, SNR,
RSSI, PRR Theoretical model

[15] CC1101 (N/A) single environment RSSI, LQI, PRR N/A
[16] CC2420 (TelosB) outdoor LQI, PRR Cubic model
[17] CC2420 (N/A) indoor LQI, PRR Cubic model
[18] CC2420 (TelosB) indoor (laboratory) LQI, PRR Piecewise linear model
[19] MRF24J40 (N/A) indoor (industrial environment) RSSI, PRR Polynomial regression

[20] CC2530 (N/A) indoor, outdoor (square and
grove) RSSI, PRR Logistic regression

[21] CC2420 (MicaZ,
TelosB)

indoor (office and a small home),
outdoor (dry lake)

SNR, RSSI, LQI,
PRR N/A

[22] CC2530 (N/A) outdoor (smart grid) SNR, RSSI, PRR Theoretical model

[23] CC2420 (TelosB) indoor (office), outdoor (park,
square) SNR, PRR Theoretical model

[24] AT86RF231 (N/A) outdoor (industrial) SNR, PRR Theoretical model

[25] CC2420 (N/A) indoor (corridor), outdoor
(rooftop and playground) SNR, LQI, PRR Logistic regression

[26] CC2420 (Tmote Sky) indoor, outdoor SNR, RSSI, LQI,
PRR Logistic regression

[27] CC2420 (Tmote Sky) indoor (office building) SNR, RSSI, LQI,
PRR Logistic regression

[28] N/A different environments LQI, PRR N/A
[29] CC2420 (TelosB) indoor RSSI N/A
[30] CC2420 (TelosB) outdoor (road) RSSI, LQI, PRR N/A

3. Experimental Setup

3.1. Experimental Environments

Experiments were conducted using TelosB, which is equipped with an IEEE 802.15.4 compliant
radio chip CC2420 and an integrated planar inverted F-style antenna printed directly on the circuit
board [31]. TelosB has been widely used in WSNs due to its advantages of small size, low power,
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and ease of use. TelosB uses TinyOS 2.1 and is programmed with NesC language. TinyOS is an
open-source operating system developed by Berkeley, which is specially designed for embedded WSNs.

Several experimental environments were chosen, as shown in Figure 1. Among which, there were
not only typical outdoor environments which have simple propagation channels and low external
interferences but also a semi-enclosed environment which has complex propagation channel and high
external interferences. The corridor was located in the first experimental building of the Chongqing
University of Technology. Its length, width, and height were 106, 3.2, and 2.8 m, respectively. It was
relatively clean and has almost no obstacles in the corridor. The runway and artificial lawn were
located in the playground of the Chongqing University of Technology, which both have no obstacles in
the line of sight (LOS). During the experiments, changes in wind speed, temperature, and humidity
could be neglected, and there were no other interferences such as walking people.
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Figure 1. Experimental environments: (a) Runway, (b) Artificial lawn, (c) Corridor.

There were two reasons for choosing the above three environments. First, the propagation
characteristics of wireless signals were significantly different in these environments. The surface
of the runway was relatively flat. Therefore, the received signal was mainly composed of the LOS
component and the reflection component. In addition to the LOS propagation component, there were
also scattering components in the artificial lawn, so the composition of the received signal was more
complicated. There were many reflective surfaces on the signal propagation path in the corridor,
such as the ceiling, ground, and single-sided wall. Therefore, the received signal was a combination
of the LOS component and multiple reflection components. These diversities will lead to significant
differences in the received signal strength and fluctuation range. Second, the background noise of these
three environments were also different. Runway and artificial lawn are typical outdoor environments,
in which background noise is typically lower than that in the corridor.

3.2. Data Acquiring and Processing

Experiments were conducted using two nodes, one as transmitter and the other as receiver.
The receiver was connected to a laptop through a serial port, as shown in Figure 2. All experiments
were conducted on channel 26 and with 0 dBm transmit power. Antenna height was set to 1.2 m.
The communication distance between transmitter and receiver was increased from 0 to 100 m, and the
antenna directions of both nodes remained unchanged during this process. Considering that RSSI
and LQI change greatly when the distance is small, the measurement points were chosen as follows:
the step is 0.2 m in the first 5 m, 0.5 m from 5 to 20 m, 1 m from 20 to 60 m, and 2 m from 60 to 100 m
respectively. In brief, there is a total of 115 measurement points.
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Figure 2. The experiment conducted using two nodes.

500 packets were sent at each distance, and the inter-packet interval was set to 25 ms. Each packet
carried a sequentially increased serial number, so PRR could be calculated using the number of
successfully received packets. RSSI, LQI, background noise power, and serial number of successfully
received packets were transmitted to the laptop for analysis, in which PRR and the mean values of
RSSI, SNR, and LQI were calculated using MATLAB.

CC2420 provides RSSI and LQI measurements, which can be obtained by accessing corresponding
internal registers [13]. The received power can be calculated using the RSSI value according to the
following equation:

P = RSSIVAL + RSSIOFFSET (1)

where RSSIVAL is the RSSI value provided by CC2420. RSSIOFFSET is an empirical correction value,
which is −45 dBm according to the CC2420 datasheet. LQI presents the quality of received packets,
and its values usually range from 50 to 110. The larger the LQI, the higher the quality of the
received packet.

4. Typical Hardware-Based LQEs: A Survey

According to the analysis in Section 2, typical mapping models for hardware-based LQEs used
in existing studies are summarized, as shown in Figure 3. These mapping models are classified
according to the link metrics they used, including the RSSI, SNR, and LQI. For each kind of link
metric, the frequently used methods for constructing the mapping model with PRR are also given.
For example, the theoretical model, polynomial regression, and logistic regression are usually used
to construct mapping models between RSSI and PRR in typical RSSI based LQEs. For each kind of
modeling method, only one instance was chosen and analyzed in the following chapters.
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It should be noted that communication distance is usually used for analyzing and modeling radio
links [9,10], and not for online link quality estimation. However, there is already research that utilizes
distance to assess the link quality in the design and deployment phase [11,12]. For example, Sun et al.
presented a reliability model based on the mapping models between distance and PRR, which was used
to improve the link estimation and optimize the deployment parameters [12]. Meanwhile, the distance
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between nodes may be acquired as deployment parameters or measured using appropriate ranging
techniques. Therefore, it is meaningful to analyze the influence of environmental changes on these
mapping models. With these considerations in mind, these mapping models are also classified and
summarized here, although they are exactly not hardware-based LQEs.

4.1. Mapping Models between Communication Distance and PRR

According to Figure 3, the theoretical model and fitting model are usually used as mapping
models between communication distance and PRR. In [12], a theoretical model between communication
distance and PRR is proposed as follows:

PRR =

1−Q

√2 · 10
(Pt+LC−PL(d0)−10n log10 (

d
d0
)+Xσ−Pn)/10

· BN/R

8l

(2)

where Q(·) represents the Q function, Pt is the transmit power (dBm), Lc is the signal strength gain
(or loss, if its value is negative) in the hardware circuit (dB), n is the path loss exponent characterizing
the attenuation of wireless signals in the environment, d is the distance between the transmitter and
receiver (m), d0 is the reference distance and its value is usually 1 m, PL(d0) is the free-space path loss
(dBm) at the reference distance, Xσ is a normally distributed random variable with a mean of zero and
a standard deviation of σ (dB), Pn is the background noise power (dBm), BN is the noise bandwidth of
the transceiver (kHz), R is the communication data rate (kb/s), and l is the length of the data packet
(bytes). Among which, the value of PL(d0) can be calculated as follows [12]:

PL(d0) = 32.44 + 20 log10(d0 · f ) (3)

where f is the carrier frequency (MHz).
As CC2420 was used in [12], the values of BN and R are 384 kHz and 250 kb/s, respectively.

Further, the transmit power Pt, carrier frequency f, and packet length l were set to 0 dBm, 2480 MHz
(corresponding to channel 26), and 17 bytes, respectively. Therefore, substituting Equation (3) into
Equation (2), we have

PRR =
(
1−Q

(√
3 · 10(LC−32.44−20 log10 (2400)−10n log10 (d)+Xσ−Pn)/10

))136
(4)

With the measured data in the runway, relevant parameters of Equation (4) were determined,
as shown in Table 2. Standard deviation σ of the random variable Xσ was calculated from the variances
of RSSI at different distances, the measured background noise power was used as Pn, and Lc and n are
obtained by the least squares fitting method.

Table 2. Relevant parameters of Equation (4).

Parameter Value

Lc 31.6899 dB
n 1.5871
σ 1.0081 dB

Pn −98.37 dBm

Therefore, the mapping model between the communication distance d and PRR in the runway
could be obtained by substituting the above parameters into Equation (4), as expressed as

PRR =
(
1−Q

(√
3 · 10(97.6199−20×log10 (2400)−15.871×log10 (d)+Xσ)/10

))136
(5)
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In [11], the mapping model between communication distance and PLR was constructed by data
fitting, expressed as follows

PLR =


0, 0 ≤ d < d1

a1atan(a2d + a3) + a4, d1 ≤ d < d2

1, d > d2

(6)

where a1, a2, a3, a4 are fitting parameters. With the measured data in the runway, the fitting model
between communication distance d and PRR was obtained, as shown in Equation (7).

PRR =


1, 0 ≤ d < 18

0.5094− 0.3401× atan(0.3316× d− 13.72), 18 ≤ d < 82

0, d > 82

(7)

4.2. SNR Based LQEs and Their Mapping Models

According to Figure 3, the theoretical model and logistic regression model (for short, LR model)
are usually used as mapping models between SNR and PRR for SNR based LQEs. In [21], the theoretical
model was used as the mapping model between averaged SNR (defined as µsnr) and PRR, as shown in
Equation (8).

PRR =

1−Q


√

2×
BN

R
× 10

µsnr
10

l

(8)

where Q(·) represents the Q function, l is the number of bits in a packet, R is the data rate in kb/s,
and BN is the noise bandwidth of the transceiver in kHz. The values of R and BN are also 250 kb/s and
384 kHz, respectively.

In [26], the mapping model between µsnr and PRR is obtained based on logistic regression.
Using the measured data in the runway, a mapping model was obtained, as shown in Equation (9).

PRR =
1

1 + e3.4435−1.1047×µsnr
(9)

4.3. RSSI Based LQEs and Their Mapping Models

According to Figure 3, the LR model and polynomial regression model (for short, PR model) are
usually used as mapping models between RSSI and PRR for RSSI based LQEs. In [20], the mapping
model between averaged RSSI (defined as µrssi) and PRR was obtained based on logistic regression.
Using the measured data in the runway, a mapping model was obtained, as shown in Equation (10).

PRR =


1, µrssi > −86

1−
1

1 + 223.5424× e2.1771×µrssi+198.4593
, −96 < µrssi ≤ −86

0, µrssi ≤ −96

(10)

In [19], the mapping model between normalized RSSI and PRR was obtained based on polynomial
regression. As normalized RSSI is used, the PR Model is self-adaptive essentially. Therefore, the model
given in [19] was used directly:

PRR = −3943.5R6
avg + 6506.6R5

avg − 4279R4
avg + 1430.9R3

avg − 256.47R2
avg + 23.77R1

avg + 0.022 (11)

where Ravg is the mean value of normalized RSSI obtained by the median filter, and its value ranges
from 0 to 0.5.
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4.4. LQI Based LQEs and Their Mapping Models

According to Figure 3, the Cubic model, LR model, and piecewise linear model are usually used
as mapping models between LQI and PRR for LQI based LQEs. In [17], the mapping model between
averaged LQI (defined as µlqi) and PRR is obtained using the Cubic model. Using the measured data
in the runway, a mapping model was obtained, as shown in Equation (12).

PRR =


1, µlqi > 98

−0.0000066147× µlqi
3 + 0.0010661× µlqi

2
− 0.0063× µlqi − 2.3975, 68 < µlqi ≤ 98

0, µlqi ≤ 68

(12)

In [18], the mapping model between µlqi and PRR is obtained based on the piecewise linear model.
Using the measured data in the runway, a mapping model was obtained, as shown in Equation (13).

PRR =


1, µlqi > 96

0.02492× µlqi − 1.392, 80 < µlqi ≤ 96

0.04986× µlqi − 3.389, 68 <µlqi ≤ 80

0.00008222× µlqi − 0.004111, 50 ≤ µlqi ≤ 68

(13)

In [26], the mapping model between µlqi and PRR is obtained based on logistic regression.
Using the measured data in the runway, a mapping model was obtained, as shown in Equation (14).

PRR =
1

1 + e16.9491−0.2125×µlqi
(14)

5. Environmental Impacts on Hardware-Based LQEs

The fluctuation range of SNR, RSSI, and LQI in different environments was analyzed. Meanwhile,
the models between communication distance, SNR, RSSI, LQI, and PRR summarized in Section 4 were
also explored in different environments. Root mean squared error (RMSE) of the estimated PRR and
real PRR was chosen as the evaluation index of accuracy, as shown in Equation (15).

RMSE =

√√√√ n∑
i=1

(PRR(i) − PRRm(i))
2

n
(15)

where n is the number of samples, PRR(i) is the practical value of the i-th sample, and PRRm(i) is the
corresponding estimated value using mapping models.

5.1. Environmental Impacts on Mapping Models between Distance and PRR

5.1.1. Communication Distance and PRR in Different Environments

The relationships between communication distance and PRR in different environments are shown
in Figure 4. It can be seen that there is no consistent mapping relationship between the communication
distance and PRR in different environments. The starting and ending distance of the connected region,
the transitional region, and the disconnected region are totally different in the three environments.
For example, the communication range from 70 m to 90 m belongs to the disconnected region of
the runway, while this range belongs to the connected region of the corridor and transitional region
of the artificial lawn, respectively. Even the range of the transitional region is also different in the
three environments. Moreover, the difference between PRR at the same distance is even up to 90%.
That is to say, the relationship between communication distance and PRR will be greatly affected in
changing environments.
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Figure 4. Communication distance vs. PRR in different environments.

5.1.2. Environmental Impacts on Mapping Models between Distance and PRR

Using Equation (5), the theoretical model between communication distance and PRR in three
environments was plotted, as shown in Figure 5. As the background noise is easy to be got, the measured
noise power of the corresponding environment was used as Pn in the corresponding model. It can
be seen from Figure 5 that the theoretical model is basically in agreement with the measured data in
the runway. However, it is quite different from the measured data in the other two environments.
Even in the artificial lawn which channel condition is closer to the runway, the relationship between
communication distance and PRR is inconsistent with the theoretical model. Taking a closer look
at Figure 5, it can be found that there are some differences between the theoretical curves in three
environments. This is caused by the random variable Xσ in Equation (5). Although the theoretical curve
obtained for each run will be a little different, the pattern of the theoretical curves is not changed and it
does not affect the above conclusions. Using Equation (7), the fitting model between communication
distance and PRR in three environments was plotted, as shown in Figure 6. From Figure 6, it is obvious
that this model is also basically in agreement with the measured data in the runway. It is also quite
different from the measured data in the other two environments.

To describe the environmental impacts on these mapping models quantitatively, RMSE of the
estimated PRR and real PRR in the three environments was calculated, as shown in Table 3. It can be
seen that even the smallest RMSE is as high as 0.2862. This indicates that it is not accurate to estimate
PRR using communication distance. On the other hand, RMSEs in the artificial lawn and corridor are
much higher than those in the runway when using the mapping model constructed in the runway,
no matter whether the model is a theoretical model or a fitting one. Compared with the runway, RMSEs
of the theoretical model in the artificial lawn and corridor increase by 57.48% and 85.32%, respectively.
Meanwhile, RMSEs of the fitting model in the artificial lawn and corridor increase by 37.95% and
40.31%, respectively. That is to say, the mapping model between communication distance and PRR
constructed in a specific environment cannot be directly used in other environments.
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Table 3. The root mean square errors (RMSEs) of the mapping models in different environments.

Runway Lawn Corridor

Theoretical model 0.2862 0.4507 0.5304
Fitting model 0.3191 0.4402 0.4474

5.2. Environmental Impacts on RSSI Based LQEs

5.2.1. RSSI and PRR in Different Environments

Figure 7 shows the relationship between RSSI and PRR in different environments, including the
minimum, maximum, and mean value of RSSI. It can be seen that the trend of change between RSSI
and PRR is basically the same for the three different environments. In terms of µrssi, PRR increases as
µrssi increase: when µrssi is lower than −95 dBm, PRR approaches 0; when µrssi is higher than −90 dBm,
PRR approaches 100%; when µrssi is located between −95 dBm and −90 dBm, PRR rapidly increases
from 0 to 100%. In terms of the fluctuations of RSSI, it is significantly greater in the corridor than that
in the runway and artificial lawn.
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Figure 7. Received Signal Strength Indicator (RSSI) vs. PRR in different environments.

To observe the environmental impact on the relationship between RSSI and PRR more clearly,
the relationship between µrssi and PRR is shown in Figure 8. There already exist some studies which
utilize the relationship between RSSI and PRR to estimate link quality [12,19,20,26,27]. Although the
pattern between µrssi and PRR is basically the same in different environments, it is not difficult to find
out that there are still some differences among the relationships between µrssi and PRR in different
environments. For example, compared with the relationship between µrssi and PRR in the runway,
the relationship in the corridor translates to the right by about 2 dB. This means that the received signal
power in the corridor should be 2 dB higher than that in the runway to get the same PRR. The 2 dB
difference may cause misjudgment of the link quality. For example, when µrssi is −93 dBm, PRR in the
corridor is less than 10% which means a bad link, while PRR in the runway is greater than 90% which
means a good link.

Theoretically, the translation of the relationships between µrssi and PRR should be caused by
the difference in background noise. To confirm this conjecture, background noise in these different
environments was measured. The noise power in the corridor, artificial lawn, and runway are
−96.20 dBm, −99.61 dBm, and −98.37 dBm, respectively. The difference between the corridor and the
runway happens to be 2.17 dB. This indicates that translation of the relationships between µrssi and
PRR in different environments is indeed caused by the difference in background noise.



Sensors 2020, 20, 5327 13 of 25

Sensors 2020, 20, x FOR PEER REVIEW 13 of 26 

 

 

Figure 7. Received Signal Strength Indicator (RSSI) vs. PRR in different environments. 

 

Figure 8. μrssi vs. PRR in different environments. 

Theoretically, the translation of the relationships between μrssi and PRR should be caused by the 
difference in background noise. To confirm this conjecture, background noise in these different 
environments was measured. The noise power in the corridor, artificial lawn, and runway are −96.20 
dBm, −99.61 dBm, and −98.37 dBm, respectively. The difference between the corridor and the runway 
happens to be 2.17 dB. This indicates that translation of the relationships between μrssi and PRR in 
different environments is indeed caused by the difference in background noise. 

To describe the impact of environmental changes on the fluctuation of RSSI more intuitively, the 
fluctuation ranges of RSSI in different environments were statistically obtained, and their cumulative 
distribution functions (CDFs) are shown in Figure 9. The fluctuation range of RSSI is calculated by 
subtracting the minimum RSSI from the maximum one. It can be seen that the fluctuation range of 
RSSI in the corridor is the largest, with about 30% of the fluctuation range higher than 10 dBm, and 
about 9.73% of the fluctuation range higher than 15 dBm. In contrast, the fluctuation range of RSSI in 
the artificial lawn is much smaller, with only about 10.91% of the fluctuation range higher than 5 
dBm, and 100% of the fluctuation range lower than 10 dBm. The fluctuation range of RSSI in the 
runway is between that in the corridor and artificial lawn. The fluctuation range of RSSI is mainly 
determined by the number of propagation paths. The more the factors that cause signal reflection, 
diffraction, and scattering, the greater the fluctuation range of RSSI. 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-95 -90 -85 -80 -75 -70 -65 -60 -55 -50
RSSI (dBm)

PR
R

 

 

Corridor
Lawn
Runway

-95 -90 -85 -80 -75 -70 -65 -60 -55 -50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

RSSI (dBm)

PR
R

 

 

About 2dB

About 1dB

Corridor
Lawn
Runway

-96 -94 -92
0

0.2

0.4

0.6

0.8

1

Figure 8. µrssi vs. PRR in different environments.

To describe the impact of environmental changes on the fluctuation of RSSI more intuitively,
the fluctuation ranges of RSSI in different environments were statistically obtained, and their cumulative
distribution functions (CDFs) are shown in Figure 9. The fluctuation range of RSSI is calculated by
subtracting the minimum RSSI from the maximum one. It can be seen that the fluctuation range
of RSSI in the corridor is the largest, with about 30% of the fluctuation range higher than 10 dBm,
and about 9.73% of the fluctuation range higher than 15 dBm. In contrast, the fluctuation range of
RSSI in the artificial lawn is much smaller, with only about 10.91% of the fluctuation range higher than
5 dBm, and 100% of the fluctuation range lower than 10 dBm. The fluctuation range of RSSI in the
runway is between that in the corridor and artificial lawn. The fluctuation range of RSSI is mainly
determined by the number of propagation paths. The more the factors that cause signal reflection,
diffraction, and scattering, the greater the fluctuation range of RSSI.
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Figure 9. Cumulative distribution functions (CDFs) of the fluctuation range of RSSI in
different environments.

5.2.2. Environmental Impacts on RSSI Based LQEs

Using Equation (10), the LR model between µrssi and PRR in three environments was plotted,
as shown in Figure 10. It is clear that only the measured data in the runway are nearly coincident
with the LR model. There are obvious translations from the model curve to the measured data in
the artificial lawn and corridor. Using Equation (11), the PR model between µrssi and PRR in three
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environments was plotted, as shown in Figure 11. Unlike the LR model, there is no obvious translation
from the PR model to the measured data in the artificial lawn and corridor.Sensors 2020, 20, x FOR PEER REVIEW 15 of 26 
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Figure 10. Effects of the logistic regression (LR) model in different environments.
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Figure 11. Effects of PR (polynomial regression) model in different environments.

To describe the environmental impact on RSSI based LQEs quantitatively, RMSE of the estimated
PRR and real PRR in three environments were calculated, as shown in Table 4. It can be seen that
RMSEs of the LR model in the artificial lawn and corridor are much higher than that in the runway.
Compared with the runway, RMSEs of the LR model in the artificial lawn and corridor increase by
40.74% and 131.96%, respectively. It can be concluded that the LR model is not suitable for both the
artificial lawn and corridor. That is to say, the LR model between µrssi and PRR constructed in a specific
environment cannot be directly used in other environments.

Table 4. RMSEs of RSSI based link quality estimators (LQEs) in different environments.

Runway Artificial Lawn Corridor

LR model 0.1161 0.1634 0.2693
PR model 0.1284 0.1455 0.1129

On the other hand, the RMSEs of the PR model in the three environments are quite close. Compared
with the runway, RMSE of the PR model in the artificial lawn increases by 13.32%, but RMSE in the
corridor reduces by 12.07%. Thanks to the normalization of RSSI, the PR model is adaptive to the
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environment to a certain extent. However, it is obvious from Figure 11 that the PR model is not in
good agreement with the measured data when PRR changes from 0.8 to 1.0. The environment in which
the PR model was constructed is a typical industrial environment [26], where high interference may
exist. This is also explained from the side why the RMSE in the corridor is the smallest, as the corridor
is the closest to the industrial environment.

5.3. Environmental Impacts on SNR Based LQEs

5.3.1. SNR and PRR in Different Environments

Figure 12 shows the relationship between SNR and PRR in different environments, including the
minimum, maximum, and mean value of SNR. Generally, SNR is calculated as follows [12,21,22]:

SNR = RSSI −N (16)

where RSSI and N are the received signal power and background noise power in dBm. It can be
seen that the trend of change between SNR and PRR is basically the same for the three different
environments. In terms of µsnr, PRR increases as µsnr increases. When µsnr is lower than 4.5 dB, PRR
approaches 0; when µsnr is higher than 8 dB, PRR approaches 100%; when µsnr is located between
4.5 dB and 8 dB, PRR rapidly increases from 0 to 100%. In terms of the fluctuations of SNR, it is
significantly greater in the corridor than that in the runway and artificial lawn.
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Figure 12. SNR vs. PRR in different environments.

To describe the impact of environmental changes on the fluctuations of SNR more intuitively,
the fluctuation ranges of SNR in different environments were statistically obtained, and their CDFs
are shown in Figure 13. The fluctuation range of SNR is calculated by subtracting the minimum SNR
from the maximum one. It can be seen that the fluctuation range of SNR in the corridor is the largest,
with more than 80% of the fluctuation range higher than 10 dB, and about 30% higher than 15 dB.
In contrast, the fluctuation range in the artificial lawn is much smaller. There is less than 2% of the
fluctuation range higher than 10 dB, while none is higher than 15 dB. The fluctuation range in the
runway is between the corridor and artificial lawn, with about 20% of the fluctuation range higher
than 10 dB and about 3% higher than 15 dB.

Furthermore, the background noise in these different environments was also measured, and their
CDFs in different environments are shown in Figure 14. It is clear that the fluctuation range of
background noise in the corridor is the largest, and that in the lawn is the smallest. From Equation (16),
it is obvious that SNR is related to both RSSI and background noise. Combined with Figures 9 and 13,
it is reasonable to say that background noise is also contributed to the fluctuation range of SNR in
different environments.
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Figure 13. Cumulative distribution functions (CDFs) of the fluctuation range of SNR in
different environments.
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Figure 14. CDFs of the background noise in different environments.

To observe the environmental impact on the relationship between SNR and PRR more clearly,
the relationship between µsnr and PRR is shown in Figure 15. There already exist some studies
which utilize the relationship between SNR and PRR to estimate link quality [8,21–24,26,27]. It can be
seen that there is no obvious difference between the relationships between µsnr and PRR in different
environments. This means that the relationship between µsnr and PRR is almost unaffected when the
environment changes.
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Figure 15. µsnr vs. PRR in different environments.
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5.3.2. Environmental Impacts on SNR Based LQEs

Using Equation (8), the theoretical model between µsnr and PRR was plotted, as shown in Figure 16.
The measured data in all three environments are not coincident with the theoretical model. There is an
obvious deviation from the model to the measured data. To describe the environmental impact on the
theoretical model between SNR and PRR quantitatively, RMSE of the estimated PRR and real PRR in
the three environments were calculated, as shown in the first row of Table 5. It can be seen that RMSEs
in all three environments are quite large.Sensors 2020, 20, x FOR PEER REVIEW 18 of 26 
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Figure 16. Effects of the theoretical model in different environments.

Table 5. RMSEs of SNR based LQEs in different environments.

Runway Artificial Lawn Corridor

Theoretical model before calibration 0.3009 0.1909 0.1749
Theoretical model after calibration 0.1253 0.0609 0.1442

LR model after calibration 0.1154 0.0659 0.1284

It looks like that the theoretical model between SNR and PRR is invalid. However, when getting
down to the details, we can find that the calculation of SNR in Equation (16) is problematic. SNR is
calculated by subtracting the measured noise power (N in dBm) directly from the measured signal
power (RSSI in dBm). However, the transceiver only measures the power at the antenna without
attempting to distinguish whether it is due to signal or noise. That is to say, the noise power also
contributes to the RSSI value. Therefore, the actual ratio of the signal power to noise power should be:

γ =
PRSSI − PN

PN
=

PRSSI
PN

− 1 = 10
RSSI−N

10 − 1 (17)

where PRSSI and PN are corresponding values in mW for RSSI and N, respectively. Consequently,
the SNR in dB should be expressed as follows

SNR = 10 log10

(
10

RSSI−N
10 − 1

)
(18)

Figure 17 shows the theoretical model after correction. It is obvious that after correction,
the theoretical model coincides well with the measured data. The relationship between SNR and
RSSI-N is also shown in Figure 17. It can be seen that the actual SNR is nonlinear with RSSI-N,
especially when RSSI-N is small. That explains why the original theoretical model deviates from the
measured data, especially when SNR is small, as shown in Figure 16.
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Figure 17. Effects of the theoretical model after correction.

Using Equation (9), the LR model between SNR and PRR was plotted, as shown in Figure 18.
From Figure 18, it is obvious that estimated values gained by the LR model basically coincide with the
measured data.
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Figure 18. Effects of the LR model in different environments.

RMSEs of the estimated PRR and real PRR in three environments were also calculated for the
theoretical model after correction and the LR model, as shown in Table 4. After correction, RMSEs of
the theoretical model in all three environments are reduced effectively, which means that the proposed
calculation method of SNR is reasonable. Compared with the runway, RMSE of the theoretical model
in the artificial lawn reduces by 51.40%, but RMSE in the corridor increases by 15.08%. Compared
with the runway, RMSE of the LR model in the artificial lawn reduces by 42.89%, but RMSE in
the corridor increases by 11.27%. That is to say, the SNR based LQEs are almost unaffected by
environmental changes.

5.4. Environmental Impacts on LQI Based LQEs

5.4.1. LQI and PRR in Different Environments

Figure 19 shows the relationship between LQI and PRR in different environments, including the
minimum, maximum, and mean value of LQI. It can be seen that the trend of change between LQI and
PRR is basically the same for the three different environments. In terms of µlqi, PRR increases as µlqi
increases. To describe the impact of environmental changes on the fluctuation of LQI, the fluctuation
ranges of LQI in different environments were statistically obtained, and their CDFs are shown in
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Figure 20. The fluctuation range of LQI is calculated by subtracting the minimum LQI from the
maximum one. It can be seen that the maximum fluctuation ranges of LQI in the runway and corridor
are close to 60, while the maximum fluctuation range of LQI in the artificial lawn is less than 50.
The fluctuation of LQI in the corridor is the most violent, while the fluctuation in the artificial lawn is
the gentlest. The fluctuation of LQI in the runway is between them. These relationships are consistent
with the fluctuation of RSSI in the three environments. Considering the linear relationship between
LQI and SNR [32], this consistency is not difficult to understand.
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Figure 19. LQI vs. PRR in different environments.
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Figure 20. CDFs of the fluctuation range of LQI in different environments.

To observe the environmental impact on the relationship between LQI and PRR more clearly,
the relationship between µlqi and PRR is shown in Figure 21. There already exist some studies which
utilize the relationship between LQI and PRR to estimate link quality [6,15–18,26–28,30]. It can be
seen that there is no obvious difference among the relationships between µlqi and PRR in different
environments. This means that the relationship between µlqi and PRR is almost unaffected when the
environment changes.
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Figure 21. µlqi vs. PRR in different environments.

5.4.2. Environmental Impacts on LQI Based LQEs

Using Equation (12), the Cubic model between µlqi and PRR in three environments was plotted,
as shown in Figure 22. It is clear that all the measured data from the three environments are basically
coincident with the Cubic model. Using Equations (13) and (14), the piecewise linear model and
LR model in the three environments were also plotted respectively, are shown in Figures 23 and 24.
It is clear that all the measured data from the three environments are also basically coincident with
two models.

To describe the environmental impact on LQI based LQEs quantitatively, RMSE of the estimated
PRR and real PRR in the three environments were calculated, as shown in Table 6. It can be seen that
RMSEs of the three environments are almost the same, no matter whether the model is. Compared with
that in the runway, RMSE of the Cubic model in the artificial lawn reduces by 19.63%, but increases by
20.94% in the corridor. RMSE of the piecewise linear model in the artificial lawn reduces by 28.30%,
but increases by 30.12% in the corridor. RMSE of the LR model in the artificial lawn reduces by 22.14%,
but increases by 23.00% in the corridor. That is to say, the mapping model between µlqi and PRR
constructed in a specific environment can be directly used in other environments.
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Figure 22. Effects of the cubic model in different environments.
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Table 6. RMSEs of LQI based mapping model in different environments.

Runway Lawn Corridor

Cubic model 0.1146 0.0921 0.1386
Piecewise linear model 0.1152 0.0826 0.1499

LR model 0.1152 0.0897 0.1417

5.5. Main Conclusions and Deep Analysis

According to the analysis in Sections 5.1–5.4, environmental impacts on hardware-based LQEs in
WSNs are summarized as follows:

• Conclusion 1. It is not accurate to estimate PRR using communication distance, and they may be
useless when changing environments.

• Conclusion 2. When the environment changes, the fluctuation range of RSSI and SNR will be
affected and that of LQI is almost unchanged.
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• Conclusion 3. RSSI based LQEs may degrade when the environment changes. Fortunately,
this degradation is mainly caused by the change of background noise, which could be
compensated conveniently.

• Conclusion 4. The best environmental adaptability is gained by LQI and SNR based LQEs, as they
are almost unaffected when the environment changes.

Combined with Figures 7, 12 and 19, it can be seen that the fluctuation range of SNR and RSSI
is significantly smaller than that of LQI with the same PRR. This indicates that a larger window is
needed to smooth LQI, which will inevitably affect the agility of LQI based LQEs. As can be seen from
Figures 8, 15 and 21, when PRR changes from 20% to 80%, µlqi corresponds to a range from about 70 to
100, while µsnr and µrssi correspond to a range from about 1.8 dB to 4.5 dB and from about −95 dBm to
−91 dBm, respectively. This indicates that using µlqi to estimate PRR in the transitional region has a
better resolution than µsnr and µrssi, which means higher accuracy in the transitional region. To verify
this conclusion, RMSEs in the connected region, transitional region, and disconnected region for SNR
and LQI based LQEs were plotted, as shown in Figures 25 and 26, respectively. It is shown that LQI
based LQEs are really more accurate in the transitional region than SNR based LQEs, especially for the
environments with higher fluctuation ranges of LQI and SNR. Therefore, we have one more conclusion:
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Figure 25. RMSEs of SNR based LQEs in different regions.
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Figure 26. RMSEs of LQI based LQEs in different regions.

• Conclusion 5. LQI based LQEs are more accurate than SNR based ones in the transitional
region. Nevertheless, compared with SNR, the fluctuation range of LQI is much larger, which
needs a larger smoothing window to converge. In addition, the calculation of LQI is typically
vendor-specific [2]. Therefore, the tradeoff between accuracy, agility, and convenience should be
considered in practice.

The superiority of LQI over the remaining indicators can be explained as follows: For the radio
chip we used, LQI and RSSI are both calculated over the first eight symbols of the incoming packet,
following the start of the frame delimiter [13]. RSSI represents the average radio signal power received
during these eight symbols, and it includes both the useful signal and eventual interference. The key
drawback of RSSI is that it is a measure of raw electromagnetic energy on the channel, which does not
distinguish the useful signal from interference and does not consider the signal correctness. That’s
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why SNR based LQEs are more accurate than RSSI based ones because SNR considers the influence of
noise and interference to some extent. On the other hand, each of the eight symbols is correlated with
all 16 possible chip sequences, and the closest match is chosen for decoding. Then, LQI is calculated by
the chip error rate with respect to the closest match [33]. In other words, LQI reflects the signal quality,
not just the signal strength. Therefore, it has a better and more stable correlation with PRR. Therefore,
LQI based LQEs are more susceptible to changing environments than RSSI and SNR based ones.

6. Conclusions and Future Works

To satisfy the performance requirements of WSNs, agile, and accurate link quality estimation is
necessary. To achieve this goal, hardware-based LQEs are usually employed which depend on mapping
models between PRR and some indirect metrics such as the SNR, RSSI, and LQI. However, existing
studies did not consider the impacts of environmental changes on the applicability of these estimators.
To solve this problem, three different environments are chosen in this paper, and environmental impacts
on typical hardware-based LQEs are analyzed quantitatively.

The experimental results expose that the traditional calculation method of SNR used in existing
studies is problematic. The transceiver only measures the power at the antenna without attempting
to distinguish whether it is due to signal or noise. Therefore, the noise power also contributes to the
RSSI value, which makes the actual SNR is nonlinear with RSSI and noise power, especially when SNR
is small. For this problem, a more reasonable calculation method is proposed. It is shown that after
correction, the SNR based theoretical model is more accurate, which makes the LQEs based on this
model much more valuable.

It is not accurate to estimate PRR using communication distance and may be useless when the
environment changes. The performance of RSSI based LQEs may degrade when the environment
changes. Fortunately, it could be compensated conveniently by measuring the background noise or
carrying out normalization to RSSI. The best environmental adaptability is gained by LQI and SNR
based LQEs, as they are almost unaffected when the environment changes. Moreover, LQI based
LQEs are more accurate than SNR based ones in the transitional region. On the other hand, when the
environment changes, the fluctuation range of RSSI and SNR will be affected and that of LQI is
almost unchanged. However, compared with SNR and RSSI, the fluctuation range of LQI is much
larger, which needs a larger smoothing window to converge. In addition, the calculation of LQI is
typically vendor-specific. Therefore, the tradeoff between accuracy, agility, and convenience should be
considered in practice.

In the future, the impacts of node configurations (in other words, heterogeneous nodes) on LQEs
will be explored to gain a deeper understanding, including the antenna height, frequency channel,
transmit power, antenna angle, and others.
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