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Abstract: Background: The prognostic value of commonly recurrent mutations remains unclear in
mucosal melanomas. Methods: Clinicopathologic parameters of 214 cases of mucosal melanomas
diagnosed in 1989–2020 in several clinical institutions were analyzed. NRAS, KIT, BRAF, IGF2R and
SF3B1 mutational analyses by Sanger sequencing and next generation sequencing-based assay were
performed in a subset of cases. Results: Of the triple (BRAF, NRAS, NF1)-negative cases, APC, KIT
and KRAS are detected mainly in sinonasal, vulvovaginal and anorectal melanomas, respectively.
NRAS, KIT, BRAF, IGF2R and SF3B1 mutations are detected in 19% (37/198), 22% (44/197), 12%
(25/201), 16% (22/138) and 15% (20/133) of cases, respectively. In univariate analyses, advanced
stage (p = 0.016), 65 years or older (p = 0.048) and presence of ulceration (p = 0.027) are significantly
correlated with worse overall survival (OS), respectively. NRAS mutation significantly correlates
with worse OS (p = 0.028) and worse melanoma-specific survival (MSS) (p = 0.03) for all cases of
mucosal melanomas. In multivariate analyses, NRAS mutation remains as an independent predictor
of worse OS (p = 0.036) and worse MSS (p = 0.024). Conclusion: NRAS mutation is a predictor of
worse survival, independent of stage in mucosal melanomas. The significance of frequently mutated
IGF2R in mucosal melanomas remains unclear.
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1. Introduction

Mucosal melanomas encompass primary melanomas of the female genital tract (vul-
var and vaginal melanoma), male genital tract (penile melanoma), head and neck re-
gion (sinonasal and oral melanoma), conjunctiva, upper gastrointestinal tract (esophagus,
stomach, intestine), anorectal melanoma and urinary tract (urethra, urinary bladder) [1].
While previously considered to be a subtype of ocular melanoma, recent studies have
shown that conjunctival melanomas have a similar tumorigenetic pathway as mucosal
melanomas. Although mucosal melanomas are rare and constitute approximately 1.4% of
all melanomas, the prognosis of patients with mucosal melanoma is poorer in comparison
to cutaneous melanomas.
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In line with prognosis, genetic alterations occurring in mucosal melanoma are different
than those of cutaneous wild-type melanoma (BRAF, NRAS and NF1 negative) [2,3]. The
frequency of frequently mutated genes are as follows: NRAS (14–30%), BRAF (5–16%),
NF1 (16%), KIT (5–15%), SF3B1 (12%), TP53 (8.9%), SPRED1 (7%), ATRX (6%) and CHD8
(4%) [4–10]. Recently, IGF2R mutation was documented in 32% of 41 mucosal melanomas
in comparison to 6% of 48 cutaneous melanomas [10].

In a series of 444 mucosal melanomas from a European population investigated
by Sanger sequencing, NRAS, KIT and BRAF mutations were evenly distributed across
the different mucosal melanoma subgroups [8]. The prognostic role of these commonly
recurrent mutations in mucosal melanomas has only been studied in some series [6,7,11,12].
In a large series of 706 mucosal melanomas, KIT and BRAF mutational status did not
correlate with overall survival (OS); however, NRAS was not analyzed in this series [6].
Correlation between NRAS, BRAF and KIT mutations and survival was not observed in
prior series of sinonasal melanomas [7,12]. KIT mutation has been reported to be a marker
of better progression-free survival in vulvar melanomas [11].

Although mutational status provides potential therapeutic targets, prognostic value of
commonly recurrent mutations remains unclear in mucosal melanomas. In this study, we
analyzed the prognostic role of NRAS, KIT, BRAF, IGF2R and SF3B1 mutations in a series
of mucosal melanomas.

2. Materials and Methods

The study was approved by Institutional Review Boards. Mucosal melanomas di-
agnosed between 1989 and 2020 were retrieved from the pathology archives of several
clinical institutions in Japan, Poland, Spain, Taiwan and the United States. A total of
214 melanocytic tumors from 214 patients which were diagnosed with primary vulvar
(73), vaginal (4), sinonasal (93), anorectal (31), conjunctival (8), urethral (1) and penile
(4) melanomas were included in the study. Melanomas on the vulvar hair bearing skin
are excluded. NRAS, KIT and BRAF mutational results of 72 sinonasal, 27 vulvar and
4 vaginal melanomas; and SF3B1 results of 72 sinonasal melanomas from prior studies
were included [11–13].

2.1. Clinical Findings and Histologic Features

The histopathologic diagnoses and following features were assessed by the contribut-
ing pathologists and confirmed by the corresponding author (MPH): ulceration, mitotic rate
(per squared millimeters), lymphovascular invasion, and perineural invasion. The follow-
ing data were extracted from medical records: age of the patients, lesion site, date of biopsy,
disease status over time and at last follow-up (recurrence, metastasis) and any treatment.

2.2. Molecular Analyses

Sanger sequencing and next generation sequencing (NGS) were performed on subset
of cases as outlined in Table 1. Deoxyribonucleic acid (DNA) was extracted from formalin-
fixed paraffin-embedded tumors. For Sanger sequencing NRAS exons 1 and 2; KIT exons 9,
11, 13 and 17; BRAF exon 15; SF3B1 codons 625 and 666 of exon 14, codon 700 of exon 15;
and IGF2R exons 2, 6, 8, 16, 43 and 46 were amplified by polymerase chain reaction (PCR)
with specific primers (Table S1) [12].
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Table 1. Summary of cases analyzed by next generation sequencing (NGS) and Sanger sequencing.

Melanoma
Subtype

BRAF NRAS
KIT NGS

Sanger

BRAF NRAS KIT SF3B1 IGF2R

Vulvovaginal 32 33 29 28 37 41

Sinonasal 13 80 80 80 80 80

Anorectal 17 13 14 14 15 16

Conjunctival 8 0 0 0 0 0

Penile 4 0 0 0 0 0

Urethra 1 0 0 0 1 1

Total 75 126 123 122 133 138

For IGF2R variant calling, raw genomic sequence data were obtained from NCBI
(National Center for Biotechnology Information) Sequence Read Archive under Bioproject
number PRJNA379027.10. The raw data consisted of 41 mucosal melanoma samples
and were quality checked using FastQC software and mapped to the reference genome
(GRCh38/hg38) using BWA-MEM [14]. Further analysis, including duplicated reads
marking, base quality scores recalibration and eventually variant calling, was performed
according to GATK best practices pipeline [15]. The preprocessed cohorts of variants
were filtered using SnpSift [16]. Only detected variants with a high score for predicted
pathogenicity were chosen for verification in mucosal melanoma samples cohort (Table S2).

NGS-based molecular tests were performed on 75 cases. Twenty-six cases were from
prior studies [11,13]. Single nucleotide variants (SNV) and small insertion/deletions (indel)
in genomic DNA were detected using Anchored Multiplex Polymerase chain reaction
(PCR) by NGS (Table S3) [17]. A sequencing library targeting hotspots and exons in
99 cancer genes was generated using two hemi-nested PCRs. Using BWA-MEM Illumina
MiSeq, 2 × 151 base paired-end sequencing results were aligned to the hg19 human
genome reference [14]. For indel variant and SNV detection, a laboratory-developed
insertion/deletion analysis algorithm and MuTech were used, respectively [18].

2.3. Statistical Analysis

The statistical associations between mutation of NRAS, BRAF, KIT, SF3B1, IGF2R and
clinicopathologic features (patient’s age, stage, ulceration, mitotic index, lymphovascular
invasion, perineural invasion, progression, recurrence, metastasis and death) were eval-
uated by Fisher’s exact tests. The number of months from diagnosis to development of
locally recurrent or metastatic disease in the lymph nodes or distant organs was defined
as progression-free survival (PFS). In patients with disease progression, time of death
was equated to melanoma-related death. The number of months from initial diagnosis to
patient’s death by any cause and related to melanoma were defined as overall survival
(OS) and melanoma-specific survival (MSS), respectively. Kaplan–Meier plots and log-rank
tests were done to visually assess the differences in OS, MSS and PFS between subgroups.
Univariate analyses were performed with the Cox proportional hazards model. All covari-
ates with p < 0.05 were included in the multivariate Cox proportional hazard model. All
statistical analyses were done using the R statistical package [19]. A two-tailed p of less
than or equal to 0.05 was considered to be statistically significant.

3. Results

The study included 214 patients. The age of the patients ranged from 20 to 91 years
(median, 65 years). The follow-up (FU) for all patients ranged from 0 to 233 months
(median, 21 months). Progression (local recurrence and/or metastasis) developed in
156/214 (73%) patients. Metastases developed in 121/207 (58%) patients, with distant
metastases seen in 88/207 (43%), with lung and/or liver being the most common metastatic
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sites. Death was documented in 117/214 (55%) patients. The patients were categorized
into stage I/II versus stage III/IV to reflect whether metastasis was documented at time
of diagnosis, due to incomplete data such as tumor size and tumor thickness in some
cases, such as sinonasal melanomas. There were 168 patients with stage I/II, 45 with stage
III/IV and 1 without known stage. There were no survival differences among the patients
with vulvovaginal, sinonasal and anorectal melanomas (Figure 1A). Patients from Europe
(42 patients; median FU, 11 months) have better OS (p = 0.01) in comparison to those from
North America (124 patients; median FU, 24 months) and Asia (44 patients; median FU,
20 months) (Figure 1B).
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Ulceration, lymphovascular invasion and perineural invasion were noted in 144/202
(71%), 41/209 (20%) and 26/209 (12%) cases, respectively. The number of mitoses identified
per millimeter squared ranged from 0 to 100 (median, 7). Except for the correlation between
NRAS and IGF2R mutation and presence of ulceration (p = 0.031) and lymphovascular
invasion (p = 0.03), respectively, there were no associations between NRAS, BRAF, KIT,
SF3B1 and IGF2R mutations and clinicopathologic features.

NRAS, KIT, BRAF, IGF2R and SF3B1 mutational status were known in 198, 197, 201,
138 and 133 cases, respectively. NRAS, KIT, BRAF, IGF2R and SF3B1 mutations were
detected in 19% (37/198), 22% (44/197), 12% (25/201), 16% (22/138) and 15% (20/133)
cases, respectively (Figure 2). Mutations of codons 61 and 12/13 of NRAS were detected in
62% and 38% of mutated cases, respectively. KIT L576P mutation was seen in 33%. BRAF
V600E mutation was present in 72% of mutated cases. Mutations involving codon 625 of
SF3B1 was detected in 80% of mutated cases (Figure 2).
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The NGS results of 49 mucosal melanomas (6 vulvar, 17 anorectal, 13 sinonasal, 8 con-
junctival, 1 urethral and 4 penile), together with the published results of 26 vulvovaginal
melanomas, are summarized in Figure 3 [11,13]. BRAF, KIT and NRAS were the most com-
mon recurrent mutations, seen more frequently in vulvovaginal and sinonasal melanomas
in comparison to anorectal melanomas. In addition, mutations affecting the APC, ATM,
ATRX, CDH1, KRAS, NF1, NF2, PIK3R1, TSC2, TP53 and TERT promoter regions were
noted. Of the triple (BRAF, NRAS, NF1)-negative cases, APC, KIT and KRAS were detected
mainly in sinonasal, vulvovaginal and anorectal melanomas, respectively. Copy number
variants, including loss of CDKN2A and gain of KIT, CDK4 and MYC, were frequently seen
in mucosal melanomas.

Univariate analyses are performed for the following variables: NRAS, KIT, BRAF,
SF3B1 and IGF2R mutation; stage; age; ulceration; mitoses; perineural invasion; lympho-
vascular invasion; and adjuvant therapy. Advanced stage (3 or 4, p = 0.018), age older than
65 years (p = 0.036) and presence of ulceration (p = 0.028) were significantly correlated
with worse OS, respectively (Table S4). Whether the patient had received adjuvant therapy
affected only PFS but not OS or MSS (Table S4). No significant correlation was observed
between adjuvant therapy and overall survival. NRAS mutation significantly correlated
with worse OS (p = 0.026) (Figure 4A) and worse MSS (p = 0.031) for all cases of mucosal
melanomas. When stratified into subgroups, KIT mutation significantly correlated with im-
proved PFS (p = 0.0021) for vulvovaginal melanomas (Figure 4B) and BRAF mutation with
worse PFS for sinonasal melanomas (p = 0.0045) (Figure 4C and Table S4). No significant
correlation with survival was seen for IGF2R and SF3B1 mutations for all cases as well as
for individual subgroups.
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mutation in mucosal melanomas (log-rank p = 0.028); (B) better progression-free survival and KIT mutation in vulvovaginal
melanomas (log-rank p = 0.0021); (C) worse progression-free survival and BRAF mutation in sinonasal melanomas (log-rank
p = 0.0045).

In multivariate analyses, NRAS mutation remained as an independent predictor of
worse OS (p = 0.036) and worse MSS (p = 0.024). Higher stage (3 or 4) at diagnosis remained
as independent predictor of worse OS as well as MSS (p = 0.026 and 0.0012, respectively)
(Table 2).

Table 2. Multivariate Cox proportional hazards models.

Overall Survival Melanoma-Specific Survival

Hazard Ratio p-Value Hazard Ratio p-Value

NRAS mutation 1.71 0.036 * 1.80 0.024 *

Stage (3–4 versus 1–2) 1.71 0.026 * 2.11 0.0012 *

Age (> 65 years) 1.41 0.10 - -

Ulceration 1.49 0.11 - -

* p < 0.05, statistical significance.

The percentages of NRAS, BRAF, KIT, IGF2R and SF3B1 mutations in different geo-
graphic regions are summarized in Table S5. BRAF mutation was more frequent in cases
from Europe and Asia (p = 0.0066). NRAS mutation was detected more frequent in cases
from North America versus Asia (p = 0.035).

4. Discussion

Mucosal melanomas are a rare and aggressive disease associated with frequent recur-
rence and distant metastases. The poor prognosis is likely a result of delay in diagnosis due
to anatomic location. Overall survival (OS) has been cited to be highest in the vulvovaginal
melanoma group, followed by sinonasal melanoma, and then anorectal melanoma [4,8,20].
Similar to findings reported in a series of 706 mucosal melanomas by Cui et al. [6], no
significant correlation between survival and anatomic sites is observed in our study. Male
gender, older age, depth of tumor, presence of ulceration and advanced stage are reported
unfavorable prognostic variables [4,6,8,20–23]. In a series of 444 mucosal melanomas from
a European population head and neck location, male gender, advanced tumor stage, nodal
disease and incomplete resection status were independent risk factors for disease progres-
sion [8]. Older age and advanced stage are worse prognostic parameters in a German
series of 161 patients [4]. In an analysis of 644 patients with vulvar melanoma, age less
than 68 was an independent predictor of improved OS [24]. On the contrary, in some prior
studies, age had no prognostic significance [6,25–27]. In our study, only advanced stage at
diagnosis remains an independent negative prognosticator in multivariate analyses.

Geographic region might have a role in survival differences, and further studies
are needed. We observe different frequencies of BRAF and NRAS mutations in cases
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from North America and Europe than from Asia. Similar differences in distribution of
genetic variants between Western countries and Asia have been also reported in cutaneous
melanomas [28]. Patients from Europe have significantly better OS (p = 0.01) in comparison
to those from North America and Asia in our study. The reason is not known and further
investigation is needed.

The prognostic role of histologic features in mucosal melanomas remains uncertain.
In a study of 706 patients with mucosal melanomas by Lian et al. [29], depth of tumor
invasion, number of lymph node metastases and distant metastases were independent
prognosticators for OS in multivariate analyses and were similar for different mucosal
sites. However, thickness has not been shown to be a predictor of survival in an analysis of
1824 mucosal melanomas since it cannot be determined in majority of mucosal melanomas
due to the fragmented nature of the specimens and tangential nature of the histologic
sections [22].

Dermal mitotic rate (≥2/mm2) has been shown to be an unfavorable prognosticator in
vulvar and vulvovaginal melanomas [27,30]. On the contrary, mitotic rate had no significant
impact on survival in a study of 86 mucosal melanoma patients by Cinotti et al. [23] and
in another study of 85 cases by Tcheung et al. [31]. Similarly, we do not observe increased
mitotic activity to be significantly associated with reduced survival in mucosal melanoma
patients in our series.

The presence of ulceration correlates with worse OS in univariate analyses in our
series. Similarly, Heppt et al. [8] showed that presence of ulceration is an important
predictor of shorter OS. On the contrary, ulceration has no prognostic significance for
OS in a series of 706 prospectively-followed patients with mucosal melanoma [6]. There
is a trend toward significance for worse PFS and lymphovascular invasion in our study.
Keller et al. [32] observed that lymphovascular invasion was strongly correlated with
decreased survival in mucosal melanoma patients. In a series of 46 patients with anorectal
melanoma, the presence of perineural invasion was identified as an independent predictor
of disease-specific mortality in multivariate analysis [33].

The Mitogen-Activated Protein Kinase (MAPK) pathway plays an important role
in melanoma pathogenesis. V-raf murine sarcoma viral oncogene homolog B (BRAF)
and neuroblastoma RAS viral oncogene homolog (NRAS) mutations are different in mu-
cosal melanomas in comparison to cutaneous melanomas [34]. NRAS mutant melanomas
(NEMOs) are reported to be associated with increased risk of visceral and central nervous
system metastases in comparison to wild-type cutaneous tumors [35]. The presence of
NRAS mutations correlated with worse OS in a series of 2793 cutaneous melanomas by
Bai and colleagues [36]. Similarly, we observe that NRAS mutation correlated with worse
OS and MSS in mucosal melanomas. Although mutations at codon 61 are seen in both
cutaneous and mucosal melanomas, mutations involving codons 12 and 13 (G13D, G12A
and G12D) occur more frequently in mucosal melanomas [34]. Dumaz et al. [34] reported
NRAS mutations in 12% (179/1454) of mucosal melanomas with 54% (96/179) and 46%
(83/179) located on Q61 and G12/G13, respectively. Similarly, we observe NRAS mutations
in 19% (37/198) with 62% (23/37) on codon Q61 and 38% (14/37) on codon G12/13.

Melanomas that harbor NRAS mutation, either previously untreated and those pro-
gressed on immunotherapy, might be targeted by MEK inhibitor such as Binimetinib or
Pimasertib [37,38]. In melanoma cell lines with activating NRAS mutations, combination of
PI3K or AKT inhibitors with MEK inhibitors has demonstrated synergistic inhibition [39].
For patients with NRAS mutant melanomas, there have been several clinical trials of com-
bination therapy: combination of CDK4/6 inhibitor (LEE011) and MEK inhibitor (MEK162)
in phase Ib/II clinical trial [40], and combination of RAF inhibitor (LXH254) with ERK1/2
inhibitor (LTT462) or Trametinib (MEK inhibitor) in phase Ib clinical trial [41].

BRAF mutations have been reported in 8% (107/1339) of mucosal melanoma involving
V600E in 63% (67/107) and another codon in the remaining 37% (40/107) [34]. In line
with published results, we observe BRAF mutations in 12% (25/201) of studied mucosal
melanomas with V600E and variants detected in 72% and 28%, respectively. In conventional
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melanoma, BRAF-mutated tumors have been reported to be more aggressive than the
corresponding wild-type tumors [42]. Although no correlation with prognosis is observed
for all mucosal melanomas in the current series, BRAF mutation correlates with worse PFS
for sinonasal melanomas when subgroups are analyzed. V600E mutation is observed in
mucosal melanomas involving half of the conjunctival melanomas in our study [43]. D594G,
G469A and K601E are the frequently observed BRAF variants in mucosal melanomas [34].
Similarly, A581S, L579Q, G469R, D594G and G466V BRAF variants are detected in our
series. BRAF inhibitors have been shown to significantly lengthen PFS and OS in patients
with melanoma harboring BRAF V600 mutations (V600E and V600K) [42,44]. However,
BRAF inhibitors target tumors harboring BRAF V600E and not BRAF variants; therefore,
other treatment modalities such as RAF inhibitor are currently under study [42–45].

Alterations in KIT play an important role in tumor growth, proliferation and metas-
tases in a variety of cancer [46]. KIT mutations in primary melanoma are composed of
missense substitutions on different exon distribution in comparison to KIT-mutated gas-
trointestinal stromal tumor [47]. KIT mutation has been reported from 10% to 21% of
mucosal melanomas [47,48]. The overall KIT alteration frequency of 19% to 39%, with
the L576P mutation being the most common mutation and KIT amplification seen in 10–
26% [47,48]. Patients whose tumors harbor KIT L576P and K642E mutations can be targeted
with KIT inhibitors such as imatinib, sunitinib, dasatinib and nilotinib [42]. While KIT mu-
tation and/or amplification were reported to be adverse prognostic marker in melanomas
in the Asian population, KIT mutation correlates with better PFS for vulvar melanomas in
our series [49,50]. It could be that a large percentage of acral melanoma was included in
these published series.

SF3B1 (splicing factor 3 subunit B1) mutation has been reported to be associated with
good prognosis as well as late metastases in different series of uveal melanomas [51,52].
SF3B1, a mutation of codon 625 seen in 84% of the cases, does not correlate with prognosis
in our series of mucosal melanomas. Recurrent R625C and R625H mutations are the main
mutations reported in uveal, vulvovaginal and anorectal melanomas [2,51,52]. While
Newell et al. [5] reported SF3B1 mutations most frequently in mucosal melanomas from
Europe, we observe no geographical differences for SF3B1 in our study.

In a recent study by Iida et al. [10], the IGF2R variants were detected in 32% of cases,
making it the most commonly mutated gene in mucosal melanoma. Our results do not
confirm the high frequency of highly pathogenic IGF2R variants, with 18% of cases harbored
the mutation. Although IGF2R L252V mutation is frequently detected in our study (data
not shown), it is most likely benign polymorphism, reported in almost 14% of population
worldwide [53]. Excluding the low and moderate pathogenic variants from our analysis
and focusing only on highly pathogenic variants may be the reason of observed differences
in IGF2R mutation frequency between ours and study by Iida et al. [10]. Although our
results do not confirm the direct role of IGF2R mutations in driving mucosal melanoma
development, there are data suggesting its more complex role. As shown in cutaneous
melanoma, reduced expression of IGF2R inhibits the metastatic potential of melanoma
cells [54]. Lately, it has been shown that the IGF axis with an emphasis on the IGF2R gene
is responsible for metastatic niche formation by transforming the normal fibroblast into
cancer-associated fibroblasts (CAFs) [55]. These results suggest that IGF2R variants may
have a complex, yet so far unknown role in driving mucosal melanoma progression, for
which an explanation requires further research.

Recent studies of mucosal melanomas by whole exome sequencing demonstrated
that mucosal melanomas have a low mutational burden, with frequent structural variants
commonly affecting CDK4, MDM2 and TERT [5,9]. From the available NGS data of our
cases, copy number variants affecting CDKN2A and KIT are frequently seen in mucosal
melanomas. In addition to commonly noted BRAF, NRAS and KIT, mutations affecting
the APC, ATM, ATRX, CDH1, KRAS, NF1, NF2, PIK3R1, TSC2, TP53 and TERT promoter
regions are noted. When the mucosal melanoma is triple (BRAF, NRAS, NF1)-negative, KIT
is the most commonly mutated gene in vulvovaginal melanomas, while APC and KRAS
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are detected mainly in sinonasal and anorectal melanomas, respectively. Co-mutation of
KIT and NF1, previously reported by Hintzsche et al. [56] and seen in 2 vulvar melanomas
of our prior study [11], was detected in one anorectal melanoma in the current series.
Although SPRED1, HLA-A and CHD8 are not included in our NGS panel, well-known
driver genes of melanomas such as KRAS, NF1, SF3B1, TP53 and TERT are detected in our
mucosal melanoma cases.

Our study has several limitations. Due to the multicenter nature of our study, the
patients included in our study did not receive uniform surgical and/or medical treatment.
A high failure rate was observed with next-generation sequencing tests performed on old
archival materials. Nevertheless, our study includes a significant number of these rare
subtypes of melanomas for analyses.

5. Conclusions

In conclusion, our series of mucosal melanomas confirms frequent mutation of
melanoma driver genes, including BRAF, NRAS, KIT, KRAS, SF3B1, NF1, TP53 and TERT.
In multivariate analyses NRAS mutation remains a predictor of worse survival independent
of stage in mucosal melanomas. KIT mutation correlates with improved PFS for vulvo-
vaginal melanomas and BRAF mutation with worse PFS for sinonasal melanomas only in
univariate analyses. The significance of frequently mutated IGF2R in mucosal melanomas
remains unclear. There appears to be some geographical differences in molecular alter-
ations; however, larger cohorts of mucosal melanomas are needed for further investigation.
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IGF2R mutations.
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