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Abstract: Each year, high amounts of dead seagrass material are washed ashore at beaches world-
wide. In the Mediterranean region, the seagrass Posidonia oceanica is responsible for huge agglomer-
ates of ball-like seagrass litter. As these are often removed due to touristic reasons, a reuse method
would be a step towards a more ecologically oriented society. In this study, the main polysaccha-
ride components were analyzed, in order to propose possible usage options. To do this, different
aqueous fractions were extracted, analyzed by classical carbohydrate analysis methods (GC-FID/MS,
colorimetric assay and elemental analysis), and purified by ion-exchange chromatography, as well as
selective precipitation with a detecting agent for highly glycosylated glycoproteins. The obtained
purified fractions were analyzed in detail and a linkage-type analysis of the most promising extract
was conducted via permethylation. Only low amounts of glycoproteins, as well as medium amounts
of the characteristic apiogalacturonan were likely to be present, while xylan seemed to be the most
abundant polysaccharide in most fractions. A partial structural proposal showed general accordance
with land plant xylans, presenting reuse options in the field of biofuel and bioplastic generation.

Keywords: Neptune balls; Posidonia oceanica; seagrass; xylan; biofuel; reuse; polysaccharides; carbohy-
drate composition; ATR-FT-IR; GC-MS

1. Introduction

Visitors of Mediterranean coasts may have seen brown, fibrous balls—so-called Æga-
gropili or Neptune balls. Although they show structural similarity [1] to the green algae
Aegagropila linnaei (syn. Cladophora aegagropila), they are, in contrast to that, dead plant
parts of the angiosperm plant Posidonia oceanica (L.) Delile. This endemic seagrass species
is a member of the sole genus in the family of Posidoniaceae and forms wide and dense
meadows [2] across the Mediterranean Sea. While most members of this seagrass family
are only found in Australia, the species P. oceanica occurs uniquely in the Mediterranean
Sea [3]. Large seagrass beds are considered one of the world’s most valuable ecosystems [4],
and in the case of Posidonia oceanica, the dead seagrass parts—also called necromass—are
important for its ecological value by providing the life basis for micro-invertebrates [5].
Being once the dominant seagrass species in that area, it is now heavily endangered—
by invading algae (especially Caulerpa species, see [6]), decreasing water and sediment
quality [7] and human coast use projects [8].

Human boats [6], mainly during the anchoring process (see [9,10]), stormy weather,
and also the plant lifecycle itself lead to tons of leaf and rhizome material, which swims
in the sea and frays out. Duarte [11] calculated the average amount of litter produced per
year in 1 m2 of Posidonia meadow as 500 g dry weight. Due to wave motion, the most stable
form is built [12], and therefore ball-like structures float to the beach (Figure 1).

The fibrous balls show some promising material properties, e.g., slow decomposition
and low flammability. Because both features make them attractive as insulating material,
this idea is being developed and pursued by some companies today [13,14]. Within this
field of direct usage of the fibers, innovative ideas have arisen. These include, for example,
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their reuse as wall panels for offices, for smartphone cases and other lifestyle products, as
well as compost for plant culture [15–19]. Furthermore, the idea of using the adsorption
properties of the P. oceanica fibers for water cleaning falls into this category. Examples
include, e.g., removal of dyes, phenols, and heavy metals [20–27].
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Figure 1. Dead seagrass material washed ashore. (a) A so-called “banquette” of Posidonia oceanica at one beach in Greece 

(photography owned by Dimitris Poursanidis; https://www.grida.no/resources/13408, last accessed December, 6th 2021). 

(b) Investigated seagrass balls from Tunisia. Own photography by L. Pfeifer. 
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Figure 1. Dead seagrass material washed ashore. (a) A so-called “banquette” of Posidonia oceanica
at one beach in Greece (photography owned by Dimitris Poursanidis; https://www.grida.no/
resources/13408, last accessed 6 December 2021). (b) Investigated seagrass balls from Tunisia. Own
photography by L. Pfeifer.

In the last few years, another approach has become more relevant in the published
literature on Posidonia balls: isolation and characterization of single molecular species [28]
or groups of closely related molecules [29,30] in order to use them in subsequent steps (e.g.,
as biocomposites, polymer blends or bioactive extracts) or degrade them [31–35].

To the best of my knowledge, only one study [35] has looked specifically at the
polysaccharide components in the Posidonia balls. Aqueous and solvent extracted fractions
were compared and pharmacological activities were investigated. Polysaccharides are
one of the most abundant groups of biopolymers in plant cell walls [36]. Knowing the
composition of polysaccharides in the fibrous seagrass balls can enhance knowledge about
long-term stability of the different groups of polysaccharides.

The aim of this study was to identify the structural characteristics of polysaccharide
components in P. oceanica balls in order to suggest usage options for environmentally
friendly products. Therefore, it is structured in two main parts: the first part characterizes
some key components after fractionated cell wall extraction, while the second is focused on
further purified extracts. Modern analytical methods (e.g., ATR-FT-IR, GC-MS) are applied
to result in a partial structural proposal of xylan—the main polysaccharide component of
the investigated fiber balls.

2. Materials and Methods
2.1. Plant Material

Posidonia oceanica “Neptune balls” were a kind gift of Prof. Dr. J. Woidasky (Pforzheim
University). They were imported with permission from Tunisia by his collaborator Nep-
tutherm GmbH (Karlsruhe, Germany). Before the extraction was done, the balls were
roughly cut with scissors and milled in a laboratory grinder (IKA MF 10 basic with 1.0 mm
sieve, IKA-Werke GmbH & Co.KG, Staufen, Germany).

https://www.grida.no/resources/13408
https://www.grida.no/resources/13408
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2.2. Extraction Procedure

First an aqueous extraction of the ground plant material was performed, following
the procedure of Pfeifer et al. [37]. Afterwards, a fractionated extraction modified from
Raimundo et al. [38] and O’Rourke et al. [39] was used to isolate other major polysaccharide
fractions. As described by Happ and Classen [40], the plant material was subsequently
extracted with 0.2 M ammonium oxalate, 0.01 M hydrochloric acid, 3% (w/V) sodium
carbonate and 2 M potassium hydroxide. Each extract was obtained after 24 h at 65–70 ◦C
under constant stirring on a laboratory heater by vacuum filtration. Afterwards, it was
neutralized, dialyzed (MWCO 12–14 kDa) and freeze-dried (Christ Alpha 1–4 LSC, Martin
Christ GmbH, Osterode, Germany).

2.3. Geldiffusion Assay with Yariv-Reagent

To test the presence of arabinogalactan-protein glycan structures, a gel diffusion
assay (compare [40–43]) was used. Therefore, β-D-glucosyl-Yariv [44,45] reagent was
dissolved in a concentration of 1 mg/mL in double-distilled water. Then, 20 µL of that
solution was pipetted in the middle hole of a perforated agar plate (1% agarose in 10 mM
Tris-HCl buffer with 0.9% NaCl and 1 mM CaCl2, pH 7.3). Around this hole, three and
four holes, respectively, were punched out and 20 µL of sample (high-molecular-weight
fraction of Posidonia oceania seagrass balls in concentrations of 500 mg/mL, 250 mg/mL
and 100 mg/mL) and Zostera marina HMF (100 mg/mL), as well as Echinacea purpurea AGP
(10 mg/mL) as controls were pipetted in. After two days, the plates were checked for
precipitation bands.

2.4. Purification with Yariv-Reagent

β-D-glucosyl-Yariv reagent was used for selective precipitation. Therefore, the ab-
solute content of arabinose and galactose was calculated from the determined neutral
monosaccharide composition of the aqueous extract. For detailed workflow, see [37].

2.5. Purification by Ion-Exchange Chromatography (IEC)

IEC purification was performed after solution of the sample in degassed water, which
was then filtered (syringe filter, 0.45 µm, cellulose acetate, LLG GmbH, Meckenheim,
Germany) and injected through 5.0 mL sample loop (Valve V-7, Pharmacia Biotech AG, Up-
psala, Sweden) onto the column (Sepharose Q Fast Flow High Load XK 16/10; Pharmacia
Biotech AG, Uppsala, Sweden). Before separation could be performed, the column was
activated with 100 mL of 2 M NaCl solution and afterwards equilibrated with 100 mL of
double-distilled water. With a step gradient (0.5 M, 1.0 M, 1.5 M and 2.0 M sodium chloride,
each 50 mL), the applied sample was fractionated in portions of 10 mL volume. These were
collected with the fraction collector Frac-200 (Pharmacia Biotech AG, Uppsala, Sweden) in
sample tubes. Filtration and degassing of the solvents (Filtropur BT50, 0.1 µm, Sarstedt,
Nürnbrecht, Germany) was carried out prior to use. A constant flow rate of 1.0 mL/min in
the pump was set and the step gradient was performed manually. After fractionation, the
colorimetric total monosaccharide determination method of DuBois et al. [46] was applied
and the absorption was measured at 490 nm.

2.6. Neutral Monosaccharide Composition

Monosaccharide composition was determined by hydrolysis, reduction and acetyla-
tion following the general procedure of Blakeney et al. [47] with a modified hydrolysis step
with 2 M trifluoroacetic acid. As internal standard, myo-inositol was used. The peracety-
lated pentoses, hexoses and desoxyhexoses were separated chromatographically by GC
coupled with flame-ionization detection (Agilent 7890B, Agilent Technologies Inc., Santa
Clara, CA, USA; column: Optima-225, 25 m, 0.25 mm, 0.25 µm; helium flow rate: 1 mL/min;
temperature 230 ◦C; split ratio 30:1). A standard mixture of acetylated monosaccharides
was used, peaks were identified via relative retention times and unknown peaks were iden-
tified by coupled mass spectrometer (MS: Agilent 5977B MSD, Agilent Technologies, USA).
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2.7. Uronic Acid Determination

The content of uronic acids was determined colorimetrically according to Blumenkrantz
and Asboe-Hansen [48]. For calibration a standard curve with different concentrations (5,
10, 25, 50, 100 µg/mL in 4% H2SO4) of a mixture (approx. 1:1, w/w) of glucuronic (GlcA)
and galacturonic acid (GalA) was used.

2.8. Linkage-Type Analysis

Carbohydrate linkage types were determined following the procedure of Harris et al. [49].
Afterwards, the resulting partially methylated and acetylated monosaccharides (PMAAs)
were determined using the exact GC-FID/MS instrument mentioned above. As a column,
an Optima OV-1701-0.25 µm (Machery & Nagel, Düren, Germany) was used with helium
flow rate of 1 mL/min and a temperature gradient from 170 ◦C to 210 ◦C with rate 1 ◦C/min,
then a rate shift to 30 ◦C/min and a following hold time of 10 min at 250 ◦C. Masshunter
workstation software version B.08.00 (Agilent Technologies Inc., Santa Clara, CA, USA)
was used for analysis of the gas chromatograms.

2.9. Elemental Analysis

Combustion analysis was performed in the Institute of Inorganic Chemistry of Kiel
University by use of a HEKAtech CHNS Analyzer (HEKAtech GmbH, Wegberg, Germany).
The released gases were calculated by using the internal standard sulfanilamide.

2.10. FT-IR Spectrometry

For infrared spectrometric investigations, an IRAffinity-1S system (Shimadzu Corpo-
ration, Kyoto, Japan) was used together with the MIRacle 10 single reflexion ATR accessory
(Shimadzu Corp). Spectra were obtained in the range from 600 to 4000 cm−1 with the
resolution of 2 cm−1 by use of the LabSolutions IR software Version 2.10 (Shimadzu Corp).

3. Results
3.1. Fractionated Cell Wall Extraction

A fractionated cell wall extraction with different aqueous solvents was conducted in
order to get an overview of the main groups of polysaccharides present in the remaining
seagrass balls. The fraction with the highest yield was potassium hydroxide (KOH),
accounting for approximately 57.5% (w/w) of all investigated fractions. Lowest in yield
was the aqueous fraction (AE), at approximately 3.5% (w/w), while all other solvents
resulted in extracts in the range of 5.9 to 17.8% (w/w). When looking at the monosaccharide
composition of the different fractions (Figure 2; Table A1), there were some striking features:

Firstly, xylose was the major monosaccharide in all extracts, with a very high
amount—between 59.0 and 90.8% (mol/mol). This is a strong hint for the presence of
xylans (maybe arabinosyl- and/or glucuronosyl-decorated) as the main polysaccharide in
the seagrass balls.

As a second observation, the presence of apiose and a higher amount of uronic acids
in the ammonium oxalate (AmOx), as well as in the hydrochloric acid (HCl) fraction,
was noticeable.

Thirdly, arabinose + galactose contents in the aqueous and in the ammonium oxalate
extract were around 20% (mol/mol) and the ratio of arabinose to galactose was 0.7 in
both cases. These are two key values to evaluate in the analysis of possible remaining
arabinogalactan proteins in the seagrass balls.

The results of the elemental analysis (Table 1), performed on the different cell wall
extracts, showed a content of 2.1 and 1.5% of nitrogen in the aqueous and ammonium
oxalate extract, respectively. This corresponds (multiplied with 6.25) to an approximate
protein content of 13.1 and 9.4% (w/w), respectively. The other three fractions showed a
much lower elemental nitrogen content.
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Figure 2. (a) Neutral monosaccharides and (b) uronic acid composition of the different aqueous
fractions. AE: aqueous extract, AmOx: ammonium oxalate extract, HCl: hydrochloric acid extract,
Carb: sodium carbonate extract, KOH: potassium hydroxide extract.

Table 1. Elemental analysis of the different extracts.

Polysaccharide Fraction Nitrogen Content 1 Protein Content 1

AE 2.1 13.1
AmOx 1.5 9.4

HCl 0.1 0.6
Carb 0.8 5.0
KOH 0.2 1.3

1 All values are given in % (w/w).

3.2. FT-IR Spectrometry

Attenuated total reflection (ATR) Fourier transformation infrared analysis (FT-IR) is a
non-destructive method for sample characterization, commonly used in the field of quality
control. To evaluate the findings of monosaccharide composition analysis in a broader
context, it was performed for all extracts (Table 2, Figure 3).

Table 2. List of characteristic FT-IR bands obtained from the different cell wall fractions.

Wavenumber
(in cm−1) AE AmOx HCl Carb. KOH Assignment Literature

Reference

3400 ++ +++ +++ + + ν (O-H) Buslov et al. [50]
3000–2800 + ++ ++ + + ν (CH3), ν (CH2), ν (CH) Bellamy [51]
2400–2300 +/− + +++ ++ +/− ν (CO2) Bouilloud et al. [52]

1740 + ++ + +/− +/− ν (C=O) Szymanska-Chargot & Zdunek [53]
1600 ++ ++ +++ + ++ νasym (COO-) Buslov et al. [50]

1500 + - - +/− ++ δ (N-H) Amid II; ν
(C=C-C) aromatic

Szymanska-Chargot & Zdunek [53];
Zhuang et al. [54]

1420 + ++ ++ + + νsym (COO-) Buslov et al. [50]
1300 + ++ +++ + ++ ω (CH2) Zhuang et al. [54]
1250 + + + +/− + ν (C-O) Szymanska-Chargot & Zdunek [53]

1200–1000 +++ +++ +++ + ++ ν (C-OH) Buslov et al. [50]

900 ++ + ++ +/− +/− δ (C1-H) Szymanska-Chargot & Zdunek [53],
Robert et al. [55]
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The resulting spectra (Figure 3) showed overall similarity in most regions, but with
different intensities (compare Table 2). In all spectra, one band was very intense, as from
the very typical OH stretching signal from 3200–3400 cm−1.

It was in the range from 900–1100 cm−1 and was previously assigned by Robert et al. [55]
to the β-1,4-linkage of xylan. In addition, another more intense band was visible be-
tween 1600 and 1700 cm−1. That, as well as the overall comparison of spectra, fits to the
described characteristic (substituted) xylan regions according to Buslov et al. [50] (i.e.,
1800–1500 cm−1, 1400–1200 cm−1, 820–780 cm−1 and 600–400 cm−1).

In most of the spectra, a peak around 2300 cm−1 was detectable. This could be assigned
to CO2 from the measurement environment, an observation which is also supported by the
small negative peak in that region for the potassium hydroxide extract.

3.3. Presence of Arabinogalactan Structures

To investigate the presence of arabinogalactan proteins, a gel diffusion assay with
β-Glc-Yariv (βGlcY) reagent was performed, which specifically interacts with AGPs by
forming a clear precipitation band. The positive control Echinacea purpurea showed a strong
interaction with βGlcY (Figure 4a), while the “Neptune balls” HMF on the same plate lacks
this precipitation band. The same fraction of the seagrass Zostera marina showed a weaker,
but clear interaction. Because this interaction depends on the present concentration, two
higher concentrations were also used in this assay (Figure 4b). Neither of the showed
clear interaction. Because the monosaccharides arabinose and galactose are present in the
aqueous extract, it was possible to apply a classical AGP-isolation procedure by Yariv-
precipitated extraction. Based on the total sugar yield, the necessary amount of βGlcY
was calculated.
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Figure 4. Gel diffusion assay of high-molecular-weight fractions of Posidonia oceanica seagrass balls. (a) As positive control,
Echinacea purpurea AGP was used. For comparison, Zostera marina high-molecular-weight fraction was used. The black
triangles highlight the bands formed by βGlcY and the samples. (b) Different concentrations of high-molecular-weight
fractions of P. oceanica balls were used.

A precipitate was obtained, which was then further investigated and characterized
for neutral monosaccharide composition (Table 3). The resulting precipitate was slightly
enriched in the monosaccharides arabinose and galactose. Higher in content were the
monosaccharides xylose and glucose, at 24.5 and 27.6% (mol/mol), respectively. By di-
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rect comparison of the high-molecular-weight fraction before precipitation and the non-
precipitated part (called Yariv supernatant in Table 3), there was no clear difference, except
in xylose and glucose contents.

Table 3. Neutral monosaccharide composition of the different AGP-associated fractions and the
aqueous extract (HMF). Standard deviation is given in brackets.

Monosaccharides HMF 1 Yariv Precipitate 1 Yariv Supernatant 1

Rhamnose 5.5 (±1.1) - 8.3 (±0.6)
Fucose 4.4 (±0.1) - 5.7 (±0.2)
Ribose - - 1.6 (±0.2)

Arabinose 11.0 (±2.7) 18.3 11.4 (±0.2)
Xylose 26.4 (±1.8) 24.5 22.6 (±1.7)
Apiose - - -

Mannose 8.2 (±0.6) 7.7 8.8 (±0.7)
Galactose 15.5 (±0.9) 21.8 16.5 (±0.6)
Glucose 29.0 (±3.2) 27.6 25.1 (±0.8)

1 All values are given in % (mol/mol). If standard deviation is given, the values were calculated as average
from triplicates.

3.4. Purification of Xylans from the HCl Fraction by Ion-Exchange Chromatography

The HCl fraction was chosen for further purification by ion-exchange chromatography
(IEC), for two reasons.

Firstly, the amount of xylose was very high (Table 4), at more than 80% (mol/mol),
and therefore a high amount of one molecular species was expected. Secondly, the fraction
was visually white. This is a feature that makes purification through a gel column more
equipment-friendly than from the potassium hydroxide fraction with its dark-brown color.
In Figure 5—showing the obtained chromatogram of IEC analysis—two fractions are
visually determinable. The first fraction between 10 mL and 40 mL eluted volume was
very weakly bound, because it was eluted by pure water without sodium chloride addition.
Between 80 mL and 100 mL eluted volume, the fraction with the highest absorption—
corresponding with the highest sugar amount—was isolated. This fraction was only eluted
by addition of 0.5 M sodium chloride.
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Table 4. Neutral monosaccharide composition of fractions obtained by IEC-fractionation of the HCl
extracts. Uronic acids are given in % (w/w) and other monosaccharides are given in % (mol/mol).

Monosaccharides F1 F2

Rhamnose - 1.8
Fucose - 0.9

Arabinose - 5.3
Xylose 90.5 87.5
Apiose - -

Mannose - -
Galactose - 3.6
Glucose 9.5 0.9

Uronic acids n.d. 12.8

By looking at the monosaccharide composition (Table 4), both fractions were very
similar with their high amount of xylose. In the fraction F2, more monosaccharides other
than xylose were present—uronic acids were higher, at 12.8% (w/w), than the crude
HCl fraction.

3.5. Linkage-Type Analysis of Xylan Structures

In the linkage-type analysis, a methylation procedure of the HCl fraction was per-
formed, followed by an acetylation step. With that workflow, the linkages in the samples
were acetylated and all other hydroxyl groups of the carbohydrate were methylated. The
resulting partially methylated alditol acetates (PMAAs) can be detected via their relative
retention time, as well as their mass spectra by a combination of GC-FID and GC-MS
(Table 5, Figure 6).

In total, the most occurring monosaccharide xylose made up 87.2% (mol/mol) of all
linkage types in the HCl fraction, with 1,4-linked pyranosidic xylose as the dominating
component. As 1,2-linked Xylp and 1,4-linked Xylp lead to similar PMAAs, it is not possible
to distinguish between these two linkage types. As the occurrence of 1,2-Xylp has not been
described in such high amounts, it was not taken into consideration. The ratio of linear
(1,4-Xylp) to branched (1,2,4-Xylp) was approximately 1:7.

Other linkage types were terminal-Ara, Rha and Xyl, as well as 1,3- and 1,3,4-linked
Rhap. In the chromatogram (Figure 6c), one peak close to the internal standard is detectable.
This was identified as undermethylated galactose and was therefore excluded from the
linkage type table (Table 5).

Table 5. Linkage-type analysis of the HCl fraction.

Monosaccharides Linkage-Type % (mol/mol)

Rhamnose (Rhap)
1- 8.4

1,3- 1.0
1,3,4- 2.4

Arabinose (Arap) 1- 1.0

Xylose (Xylp)
1- 4.8

1,4- 72.0
1,2,4- 10.4
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4. Discussion

High amounts of seagrass rhizomes, roots, leaves and, in the case of Posidonia oceanica,
also seagrass balls are washed ashore year by year. In most cases, this slowly decomposing
material is removed due to beach care for touristic reasons.

Some works in the past few years have highlighted the value of the dead seagrass
material—either in an ecological [5,56–58] or in a coast-protecting way [5,59]. Despite these
values, this article deals with molecular characterization of the polysaccharide components
in dead seagrass material, in order to suggest new options for the reuse of seagrass litter.

The amount of pectic polysaccharides was reduced, as estimated by the low uronic
acid content in the ammonium oxalate and HCl fractions. These fractions usually provide
most of the uronic acids of seagrass cell walls. A striking observation was the presence of
apiose in both pectic fractions—a hint for the presence of apiogalacturonans (AGAs).

The cell wall extracts also suggested the presence of arabinogalactan(-proteins) (AGPs)
from the results of monosaccharide composition analysis. These glycoproteins are impor-
tant signaling components of the plant cell wall [60,61] and consist mainly of the pentose
arabinose attached to a backbone formed of the hexose galactose. Recent investigations [37]
have shown the presence of AGPs in Zostera marina and proposed the functionality of these
molecules in salt adaption. Further attempts to identify AGPs with gel diffusion [62] assays
and a full isolation procedure in this study showed no visible strong interaction in the
seagrass balls. Pectins and AGPs are highly reduced in the seagrass balls thus underlining
that these are less stable in comparison to, e.g., xylan.

4.1. Xylans

The most promising result of the fractionated extraction was the high xylose content
(Figure 2, Table A1) in general, but especially in the HCl and potassium hydroxide fractions.
That observation in combination with the low uronic acid content can hint towards the
presence of (glucurono-)xylans—one group of the polysaccharide class of hemicelluloses.
Extractability under alkaline conditions was formerly considered to be the main feature
of hemicelluloses, but is questioned by some authors [63] with reference to the described
solubility of, e.g., endosperm arabinoxylans in lower pH-ranges.

Xylans are hemicelluloses, which are after cellulose the second-most abundant group
of plant cell wall polysaccharides [64]. While cellulose has a very conserved structure con-
sisting of β-1,4-linked D-glucose units, xylan with its core β-1,4-linked D-xylose structure
is more complex due to its variety of substitution patterns [65].

The highest xylose-containing fractions of the P. oceanica balls, namely the HCl and
the KOH fractions, seemed to be ideal candidates for a further purification step by ion-
exchange chromatography (IEC). Two fractions were achieved from fractionation of the
HCl fraction, while one—the moderately charged second fraction from 80 to 100 mL eluted
volume—made the quantitatively largest one. A moderate charge in the second fraction, as
well as the monosaccharide composition also containing rhamnose, galactose and uronic
acids in detectable amounts, supports the existence of O-acetylglucuronoxylans (AcGX)
or arabinoglucuronoxylans (AGX). These xylan types described for eudicotyledons and
gymnosperms [66] contain a so-called “sequence 1” at their reducing end [67]—a specific
tetrasaccharide structure with 2 D-xylose-, one L-rhamnose- and one L-galacturonic acid
units. Its biological function is still unknown [67], but it is proposed to have a functionality
in length-regulation of the xylan chain [68]. Sequence 1 is present in many, but not all
monocotyledon xylans [66].

FT-IR spectroscopy revealed one region broadly dominating around 900–1100 cm−1.
The hypothesis of xylan being present in all fractions becomes more likely by comparing
this exact region to literature. Ristolainen et al. [69] analyzed the influences of bleaching
processes on xylan FT-IR spectra and also used a commercially available standard of
xylan as reference. These spectra show obvious similarity to the obtained results of the
Neptune ball spectra. The authors also concluded that extraction processes strongly
influenced the number of additional bands, because of cleavage of possible substitution
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patterns [69]. Presence of signals from 3000 to 2800 cm−1 were also associated with
presence of CH3-groups, being a hint for either methyl substitution or acetyl-groups [50].
Both are characteristic features of xylans [66]. In case of acety groups, the signal around
1740 cm−1 is also noticeable and should be taken into account (Table 2). These findings are
in agreement with the monosaccharide composition, but also add more information about
possible substitution. In Zostera marina, it has been shown [37] that the methyltransferases
responsible for 4-O-modification of glucuronic acids, transferases from the DUF579 clade,
are present. These were highlighted in the context of methyl decoration of AGPs, but
were originally described as responsible enzymes for xylan modification [70]. Therefore,
presence of methyl-substituted glucuronic acids in xylans of seagrasses seems to be likely.

Methylation analysis of the HCl fraction revealed a dominant presence of 1,4-linked
xylose residues and smaller amounts of 1,2,4-linked xylose as branching points, being
consistent with the proposed structures [67]. In addition, the ratio of linear to branched
xylose was in the range of described xylans [71]. The latter branched xylose could also
be a result of attached acetyl-groups, which are described for some dicotyledons, like
Arabidopsis or Populus [66,67]. One disadvantage of our methodology was the lack of uronic
acid detection. Even though they were not present in all described xylans, the determination
in the crude fraction showed a presence of around 8.5% (Figure 2, Table A1). This could
indicate occurrence as sidechains in possible glucuronoxylans. To further investigate these
features, a carboxy-reduction prior to acetylation and methylation procedure should be
performed [37,43].

As far as other sidechains are concerned, terminal arabinose is likely to act as deco-
rating monosaccharide [67,71], sometimes present as smaller chains with attached xylose,
ferulic or coumaric acid [72].

Coming back to xylan structures known from other plants, the so-called sequence 1 [66,67]
consists of two xylose residues, in connection with one 1,3-linked rhamnose and one
galacturonic acid. Uronic acids are difficult to cleave under mild acidic conditions (in
this case 2M TFA) and remain connected to their linkage partners [73]. Therefore, the
galacturonic acid is likely to stay linked to the terminal xylose (see above) and could not be
detected in the analysis (see Figure 6). 1,3-Rhap is present in approximately 1.0% and could
support the presence of this characteristic tetrasaccharide in connection to a xylan chain.

There are descriptions of sulfated polysaccharides from some green algae species,
containing 1,3-Rhap residues and even 1,3,4-linked Rhap [74–78]. Therefore, an impurifica-
tion with algae of the Neptune balls may be possible. To give more definitive structural
statements, methodologies like xylan epitope profiling [79] or HILIC-MALDI-Tof/Tof-
MS/MS [80] should be performed. Not only with regard to broadening the knowledge
of plant biochemical composition, but also in the light of the reuse of the material, is a
detailed structure necessary. For example, the most commonly used xylanases show a wide
substrate specificity [71,81].

As far as other components in the seagrass balls are concerned, lignin has been de-
scribed as being high (up to 44% of the dry weight) in that fibrous ball material [82].
Interestingly, lignin and hemicelluloses are often co-occurring, covalently bound as lignin-
carbohydrate complexes, which are formed by oxidative coupling during biosynthe-
sis [83,84].

4.2. Possible Usage Options

As the proposal of possible usage options for polysaccharides from P. oceanica balls
is one of the goals of the structural analysis performed in this article, reuse should be the
main focus with respect to xylan use.

Biofuel production is highly dominant in the field of the reuse of biological materi-
als, referring to the production of fuels from non-fossil resources with regards to a more
ecological balance [85]. This can be achieved either by degradation with special (ther-
mophilic) bacteria [86] or chemical treatment [87,88]. Often, xylans are seen as disturbing
factors in that process [89], but this issue has been solved by different xylan degrading
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enzymes [90,91]. For some seagrass species, the attempt to degrade them with bacteria has
already been performed successfully [92]. In that study, P. oceanica showed the highest yield
of lipids, but it was not stated whether seagrass balls were used. The xylose content of the
investigated material was much lower and not in the focus of the degradation. One other
study [93] investigated the bioethanol production from P. oceanica residues and showed
high yield for that material. Therefore, in the direction of reuse as biofuels, some steps are
already taken (also partly covered in the review by [94]).

Another option to evaluate is the acetylation reaction of the obtained xylans, making
them thermoplastic [95,96]—an important feature on the way to “bioplastic” production.
Recently, addition of hydrolyzed lignin to xylan biomass was evaluated to optimize the
properties of xylan derived bioplastics [97]. With regard to high lignin contents [82] and
the presence of xylans (this study), that idea sounds promising.

The chemical properties presented in this study could help to characterize a basic
biomass, which is to be modified in order to obtain the needed properties.

5. Conclusions

The polysaccharide biomass in P. oceanica seagrass balls was investigated with dif-
ferent carbohydrate analyses to characterize them with regard to their proposed reuse
as environmentally friendly materials. Most of the isolated polysaccharide moiety was
composed of xylose-containing polysaccharides, mainly xylans. Other plant cell wall
polysaccharides and cell wall proteins were degraded, and thus only present in very minor
amounts. Usage of the so-called “Neptune balls” should therefore focus on xylan use.
Direct isolation of (degraded) xylan from P. oceanica biomass is possible by extraction with
dilute hydrochloric acid and additional purification steps by ion-exchange chromatography
showed no strong differences in the monosaccharide composition. Therefore, the proposed
workflow with dilute HCl is straightforward and cost-effective on the way to reuse the
dead seagrass material, which naturally occurs at beaches worldwide.
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Appendix A

Table A1. Neutral monosaccharide composition of the different aqueous fractions. All values are
stated as average of triplicates in % (mol/mol).

Mono-
Saccharides AE AmOx HCl Carb. KOH

Rhamnose 4.5 (±0.7) 5.5 (±0.6) 1.1 (±0.2) 2.0 (±0.2) 0.2 (±0.2)
Fucose 2.5 (±0.4) 2.8 (±0.2) 0.5 (±0.1) - -

Arabinose 11.7 (±1.7) 12.6 (±2.7) 2.9 (±0.9) 7.8 (±4.4) 4.1 (±4.0)
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Table A1. Cont.

Mono-
Saccharides AE AmOx HCl Carb. KOH

Xylose 61.4 (±2.2) 56.9 (±1.6) 90.2 (±1.6) 81.8 (±4.6) 88.4 (±6.3)
Apiose - 2.8 (±0.2) 1.8 (±0.3) - 0.6 (±0.5)

Mannose 3.7 (± 0.7) 3.8 (±1.0) 0.2 (±0.3) 1.4 (±0.3) 2.7 (±0.7)
Galactose 9.5 (±1.5) 10.5 (±0.2) 2.3 (±0.3) 5.3 (±0.5) 2.0 (±0.8)
Glucose 6.7 (±0.7) 5.1 (±0.6) 1.0 (±0.2) 1.7 (±0.1) 2.0 (±1.5)

Uronic acids 4.9 9.5 8.5 4.3 0.9
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