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Insulin signaling is a conserved pathway in all metazoans. This pathway contributed

toward primordial metazoans responding to a greater diversity of environmental signals

by modulating nutritional storage, reproduction, and longevity. Most of our knowledge of

insulin signaling in insects comes from the vinegar fly, Drosophila melanogaster, where

it has been extensively studied and shown to control several physiological processes.

Mosquitoes are the most important vectors of human disease in the world and their

control constitutes a significant area of research. Recent studies have shown the

importance of insulin signaling in multiple physiological processes such as reproduction,

innate immunity, lifespan, and vectorial capacity in mosquitoes. Although insulin-like

peptides have been identified and functionally characterized from many mosquito

species, a comprehensive review of this pathway in mosquitoes is needed. To fill this

gap, our review provides up-to-date knowledge of this subfield.
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INTRODUCTION

Insulin-like peptides (ILPs) are broadly conserved among metazoans and are the most studied
peptide hormones because of their important regulatory roles in metabolism, growth, and
development. All ILPs are 6–8 kDa, share a common structural motif called the insulin fold, and
are processed from precursors with similar domain structure (Pre, B, C, A) (1). Among arthropods,
insulin signaling is most well-understood in the model insect Drosophila melanogaster. The D.
melanogaster genome has eight ILPs (dILPs), each with specific tissue expression. For instance,
some dILPs originate from the brain and ventral nerve cord, while others are expressed in the
midgut, fat body, or imaginal discs (2–4).

Mosquitoes have varying numbers of ILPs (Table 1) ranging from five to eight, and, similar to the
situation in D. melanogaster, expression has been detected in the nervous system, fat body, midgut,
ovaries, and other tissues. Each mosquito species has a distinct set of ILPs that are of neural origin,
while others are expressed in multiple tissues (5, 7–9).

Similar to other metazoans, the mosquito insulin receptor (MIR) is a transmembrane
receptor tyrosine kinase (RTK) and consists of a dimer of α and β-monomers. The α-subunits
define ILP ligand binding specificity, whereas the β-subunits mediate the downstream signal
to cellular components. The MIR uses insulin receptor substrate (IRS) as an adaptor
molecule to initiate signaling (10). Upon binding of the ligand to its receptor, the
β-subunits undergo auto-phosphorylation at specific tyrosine residues. The activated RTK
subsequently phosphorylates specific tyrosine residues of the IRS (11). IRS then recruits
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TABLE 1 | Number of insulin-like peptides identified in different mosquito genera

and species.

Mosquito species Number of ILPs References

Aedes aegypti Eight: Aa ILP1-8 (5)

Anopheles gambiae Five: AgILP1/7, 2, 3/6, 4, 5 (6)

Anopheles stephensi Five: AsILP1-5 (7)

Culex pipiens Three: (more likely) (8)

downstream factors to the receptor-IRS complex. The
phosphorylated tyrosine residues of the receptor-IRS complex
interact with phosphatidylinositol-3-kinase (PI3K) proteins
(12, 13). Recruitment of PI3K results in the formation of the
IRS-PI3K complex. Subsequently, PI3K catalyzes synthesis
of phosphatidylinositol-3,4,5-trisphosphate (PIP3) from
phosphatidylinositol-4,5-bisphosphate (PIP2).

Phosphatase and Tensin homolog (PTEN) is a negative
regulator and can reverse this conversion from PIP3 to PIP2
and decrease the level of PIP3 in the cell. The phosphoinositide-
dependent protein kinase (PDK) responds to the high PIP3
levels by recruiting Akt (13, 14). Akt is considered the master
regulator kinase because the phosphorylation of Akt affects a
number of downstream protein substrates including the target of
rapamycin (TOR) (15, 16). TOR activation occurs both as a direct
downstream event of insulin signaling activation or, independent
of Akt, by the availability of amino acids.

TOR and ILP signaling pathways are considered nutritional
sensors at the cellular and systemic level, respectively. Akt-
mediated phosphorylation of forkhead-related FOXO proteins
prevents the FOXO transcription factor from being translocated
to the nucleus (17–20). FOXO proteins are indispensable
in an organism’s response to starvation since they promote
conservation of energy or even catabolism (21). There has been
some work exploring TOR and FOXO signaling in mosquitoes
(22–28), but a detailed review is outside the scope of this article.

IDENTIFICATION AND STRUCTURE
OF ILPS

Prior to the identification of mosquito ILPs and MIR, it was
well-known that shortly after blood feeding, neurohormones are
released from the brain neurosecretory system that stimulate
the ovaries to secrete ecdysteroids, which are necessary for
vitellogenesis by the fat body. The silkworm Bombyx mori ILP,
bombyxin, was demonstrated to stimulate ecdysteroidogenesis
in prothoracic glands in silkworm larvae. This led to hypothesis
that insulins are involved in regulation of the ecdysteroid
pathway in mosquitoes and commercially available porcine and
bovine insulin were tested on unfed mosquito ovaries to test
this hypothesis. This lead to the discovery of the MIR in Ae.
aegypti (29) and the discovery of other components of the
insulin signaling pathway followed shortly (30). However, ILP
identification in Ae. aegypti lagged by over half a decade (5).
The publication of the Anopheles gambiae genome was seminal

in the identification of ILPs in mosquitoes. Seven ILP genes
corresponding to five unique ILPs (AgILP1-5) and one MIR
were identified in the A. gambiae genome (9). Two AgILP genes
encode identical B and A peptides therefore seven ILP genes
produce five peptides. Genes encoding eight unique ILPs were
found in the Ae. aegypti genome (5). Except for AaILP6, seven
other Ae. aegypti ILPs had a propeptide structure consistent
with that of other invertebrate ILPs. AaILP6 is unique because
it has a short C peptide and an extended A peptide, similar
to the vertebrate insulin growth factors (IGFs), however, the C
peptide of AaILP6 had multiple dibasic proteolytic cleavage sites,
in contrast to only one in vertebrate IGFs (5). To date, there is
no empirical evidence to confirm whether or not the predicted
dibasic sites are actually cleaved/processed in Ae. aegypti.

The proximity of AaILP1, 3, and 8 in the genome scaffold
suggested that they may form a polycistronic transcription
unit controlled by a single promoter. All three of these have
independent putative polyadenylation sites and are capped to
generate monocistronic mature mRNAs (5). AgILP1/7 and 3/6,
the duplicated gene pairs inA. gambiae, and AaILP1 and 3 appear
to be orthologs. Phylogenetic analysis supported an evolutionary
relationship between AaILP1 and AgILP1/7, as well as between
AaILP3 and AgILP3/6. A functional relationship between
Anopheles stephensi, Ae. aegypti, and Cx. quinquefasciatus ILP3
was also demonstrated (31). The third member of the Ae. aegypti
ILP operon, AaILP8, was not related in sequence to any of the
other dipteran ILPs (5).

Sequences encoding full-length transcripts of five ILPs from
the A. stephensi genome (AsILP 1–5) and three from Culex
pipiens (CpILP1, CpILP2, and CpILP5) were identified (7, 8).
ILP4 of A. stephensi was highly similar to A. gambiae ILP4 but
this ILP does not have an apparent ortholog in either Ae. aegypti
or C. pipiens. Ae. aegypti ILP5 and A. gambiae ILP5 share up to
81% sequence similarity, uncommon for ILPs, and, together with
Cx. pipiens and A. stephensi ILP5, share the unique feature of
an additional amino acid between the second and third cysteine
residues in the A chain (5, 7). DmILP7, an ortholog of AaILP5,
also shares this feature and is well-conserved with the mosquito
sequences [(5); Figure 1]. AaILP2 and AgILP2 form another
related ILP subgroup (Figure 1).

The putative IGF-like ILP, AaILP6, was closely related to
another ILP identified as a gene transcript in Aedes subalbatus
(5). The remaining two AaILPs, AaILP4 and 7, do not appear
to have any dipteran orthologs (Figure 1). This is not surprising
considering that both possess an additional amino acid between
the third and fourth cysteine residues in the A peptide, a feature
not known for other members of the insulin superfamily (5).

A unifying feature of all ILPs is the presence of six conserved
cysteine residues that form disulfide bonds between the B and
A chains (Figure 1). However, outside of these core residues,
amino acid sequence similarity diverges between the different
types of ILPs. Some functional forms of ILPs are clearly
conserved throughout the mosquito (such as ILP2, ILP3) and
even dipteran lineages (such as mosquito ILP5/DILP7), and form
distinct groupings when subjected to neighbor-joining analysis
(Figure 2), but the evolutionary relatedness of different ILP
isoforms to one another has poor branch support and remains
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FIGURE 1 | Alignment of mosquito ILP amino acid sequences comparing Ae. aegypti (Aa), C. quinquefasciatus (Cq), A. gambiae (Ag), and D. melanogaster (Dm) ILPs

by B- or A-chain. Red highlights indicate all identical residues, yellow highlights indicate majority conserved residues (red text indicates conserved residues, black

indicates variants). The exceptionally long predicted A-chain of C. quinquefasciatus ILP6 is truncated at Pro146 for the sake of space. Alignments were performed in

Pôle Rhône-Alpes de Bioinformatique (PRABI) website (32) and ESPript 3.0 (33).

unclear. It is likely that the secondary structure imposed by
disulfide bonds and as yet undetermined key functional residues
are the most critical components for ILP interaction with the
MIR, whereas other amino acids may be more important in
preserving spacing in the molecule, rather than the identity of
their functional group. This limits our ability to predict functions
of ILPs in related species based on amino acid sequence alone.

FUNCTIONS OF INSULIN-LIKE PEPTIDES
IN MOSQUITOES

Function and signaling of ILPs are best characterized for Ae.
aegypti [for other reviews see (35–37)]. Unlike D. melanogaster,
genetic manipulations of ILPs to study pluripotency in
mosquitoes is still in its infancy. The only native ILP isolated so
far from mosquitoes is from A. stephensi, AsILP3 (31). AaILP3,
AaILP4, and AaILP8 were chemically synthesized (23, 38, 39)
and used to deduce their functions. With the availability of new

CRISPR-Cas9 based gene editing tools, the functions of two
additional Ae. aegypti ILPs, AaILP7, and AaILP8, were recently
investigated (40) (Table 2, Figure 3).

Nutrient Metabolism
Among mosquitoes, the role of ILPs in nutrient allocation
is best studied in Ae. aegypti. AaILP1, ILP3, and ILP8 are
specifically expressed in the brains of adult females (5). Synthetic
AaILP3 (sAaILP3) binds to the MIR with high affinity and
has been shown as a critical regulator of egg production
(23, 38, 39, 41). sAaILP4 and sAaILP8 did not show any
competition with sAaILP3 for binding to the MIR (39).
Similarly, sAaILP3 (but not sAaILP4 and sAaILP8) injected into
mosquitoes decapitated after a sugar meal dose-dependently
increased the levels of stored glycogen and lipids and decreased
the levels of trehalose (38) in the whole body of females,
suggesting its function is analogous to mammalian insulin
in vertebrates.
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FIGURE 2 | Neighbor-joining tree of mosquito ILP A and B chain amino acid

sequences comparing Ae. aegypti (Aa), C. quinquefasciatus (Cq), A. gambiae

(Ag), and D. melanogaster (Dm). Tree was constructed using MEGA

version 6 (34).

AaILP3 transcript levels were higher in mosquitoes
that emerged from the high carbohydrate larval diet (43),
further suggesting a role in nutrient metabolism. AaILP3 also
stimulated the midgut to express trypsin-like proteases that
digested the blood meal while amino acid sensing through
the target of rapamycin (TOR) pathway enhanced AaILP3,
ovary ecdysteroidogenic hormone (OEH), ecdysteroids, and
vitellogenin synthesis (23, 47).

Some evidence exists that microRNAs regulate AaILP
expression. For instance, in the absence of miR277, transcript
levels of both AaILP7 and AaILP8 increased in head whereas
AaILP1 and AaILP3 transcript levels did not change, suggesting
that miR277 targets the first member (AaILP8) of the ILP8-
ILP1-ILP3 operon (40). CRISPR-Cas9 depletion of AaILP7 and
AaILP8 led to metabolic and reproductive defects. A dramatic
lipid increase in the fat body in AaILP7 knockouts and a decrease
inAaILP8 knockouts suggests a role of these ILPs in modulating
lipid deposition and mobilization (40). Glycogen levels exhibited
the opposite trends in these mosquitoes, which suggest that both
AaILP7 andAaILP8 are involved in lipid and glycogen balance. In

TABLE 2 | Potential functions of mosquito insulin-like peptides.

Insulin-like

peptide (ILP)

Potential function References

Aedes aegypti

AaILP1 Not yet studied

AaILP2 Not yet studied

AaILP3 Nutrient metabolism, regulation of

digestive enzymes, Ecdysteroid

production from ovaries, immune response

(23, 38, 41, 42)

AaILP4 Nutrient metabolism in males (43)

AaILP5 Not yet studied

AaILP6 Not yet studied

AaILP7 Glycogen metabolism post blood meal,

nutrient metabolism post blood meal

(40)

AaILP8 Hemolymph lipid metabolism, larval molt (40, 43)

Anopheles stephensi

AsILP1 Not yet studied

AsILP2 Not yet studied

AsILP3 Ecdysteroids production by ovaries (31)

AsILP4 Ecdysteroids production by ovaries;

Plasmodium falciparum early infection

(31, 44)

AsILP5 P. falciparum oocyst development (44)

Anopheles gambiae

AgILP1/7 Not yet studied

AgILP2 Not yet studied

AgILP3/6 P. falciparum infection (45)

AgILP4 Blood meal nutrients metabolism (46)

AgILP5 Blood meal nutrients metabolism (46)

Culex pipiens

CpILP1 Diapause/overwintering (8)

CpILP2 Not yet studied

CpILP5 Higher expression but not associated with

diapause

(8)

our study, AaILP8 transcript levels were higher in the late fourth
instar larvae suggesting a possible role in larval to pupal molt
(43), a function similar to D. melanogaster ILP8 (2).

In A. gambiae, artificial blood meal (albumin and amino acid
mixture) rapidly triggered transcription of two ILPs- AgILP3 and
AgILP4, in the brain of starved mosquitoes, and the response was
higher compared to sucrose fed mosquitoes (46). In A. stephensi,
expression of ILPs did not change significantly with age or upon
ingestion of a sugar or blood meal (7, 44) suggesting differences
in mosquito species. ILP functions in nutrient allocation in Culex
spp. have not been studied yet.

Insulin receptor knockdown by RNA interference (RNAi)
in newly eclosed females and subsequent decapitation within
2 h post blood meal resulted in slow blood digestion in Ae.
aegypti (23). In mosquitoes decapitated post bloodmeal, sAaILP3
was able to restore trypsin transcripts and enzyme levels, while
sAaILP4 and sAaILP8 had no effect on trypsin expression (23). A
similar effect of insulin receptor knockdown on midgut trypsin
levels was observed in C. quinquefasciatus (48). Whether this
phenomenon extends to Anopheles spp. remains to be explored.
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FIGURE 3 | Overview of known ILP functions in Ae. aegypti. Table indicates detection of AaILP expression in adult females, as summarized from (5). For a more

detailed description of ILP functions in other species, see Table 2.

Reproduction
Ecdysteroid and Vitellogenin Production

The first indication of ILP involvement in insect reproduction
was the use of bovine insulin to stimulate ecdysteroid production
by in vitro ovaries isolated from unfed female Ae. aegypti (29).
Further evidence that this effect was transduced through the
insulin signaling complex was provided by using inhibitors or
activators of the insulin receptor, PI3K, and Akt, which altered
this response (6, 30, 49). Bovine insulin in combination with
20-hydroxyecdysone activated transcription of the yolk protein
precursor gene and vitellogenin (Vg) in fat body culture. RNAi-
mediated knockdown of the MIR and Akt inhibited insulin-
induced Vg gene expression in in vitro fat body culture assays
(47). sAaILP3 activated ecdysteroid production in unfed ovaries
in vitro (23, 38, 50). sAaILP4 also stimulated ovaries to produce
ecdysteroids in vitro, however, five times higher concentrations
of sAaILP4 compared to sAaILP3 were required (39).

Anopheles stephensi sILP3 and sILP4 were both able to
stimulate ovaries to produce ecdysteroids in vitro across the
genera. Both sAsILPs stimulated ecdysteroid production from
unfed ovaries in A. stephensi, A. gambiae, Ae. aegypti, and
C. quinquefasciatus (31) suggesting a conserved role of ILPs
in the regulation of ecdysteroid productions in mosquitoes.
Insulin receptor knockdown in C. quinquefasciatus resulted in
low levels ecdysteroids in blood-fed female ovaries (48) further
supporting the findings that insulin signaling is required for
ecdysteroid production.

Yolk Deposition

As the blood meal is digested by the female mosquito and
nutrients are mobilized, the developing eggs uptake these
nutrients as the yolk. Insulin receptor knockdown resulted in a
decrease in the amount of yolk deposited in Ae. aegypti ovarioles
(23). Injection of sAaILP3 in decapitated, blood-fed females

stimulated yolk deposition in ∼50% ovarioles (23), whereas
sAaILP3 injection in unfed females stimulated yolk deposition in
a ∼2% ovarioles that were later resorbed and never resulted in
egg deposition (41, 51). RNAi knockdown of PTEN, a negative
regulator of insulin receptor substrate, in Ae. aegypti led to an
increase in egg production (52) further supporting the role of
insulin signaling in reproduction.

CRISPR-Cas9 mutations of AaILP7 and AaILP8 affect ovarian
development, but the phenotypes were different. AaILP7 mutant
ovaries and their follicles were similar in size to the wild-type
at 24 h post blood meal but were only half the size of those
in the control by 72h. These mosquitoes also had elevated
lipid stores at 72 h. In contrast, AaILP8 mutant ovaries were
small and melanized by 24 h post blood meal (40). In C.
quinquefasciatus females, insulin receptor knockdown and filarial
nematode infection resulted in the complete shutdown of egg
maturation and deposition (48).

Diapause
Diapause is characterized by an arrest in ovarian development
and the sequestration of large amounts of lipid reserves. The
short day lengths program the temperate mosquitoes such as C.
pipiens to enter a reproductive diapause. Insulin signaling and
FOXO (forkhead transcription factor), a downstreammolecule in
the insulin signaling pathway, are shown to mediate the diapause
response (22). In non-diapausing mosquitoes, RNAi knockdown
of the insulin receptor led to primary follicles arrested in a stage
comparable to diapause. Juvenile hormone application reversed
this diapause-like state. When dsRNA directed against FOXO
was injected into mosquitoes programmed for diapause, fat
storage was dramatically reduced and the mosquito’s lifespan
was shortened, suggesting that a shutdown of insulin signaling
activates the downstream gene FOXO, leading to the diapause
phenotype (22). Transcript levels of CpILP1 and 5 were
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significantly lower in diapausing females than in their non-
diapausing counterparts (8). Knocking down CpILP1 with RNAi
in non-diapausing mosquitoes resulted in a cessation of ovarian
development similar to diapausing female mosquitoes, whereas
CpILP5 did not alter ovarian development (8).

Lifespan
The first report of the involvement of insulin signaling in lifespan
regulation in invertebrates came from work in Caenorhabditis
elegans. In C. elegans, a hypomorphic mutation in the insulin
receptor homolog, Daf-2, resulted in a 300% increase in
lifespan (53). In D. melanogaster, hypomorphic insulin receptor
expressing flies showed an 85% increase in lifespan (54). In
mosquitoes, overexpression of a myristoylated and active form
of A. stephensi and Ae. aegypti Akt in the fat body of transgenic
mosquitoes after blood feeding significantly increased adult
survivorship relative to non-transgenic sibling controls (55).
Similarly, PTEN overexpression also extended mosquito lifespan
(56). Therefore, the effect on lifespan in these experiments with
mosquitoes seems to be opposite of that seen in C. elegans and
D. melanogaster, however, the direct effect of insulin receptor
knockdown on lifespan has not yet been studied in mosquitoes.
The lack of research is partly due to a lack of easily available
genetic tools to make hypomorphic insulin receptor expressing
mosquito lines. Most work in mosquitoes is done by RNAi, the
effect of which lasts only for 7–10 days. In A. stephensi, high
doses of ingested human insulin with blood meal were shown
to reduce lifespan (57–59). In contrast, ingested human IGF1
extended lifespan in this species (60).

MOSQUITO IMMUNITY/
MOSQUITO-PATHOGEN INTERACTIONS

Mosquito hemocytes serve as the most important constitutive
defense element against pathogens that enter the hemocoel
(61, 62) and can produce phagocytic and melanotic immune
responses (63, 64), effector molecules (65–69), and enhanced
defense associated with immune priming (70). Decapitation of
A. aegypti mosquitoes after blood feeding inhibited hemocyte
proliferation and a single dose of sAaILP3 rescued hemocyte
proliferation. Knockdown of the insulin receptor by RNAi
inhibited ILP3 rescue activity. This suggests another role of ILPs
in hemocyte proliferation, and thus immunity (42).

Malaria Parasite
The first indication that insulin signaling could play a role in
mosquito-pathogen interaction came from a study suggesting
human insulin could promote the development of Plasmodium
falciparum oocysts in the midguts of A. stephensi and A.
gambiae, although the insulin levels used vastly exceeded those
in human blood at the physiological levels (71). P. falciparum
glycosylphosphatidylinositols, a parasite factor that mimics
insulin in mammals (72, 73), was later shown to activate insulin
receptor, Akt/PKB (Protein kinase B), and the mitogen-activated
protein kinase, DSOR 1, in the malaria vector A. stephensi (74).

Human IGFs, within a physiological range and higher levels
of human insulin, has been shown to induce nitric oxide (NO)

synthesis in mosquito cell culture and in the A. stephensi midgut
(74, 75). Inducible NO synthesis in A. stephensi limits malaria
parasite development through the formation of inflammatory
levels of reactive NO that likely induce parasite apoptosis in the
mosquito midgut lumen (57, 74, 76, 77). Both radioactive human
insulin and IGF1 persisted intact in the midgut up to 30 h post
ingestion and human insulin could activate mosquito insulin
receptor by phosphorylation (60).

P. falciparum-infected blood meal increased expression of
AsILP2, 3, 4, and 5 in the head and midgut of A. stephensi
(7). Similarly, soluble P. falciparum products directly induced
AsILP expression in immortalized A. stephensi cells in vitro.
Knockdown of AsILP4 by RNAi induced early expression of
immune effector genes within 1–6 h after infection, resulting
in significantly reduced parasite abundance prior to invasion
of the midgut epithelium. In contrast, knockdown of AsILP3
increased expression of the same genes 24 h after infection.
These data suggest that P. falciparum parasites alter the
expression of mosquito ILPs to blunt the immune response
and facilitate parasite development in the mosquito vector (44).
P. berghei infection significantly increased AsILP3, 4, and 5
expression. Simultaneous knockdown of AsILP3, 4, and 5 by
RNAi reduced P. berghei development, yet the difference was not
statistically significant (78), whereas insulin receptor knockdown
in A. stephensi significantly reduced P. berghei development to
oocysts (78).

In transgenicA. stephensi, overexpression of Akt in themidgut
of heterozygous mosquitoes resulted in 60–99% reduction in the
numbers of mosquitoes infected with P. falciparum, and parasite
infection was completely blocked in homozygous transgenic
mosquitoes (79). In addition, a single nucleotide polymorphism
(SNP) in the AgILP3 gene (Ins34) was reported in field-collected
A. gambiae mosquitoes from Mali (45). This synonymous SNP
in Ins34 in AgILP3 precursor gene resulted in a change from
GGC to GGT at nucleotide position 462. The CC genotype at the
Ins34 locus in M formmosquitoes was more common in samples
that were not infected with P. falciparum suggesting a role of this
pathway in malaria parasite infection.

Filarial Parasites
Insulin receptor knockdown in C. quinquefasciatus, the major
vector of Wuchereria bancrofti in India, completely blocked the
development of filarial nematode parasites to the infective third
instar larval stage (48). This is the only study on the role of
mosquito insulin signaling in nematode development and the
data suggest a conserved role of insulin signaling in parasite
development within mosquito vectors.

CONCLUSIONS

Insulin-like peptides are pleiotropic peptide hormones, and
owing to this, the structural and functional characterization of
ILPs has long been a major interest for insect endocrinologists.
The functions of insect ILPs, in general, is in a discovery phase
compared to the state of knowledge for insulins and related
peptides in vertebrates. A primary action of insulin in mammals
is to reduce circulating glucose through increased glycogen and
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triglyceride synthesis. This action is conserved in mosquitoes
and has been supported by the work in Ae. aegypti. Over the
past several years, a succession of studies has suggested a central
role of ILPs/insulin signaling in regulating growth, development,
reproduction, diapause, aging, and pathogen development in
mosquitoes. Yet, only a few studies have used genetic tools
to dissect out the functions of individual ILPs. Unraveling the
individual functions and functional redundancy of ILPs will
provide new understanding of this complex pathway.

FUTURE GOALS

It is clear from the review of literature that there are many
unanswered questions regarding the roles of insulin signaling in
mosquitoes. Only a few mosquito ILPs have been functionally
characterized, mostly because of the challenges in peptide
purification and synthesis, efficient transcript knockdown, and
potentially overlapping functions. So far only one endogenous
mosquito ILP has been purified and characterized, limiting
our understanding of the post-translational processing of these
molecules, and there is no data on ILPs that may fold similarly
to IGF-I, without cleavage of the C-peptide (e.g., AaILP6). In
addition, cell-based expression systems have so far been unable
to produce biologically active mosquito ILPs, and chemical
ILP synthesis has been difficult due to complex formation of
disulfide bridges between multiple Cys residues and proper
cleavage of the C-peptide required for folding. Both Ae. aegypti
and D. melanogaster research has benefitted from a handful
synthetic ILPs, albeit at a high synthesis cost, and availability of
more synthetic ILPs would inform ligand-receptor interactions
as well as ILP functions. Also, a standard HPLC or GC-MS
protocol for measuring ILPs titers would also help improve our
knowledge of ILP functions, either as circulating hormones or as
a neurotransmitters.

Recent advances in gene editing technologies now allow
explorations of ILP functions outside of model organisms. Most
notably, CRISPR-Cas9 knock-ins or knock-outs will facilitate
acquisition of new knowledge on how ILPs control physiologies
such as nutrient storage, lifespan, development, fecundity, host
seeking (appetite), regulation of proteases, and immune response.
Genetic knockouts allow for persistent, lifelong knockouts or
overexpression mutants which could not previously be achieved
through RNAi or injection of synthetic peptides. Additionally,
the use of an epitope tag such as HA coupled with single
guide RNA (sgRNA) in a donor construct along with a
fluorescent marker could be a tool for simultaneously tracking
ILP expression locations and patterns, even when the hormone
itself is knocked out. With the improvement of gene editing in
mosquitoes, it will be possible to understand the functions of ILPs
in more mosquito species in addition to Ae. aegypti, An. gambiae,
and An. stephensi in order to understand if ILP functions are
conserved or change in different mosquito taxa.

An area of research that is clearly open is the role of
insulin signaling in mosquito-pathogen interactions. Therefore,
research should focus on understanding the diverse functions of
ILPs in mosquitoes including mosquito-pathogen interactions.
Insulin mimetics that bind to the insulin receptor and block the
downstream processes might be a new avenue to explore for
mosquito and mosquito-borne disease control.
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