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Abstract

Application of machine and deep learning methods in drug discovery and cancer research has gained a considerable
amount of attention in the past years. As the field grows, it becomes crucial to systematically evaluate the performance of
novel computational solutions in relation to established techniques. To this end, we compare rule-based and data-driven
molecular representations in prediction of drug combination sensitivity and drug synergy scores using standardized results
of 14 high-throughput screening studies, comprising 64 200 unique combinations of 4153 molecules tested in 112 cancer cell
lines. We evaluate the clustering performance of molecular representations and quantify their similarity by adapting the
Centered Kernel Alignment metric. Our work demonstrates that to identify an optimal molecular representation type, it is
necessary to supplement quantitative benchmark results with qualitative considerations, such as model interpretability and
robustness, which may vary between and throughout preclinical drug development projects.
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Introduction
In the past years, deep learning (DL) methods have been suc-
cessfully applied to a variety of research topics in biomedicine
and drug discovery [1–3]. Deep neural networks achieve state-
of-the-art performance in medical computer vision tasks and
protein structural modeling, enabling de novo generation of drug
candidates and development of prognostic clinical models [4–8].
However, such performance of DL models is context-dependent
[9–12]. While quantitative metrics are routinely and effectively
used to compare various computational methods, overreliance
on them is a well-known issue [13–18]. It is beneficial to sup-
plement performance results on benchmark datasets with esti-
mates of model uncertainty and robustness, as well as ability to
generalize on unseen data [19–21]. These aspects are particularly
important in the biomedical research, where in silico model
predictions direct experimental design choices, as exhaustively
testing all combinations of relevant factors is usually unfeasible
due to the combinatorial explosion [22, 23].

Advances in high-throughput screening of bioactive com-
pounds in cancer cell lines promote the development of
personalized cancer treatments [24]. A major goal in such drug
sensitivity and resistance testing studies is to prioritize promis-
ing combinatorial therapies that involve coadministration of
multiple drugs [25]. By combining synergistic compounds, often
with distinct mechanisms of action, it is possible to overcome
single-drug resistance, produce sustained clinical remissions
and diminish adverse reactions [26, 27]. Drug synergy refers to
a degree of drug–drug interaction quantified as the difference
between expected and observed dose–response profiles mea-
sured by a biological endpoint, such as cell viability or cell toxic-
ity [28]. While synergy characterizes how compounds modulate
each other’s biological activity, combination sensitivity score
(CSS) quantifies drug combination efficacy [29]. In addition to the
CSS, we use four synergy scores based on distinct null models,
namely Bliss independence, highest single agent (HSA), Loewe
additivity and zero interaction potency (ZIP) in the regression
analysis of molecular fingerprints [30–34]. Predicting drug

combination synergy and sensitivity is related to quantitative
structure activity relationship (QSAR) modeling and virtual
screening [35, 36]. The QSAR captures mathematical associations
between drug descriptors and assay endpoints based on the
assumption that structurally similar compounds have similar
bioactivity properties, while in the virtual screening studies can-
didate molecules are prioritized for subsequent experimental
validation according to in silico prediction results [37]. Rule-based
molecular fingerprints are commonly used as drug descriptors
in QSAR/Virtual Screening, and MACCS structural keys based on
molecular topology are arguably the most popular type of rule-
based fingerprints [38–41]. Other types include circular topolog-
ical fingerprints that describe combinations of non-hydrogen
atom types and paths between them within a predefined atom
neighborhood, and pharmacophore fingerprints that incorpo-
rate local features related to molecular recognition [42–44].

More recently, data-driven fingerprints generated by DL
models have been shown to perform well in various research
projects [45]. Majority of such DL fingerprints are based on the
encoder–decoder architecture, whereby an approximate identity
function is learned to translate high-dimensional input into
a low-dimensional, fixed-size latent manifold, which is then
used to reconstruct the original input [46]. When an encoder–
decoder DL model is trained on chemical structures, its latent
manifold is interpreted as a data-driven fingerprint. Examples
of early DL fingerprinting models include a convolutional
neural network (CNN), Chemception and a recurrent neural
network, SMILES2Vec, as well as a variational autoencoder
(VAE) model with a CNN encoder and a gated recurrent unit-
based decoder [47–51]. Development of attention methods for
sequence modeling further contributed to the popularity of data-
driven DL fingerprints, whereas evolution of generative models
enabled de novo molecular design through latent space sampling
[52–56]. These DL solutions operate on images of molecules or
SMARTS/SMILES sequences to create drug structural repre-
sentations [57–59]. Further, DL fingerprints may be enriched
with numerical drug descriptors through multitask DL learning
methods or simply by concatenating to latent space [60]. Unlike
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Figure 1. Study workflow. Compounds found in combinations in the DrugComb database are represented using four rule-based (blue) and seven data-driven (yellow)

fingerprint types. Rule-based fingerprints include topological, and 2D/3D extended connectivity variants. Data-driven fingerprints are generated using two VAE and

two transformer models trained on ChEMBL 26, GAE trained on DrugComb compounds, and a pre-trained Deep Graph Infomax model (Infomax). The fingerprints are

compared in three tasks: predictions of drug combination sensitivity and four synergy scores (VS I); representation similarity based on CKA (VS II); one-versus-all

fingerprint clustering based on ATC drug classes (VS III). VS I results are also used to identify the most predictive synergy model.

sequence-based versions, geometric DL fingerprints are derived
from molecular graphs, and in addition to global molecular
descriptors enable position-aware encoding of individual atom
and bond features [61–67].

There exist several extensive benchmark datasets for ranking
DL models in chemoinformatics tasks, such as MoleculeNet,
Open Graph Benchmark and Benchmarking GNNs [68–70].
Despite the widespread use of molecular fingerprints, there
is a lack of systematic evaluation of data-driven DL and
rule-based versions. To address the gap, we study 11 types
of molecular representations, comprising seven DL and four
rule-based variants, in prediction of cancer drug combination
synergy and sensitivity, based on 17 271 848 data points from
14 cancer drug screening studies (Figure 1, experiment VS I). By
comparing four synergy scores based on distinct null models,
we identify a preferred synergy formulation for use in cancer
drug combinations research [71, 72]. We measure the fingerprint
similarity by adapting centered kernel alignment (CKA) as a
distance metric (Figure 1, experiment VS II). Lastly, we explore
the downstream performance of molecular representations by
clustering compounds assigned to 10 anatomical therapeutic
chemical (ATC) classes in one-versus-all mode (Figure 1,
experiment VS III). We believe that our work will contribute to
the rational design of drug combinations, enable easier selection
of molecular representations for in silico modeling, and promote
further use of DL methods in biomedicine.

Methods
Data provenance

The DrugComb data portal, one of the largest public drug combi-
nation databases, is used to access combination sensitivity and

synergy data [73]. Its October 2019 release contains standardized
and harmonized results of 14 drug sensitivity and resistance
studies on 4153 drug-like compounds screened in 112 cell lines
for a total of 447 993 drug–drug-cell line tuples. Each pairwise
drug combination is characterized by the CSS and four synergy
scores, namely Bliss independence (Bliss), HSA, Loewe additivity
(Loewe) and ZIP, further details are in the Supplementary Infor-
mation. ChEMBL (release 26) is used to obtain SMILES strings,
which are subsequently standardized by stripping salt residues
and solvent molecules [74, 75]. SMILES shorter than 8 and longer
than 140 characters are filtered out. PubChem identifiers (CID)
are used to cross-reference compounds between the databases
when necessary. The final DL training dataset consists of 1 795
483 unique SMILES with a median length of 48 and a median
absolute deviation of 10.

Molecular representations

Fingerprints are numeric arrays of n elements (bits) long, where
n ranges between 16 and 1024 depending on fingerprint type.
Even though n values up to 16 384 have been tested in literature
demonstrating a positive correlation between fingerprint size
and downstream prediction performance, not all the studies
support these findings [38, 76]. Fingerprints used in the current
work are classified into rule-based with binary values and DL-
based with continuous values. Rule-based models are further
split into topological, 2D and 3D circular subtypes. DL finger-
prints are split into sequence and graph subtypes. More detailed
classification is found in Table 1.

Rule-based fingerprints

Four types of rule-based fingerprints used in the current work
are: path-based (Topological 1024 bits long), 2D circular (Morgan
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Table 1. Fingerprint taxonomy

Fingerprint Type Subtype Length Data format Pretraining

E3FP Rule Circular 3D 1024 Binary No
GAE Data Graph 16 and 64 Continuous No
Infomax Data Graph 300 Continuous Yes
Morgan Rule Circular 2D 300 and 1024 Binary No
Topological Rule Path 1024 Binary No
Transformer Data Sequence 64 and 1024 Continuous Yes
VAE Data Sequence 16 and 256 Continuous Yes

300 and 1024 bits long) and 3D circular (E3FP 1024 bits). Topo-
logical and Morgan variants are selected due to their good per-
formance in Virtual Screening experiments [38, 43]. E3FP is a 3D
extension of 2D extended-connectivity models, it is generated
following the no_Stereo variant [77].

Deep learning-based fingerprints

Seven data-driven molecular fingerprints of different lengths are
generated using four types of unsupervised encoder–decoder DL
models, namely a graph autoencoder (GAE), a VAE, a Transformer
and a pre-trained Deep Graph Infomax (Infomax).

GAE fingerprints

Sixteen bits long GAE fingerprints are defined via a diagonal
semidefinite matrix of singular values �, obtained through the
singular value decomposition of GAE embedding matrix [61, 62].
Inspired by the Ky Fan matrix k-norm, equal to the sum of k
largest singular values of the matrix, the main diagonal of �

is used as a 16 bits long fingerprint [78]. If small molecules
result in � diagonal shorter than 16 bits, then zero-padding is
applied. Sixty-four bits long GAE fingerprints are generated by
concatenating average, min- and max-pooled representations of
the embedding matrix to 16 bits long GAE fingerprints.

VAE fingerprints

VAE fingerprints are 16 and 256 bits long latent spaces of two
independently trained VAE models [49].

Transformer fingerprints

Sixty-four bits long Transformer fingerprints are constructed by
concatenating average- and max-pooled latent embeddings of
the 16 bits model with the first output of its last and second last
recurrent layers. Similarly, the 1024 bits variant is generated from
the embedding space of the Transformer 256 bits model [52].

Infomax fingerprints

Infomax fingerprints are 300 bits long, generated using a pre-
trained Deep Graph Infomax model that by design maximizes
mutual information between local and global molecular graph
features [79, 80].

Deep learning models used for fingerprint generation

Graph autoencoder model

GAE model uses a graph G, with V nodes and E edges as input,
where V correspond to atoms and E to atomic bonds. Additional
numeric features may be incorporated via node or bond fea-
ture matrices [81]. A graph G is represented with an adjacency

matrix, A ε R
|V|x|V| , where |V| are node indices, such that non-

zero A elements correspond to existing molecular bonds [82]. A
is normalized to be symmetric and contain self-loops following
[83].

Aself−loop = A + I
Anorm = D−1/2Aself−loopD−1/2

where I is an identity matrix equal in size to A, D is a diagonal
node degree matrix such that its main diagonal represents bond
counts of Aself-loop. GAE model is initialized with a node matrix of
54 atom features, where each atom is represented by an array of
one-hot encoded values denoting one of the 37 atoms types, six
possible atom degrees, five atom charges, four variants of chiral
configuration and an aromaticity indicator, all generated using
RDKit. One-hot refers to encoding categorical variables as binary
arrays. To make the GAE model compatible with previously
unseen atoms, a placeholder for an unknown atom type is added.
GAE encoder consists of seven convolutional layers with sum
pooling followed by ReLu activation [84]. The decoder part is a
dot product of the embedding matrix with itself, followed by
0.1 dropout and sigmoid activation. Cross-entropy over Anorm is
used as a loss function. Empty nodes in Anorm are initialized with
zeros.

Variational autoencoder model

Two VAE models are trained with the embedding sizes of 16 or
256 bits. Both models have a 54 characters in vocabulary, consist-
ing of 53 unique alphanumeric characters found in SMILES and
an additional empty character for zero-padding. Input length is
140 characters, zero-padded if necessary. VAE encoder consists
of three 1D convolutional layers of 9, 9 and 10 neurons, each
followed by SELU activation [85]. The decoder consists of three
GRU layers with a hidden dimension of 501, followed by softmax
activation. Loss function is an equally weighted combination
of binary cross-entropy and Kullback–Leibler divergence. Xavier
uniform initialization is used to assign the starting weights of
two VAE models [86].

Transformer model

Two transformers are trained with the embedding sizes of 16
or 256 bits. The vocabulary size for both models is 58 char-
acters including 53 unique SMILES characters and five tokens
for end-of-string, mask, zero-pad, unknown-character and initialize-
decoding. Maximum input length is 141 characters, zero-padded
if necessary. Both models have four-headed attention and six
transformer layers, with a dropout of 0.3 applied to the positional
encoding output [54]. Loss function is negative log likelihood.
Network weights are initialized with Xavier uniform.
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Deep graph Infomax (Infomax) model

DGI is pre-trained on 465 000 molecules from ChEMBL 20 and on
two million molecules from ZINC 15 by Hu et al. [80, 87].

DL model training

The GAE model is trained on 4153 DrugComb drug-like com-
pounds, while VAE and Transformer models are trained on 1 795
483 molecules from DrugComb and ChEMBL 26 databases. Five-
fold cross-validation is used for training all the DL models. Trans-
former and VAE models are trained for 10 epochs on each fold,
GAE is trained for 40 epochs on each fold. All models use Adam
optimizer with a learning rate decay and an initial learning rate
of 1e-03, the training is halted once the learning rate reaches
1e-06 or loss reaches zero [70, 88–90]. GAE hyperparameters are
optimized using tree-structured parzen estimators with a bud-
get of 1000 iterations, other DL models employ random search
[91]. Further training details can be found in Supplementary
Information.

Regression analysis of molecular fingerprints (VS I)

Data input

One-hot encoded cell line labels and each of 11 drug fingerprints
are used as inputs to regression models to predict drug com-
binations sensitivity and synergy. Combination fingerprints are
generated by concatenating single molecular representations,
topological fingerprints are bit-averaged [92]. Full dataset con-
tains 362 635 cell line-drug combination tuples of 3421 com-
pounds, when filtered by the SMILES strings (SMILES-filtered),
and 447 993 combination tuples of 4153 molecules, when filtered
by the CID (CID-filtered). For each cell line-drug combination
tuple, four synergy scores and CSS sensitivity scores are obtained
from DrugComb. If found, biological replicates are averaged,
further, dose-dependent synergy scores are averaged inside cell
line-drug combination tuple.

Cross-validation (VS I)

Model selection for the regression analysis of molecular fin-
gerprints is split into three steps. In the first step, 13 different
regression models are tested thrice in 5-fold cross-validation
on the 10% of the full dataset, sampled without replacement
(Supplementary Information). The goal is to identify an optimal
type of a regression model for prediction of four synergy scores
and the CSS. The second step concerns hyperparameter tuning
of the previously selected regression model on all available data
in 10-fold cross-validation. Lastly, the model is trained in 10-fold
repeated cross-validation on SMILES-filtered and CID-filtered
datasets with 90:10 and 60:40 train:test splits [93].

Regression performance metrics

Pearson correlation coefficient (PCC) and root-mean-squared
error (RMSE) are used to assess the regression performance. PCC
and RMSE 95% confidence intervals are calculated via student’s
t-distribution estimate of Fisher’s z-transformed PCC values, and
via empirical bootstrap with 1000 iterations and symmetric con-
fidence intervals [94–98]. RMSE values are normalized by stan-
dard deviations. Shapiro–Wilk test is used to test the normality
assumption [99].

Related work

PCC scores of regression models, used to predict single synergy
scores in three recent studies, are in Supplementary Information
section.

Fingerprint similarity (VS II & VS III)

Fingerprint similarity metric

All 11 types of molecular representations vary in length and
data types, making commonly used metrics, such as Jaccard–
Tanimoto or cosine distances poor choices for fingerprint com-
parison [100–102]. Jaccard–Tanimoto is suboptimal, as it is based
on bits present in one fingerprint, absent in another and shared
by both [103]. Cosine distance between two vectors, defined as
their inner product normalized by the corresponding L2 norms,
only measures an angle between two vectors without accounting
for differences in their ranges [104]. It may be possible to post-
process DL fingerprints and define common distance metrics on
both the binary and real-valued arrays [105]. However, we opted
against it, as we are not aware of any studies that systematically
assess DL fingerprint similarity or quantify downstream effects
of such transformations. Recall that an inner product is an
unnormalized measure of similarity allowing metrics based on
the canonical correlation analysis (CCA), singular vector CCA and
projection-weighted CCA to be defined on any real-valued arrays
[106–108]. All these methods underperform when the number
of compounds is smaller than the dimensionality of feature
space, i.e., n bits [109]. It is not intuitive to use unnormalized
inner product as a similarity measure, as it is unbounded and
requires original data to be referenced alongside the similarity
scores. Since calculation of pairwise compound distances is not
a prerequisite to quantify their similarity, we compare com-
plete fingerprint matrices using CKA, a modification of Hilbert–
Schmidt independence criterion (HSIC) originally proposed to
assess nonlinear dependence of two sets of variables [110].

Fingerprint matrix

Let m compounds be represented with two fingerprint matrices
X and Y, where individual fingerprints xi and yi may be of
different data types and different lengths x and y:

X = [x1, x2, ..., xm]T, xiεR
x

Y = [y1, y2, ..., ym]T, yiεR
y

X and Y are normalized by subtracting column means from the
corresponding column values.

Linear kernel k

Let K be a kernel matrix, such that its entries correspond to scalar
outputs of a linear kernel function k. Let k be an inner product,
k = xi

Tyi, where xi and yi are 1D vectors from two fingerprint
matrices X and Y corresponding to the same compound or
feature. When xi and yi are column vectors, K becomes a feature
similarity matrix:

Kfeature
X,Y ε R

x×y

If xi and yi are row vectors, K is a sample similarity matrix:

Ksample
X,Y ε R

m×m
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Hilbert-Schmidt independence criterion

HSIC is a test statistic equal to 0 when X and Y are independent
[110]. Unnormalized HSIC is without an upper bound and equal
to:

HSIC
(
Kfeature

X,Y

)
=‖ YTX‖2

F

HSIC
(
Ksample

X,Y

)
= trace

(
XXTYYT

)

where YTX is a dot product of feature vectors and ‖ .‖2
F is a

squared Frobenius norm and XXT and YYT are left Gram matrices.
Notice that:

Kfeature
X,Y = Ksample

X,Y

Further, for centered X and Y under linear dot product kernel:

‖ YTX‖2
F = trace

(
XXTYYT

)
= cov (X, Y) =‖ XTY‖2

F

where cov(X, Y) is a cross-covariance matrix of X and Y [109].

CKA (VS II)

HSIC is an empirical statistic that converges to its unbiased
value at a rate of 1√

number of samples
[111]. Unbiased HSIC values

are used to define CKA, a normalized version of HSIC that ranges
from 0 to 1. CKA is used to quantify the difference between two
fingerprint matrices X and Y. When CKA is calculated via the
feature similarity, it is defined as:

CKA = HSIC
(
Kfeature

X,Y

)
√

HSIC
(
Kfeature

X,X

) × HSIC
(
Kfeature

Y,Y

)

CKA is a non-linear extension of the CCA and does not require
any assumptions about noise distributions in the datasets [112].
CKA with linear kernel is equivalent to the RV coefficient and
Tucker’s Congruence coefficient [109, 113–115]. If the number of
samples is higher than the number of features, CKA should be
calculated using feature similarities. Conversely, sample space
and use of Gram matrices is preferred.

Fingerprint clustering (VS III)

The ATC classification system is used to annotate drugs accord-
ing to biological systems on which they act, as well as their
therapeutic, pharmacological, and chemical properties [116]. The
2228 DrugComb compounds found in the ATC database are
assigned to 10 classes. All but GAE 16 bits and Morgan 1024
bits models are then used to generate nine fingerprint matrices.
The generated fingerprint matrices are preprocessed 3-fold: by
z-score normalization, z-score normalization followed by dimen-
sionality reduction with PCA and z-score normalization followed
by dimensionality reduction with PLS. For the PCA preprocessing,
the number of loadings explaining >0.95 variance is used, PLS
regression for dimensionality reduction is performed with ATC
labels as targets. Linear discriminant analysis (LDA) is used
for one-versus-all clustering with ATC class labels as response
variables, averaged Silhouette score and variance ratio criterion
(VRC) are clustering performance metrics [117, 118].

Silhouette score for a single point is defined as:

s(i) = b(i) − a(i)
max

(
a(i), b(i)

)

where a is the mean distance between point i and all points
within its cluster Ci and b is the smallest mean distance between
point i and all points in a cluster �= Ci.

VRC is a ratio of between- to within-cluster variation,
adjusted by the number of clusters. VRC is closely related to
the F-statistic in ANOVA [119]. Both scores are min–max scaled
to be in [0, 1].

Computational facilities

All models are trained on Tesla P100 PCIe 16GB GPU. VM deploy-
ment is automated with Docker 19.03.9, python-openstack
3.14.13 and Heat Orchestration Template, Newton release. All
experiments are performed using: Catboost 0.24, DGL 0.5, numpy
1.19.1, mlxtend 0.17.3, Optuna 2.2.0, pandas 1.1.3, Python 3.7.6,
PyTorch 1.6, RDKit 2020.03.2, scikit-learn 0.23.2, scipy 1.4.1,
XGBoost 1.2.1. Figures are created in R ggplot2 3.3.2, matplotlib
3.3.2 and seaborn 0.11.

Results and discussion
Prediction of drug combination sensitivity and synergy

Regression model selection

We identify Catboost Gradient Boosting on Decision Trees (GBDT)
as an optimal regression model for the prediction of drug com-
bination sensitivity and synergy after testing 13 algorithms on
the 10% of the DrugComb dataset in three replicates (Table 2).
Three of the tested algorithms failed to generate any predictions
and are omitted. With optimized hyperparameters GBDT models
tend to reach the early stopping criterion in the last 20% of the
training on all the fingerprint variants which indicates correctly
tuned hyperparameters, further details are in Supplementary
Information. There exist alternative dataset splitting modes that
incorporate chemical similarity via Tanimoto distance or Murcko
decomposition [68, 120]. While they may better mimic current
drug development practices and lead to a better correlation
between in silico predictions and prospective experimental vali-
dation, we do not expect them to produce categorically different
results.

Regression performance (VS I)

Among 11 fingerprinting models, Infomax 300 and VAE 256
achieved the highest PCC in prediction of Loewe synergy score
using Catboost Gradient Boosting across all the test folds, cross-
validation modes and duplicate filtering methods. As seen in
Figure 2 and Table 3, for the 60:40 splits on the SMILES-filtered
dataset Infomax reaches a PCC of 0.6842, while VAE 256 score is
0.6813. All tested fingerprints result in the CSS prediction scores
above 0.85 PCC, with Infomax 300 and VAE 256 fingerprints still
ranked on top. Infomax 300 and VAE 256 have overlapping 95%
confidence intervals, as such they are considered to be equally
performant. E3FP is the best rule-based fingerprint and is among
the top three in most experimental runs. As seen in Figure 3
and Table 4, normalized RMSE scores further corroborate that
DL-based fingerprints are better than rule-based variants
in regression tasks. Further regression results for 90:10 and
60:40 train:test splits using SMILES and CID-filtered datasets
are in Supplementary Figures S1–S6 and Supplementary
Tables S1–S6).

Experimental results indicate that if similarity-based
clustering or identification of key molecular moieties are of

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab291#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab291#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab291#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab291#supplementary-data
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Table 2. Pearson correlation coefficients of 10 regression algorithms in prediction of synergy and sensitivity scores based on Infomax 300
and Morgan 1024 bits long fingerprints with one-hot encoded cell line labels as inputs. Models are trained in three replicates, with default
hyperparameters in 5-fold CV on 10% of data. VS I

Model CSS Bliss HSA Loewe ZIP Rank

sklearn GBDT 0.641 0.331 0.303 0.384 0.384 1
Random Forest 0.609 0.355 0.311 0.374 0.413 2
Catboost GBDT 0.610 0.339 0.244 0.333 0.419 3
XGBoost GBDT 0.624 0.316 0.265 0.345 0.373 4
Bayesian Ridge 0.616 0.315 0.283 0.299 0.367 5
SVR linear kernel 0.588 0.270 0.219 0.253 0.333 6
Ridge 0.599 0.251 0.219 0.287 0.311 7
Elasticnet 0.332 NaN NaN NaN NaN 8
OLS 0.092 0.023 0.022 0.042 0.030 9
Lasso 0.264 NaN NaN NaN NaN 10

Figure 2. Drug combination synergy prediction on the SMILES-filtered dataset in 60:40 train:test split. 95% confidence intervals are calculated via Fisher z-

transformation. Best models are highlighted with red. VS I task.

Table 3. Drug combination sensitivity and synergy prediction on the SMILES-filtered dataset in 60:40 train:test split. 95% confidence intervals
are calculated via Fisher z-transformation. Three best models are in bold. VS I task

Fingerprint Pearson’s r and 95% Confidence interval

CSS Bliss HSA Loewe ZIP

E3FP 1024 0.8641 ± 0.0017 0.6048 ± 0.0080 0.5716 ± 0.0033 0.6479 ± 0.0016 0.6394 ± 0.0070
GAE 16 0.8540 ± 0.0032 0.5654 ± 0.0057 0.5304 ± 0.0042 0.5996 ± 0.0036 0.6137 ± 0.0089
GAE 64 0.8667 ± 0.0028 0.6038 ± 0.0028 0.5703 ± 0.0039 0.6589 ± 0.0023 0.6351 ± 0.0048
Infomax 300 0.8761 ± 0.0019 0.6222 ± 0.0044 0.5897 ± 0.0039 0.6842 ± 0.0024 0.6509 ± 0.0046
Morgan 300 0.8541 ± 0.0022 0.5788 ± 0.0080 0.5523 ± 0.0024 0.6352 ± 0.0024 0.6186 ± 0.0078
Morgan 1024 0.8605 ± 0.0028 0.5873 ± 0.0079 0.5568 ± 0.0032 0.6347 ± 0.0016 0.6309 ± 0.0053
Topological 1024 0.8405 ± 0.0019 0.5748 ± 0.0042 0.5390 ± 0.0039 0.6398 ± 0.0028 0.6115 ± 0.0058
Transformer 64 0.8582 ± 0.0023 0.5756 ± 0.0088 0.5522 ± 0.0040 0.6318 ± 0.0023 0.6209 ± 0.0072
Transformer 1024 0.8663 ± 0.0022 0.6021 ± 0.0064 0.5683 ± 0.0037 0.6678 ± 0.0020 0.6341 ± 0.0051
VAE 16 0.8616 ± 0.0018 0.5888 ± 0.0070 0.5562 ± 0.0034 0.6371 ± 0.0024 0.6254 ± 0.0070
VAE 256 0.8759 ± 0.0022 0.6226 ± 0.0050 0.5915 ± 0.0031 0.6813 ± 0.0013 0.6516 ± 0.0047

interest, rule-based fingerprints should be considered. Their
average performance in regression is compensated by the inbuilt
interpretability and robust clustering performance [121]. On
the other hand, neural fingerprint models are well-suited for
regression tasks, as seen in the VS I experiment. It is important
to note that the differences in regression performance between
rule- and DL-based fingerprints do not exceed 0.05 PCC when
predicting any synergy scores or the CSS. Consistently good
performance of the DL models and E3FP fingerprints may be
offset by their high computational costs during model training or

fingerprint generation, respectively. GAE 64 fingerprints appear
to be a reasonable compromise in terms of the downstream
performance and relatively short model training times.

Fingerprint similarity

CKA distance (VS II)

A heatmap of pairwise CKA similarities between 11 fingerprints,
as seen in Figure 4, indicates that similar types of fingerprints
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Figure 3. Drug combination synergy prediction on the SMILES-filtered dataset in 60:40 train:test split using RMSE, normalized by the target’s standard deviation. 95%

confidence intervals are calculated via empirical bootstrap. Best models are highlighted with red. Normalized RMSE value of 1 indicates that the standard deviation of

residuals is equal to the standard deviation of the target, i.e., a model that predicts mean values for all targets would have such a normalized RMSE. VS I task.

Table 4. Drug combination sensitivity and synergy prediction on the SMILES-filtered dataset in 60:40 train:test split using RMSE, normalized
by the target’s standard deviation. 95% confidence intervals are calculated via empirical bootstrap. Three best models are in bold. VS I task

Fingerprint Normalized root-mean-squared error and 95% confidence interval

CSS Bliss HSA Loewe ZIP

E3FP 1024 0.5034 ± 0.0011 0.7987 ± 0.0063 0.8214 ± 0.0051 0.7624 ± 0.0029 0.7715 ± 0.0090
GAE 16 0.5205 ± 0.0020 0.8277 ± 0.0079 0.8487 ± 0.0036 0.8004 ± 0.0046 0.7926 ± 0.0119
GAE 64 0.4990 ± 0.0016 0.7996 ± 0.0072 0.8220 ± 0.0045 0.7524 ± 0.0035 0.7750 ± 0.0098
Infomax 300 0.4822 ± 0.0011 0.7852 ± 0.0066 0.8081 ± 0.0055 0.7285 ± 0.0034 0.7616 ± 0.0079
Morgan 300 0.5204 ± 0.0007 0.8183 ± 0.0075 0.8348 ± 0.0042 0.7733 ± 0.0036 0.7884 ± 0.0075
Morgan 1024 0.5097 ± 0.0013 0.8120 ± 0.0104 0.8315 ± 0.0046 0.7729 ± 0.0030 0.7783 ± 0.0081
TopoA 1024 0.5420 ± 0.0011 0.8207 ± 0.0068 0.8427 ± 0.0056 0.7678 ± 0.0040 0.7937 ± 0.0100
TB 64 0.5134 ± 0.0014 0.8206 ± 0.0094 0.8344 ± 0.0050 0.7752 ± 0.0035 0.7867 ± 0.0075
TB 1024 0.4998 ± 0.0012 0.8011 ± 0.0112 0.8235 ± 0.0055 0.7442 ± 0.0033 0.7760 ± 0.0088
VAE 16 0.5080 ± 0.0010 0.8107 ± 0.0085 0.8317 ± 0.0057 0.7709 ± 0.0039 0.7828 ± 0.0083
VAE 256 0.4825 ± 0.0013 0.7849 ± 0.0081 0.8069 ± 0.0051 0.7315 ± 0.0027 0.7610 ± 0.0075

cluster together. Rule-based fingerprints form two clusters cor-
responding to topological and circular subtypes. All the DL fin-
gerprints generated by the trained models form the third cluster.
Graph-based models appear to be far removed from all sequence
and rule-based variants. GAE 64 is the most different from other
trained DL fingerprints, while being co-clustered with them.
Infomax 300 fingerprints, based on a pre-trained Deep Graph
Infomax model, are not part of any cluster. Smaller sequence-
based DL fingerprints, namely VAE 16 and Transformer 64 are
at least as similar to each other, as they are to their longer in-
type/subtype counterparts. We conclude that fingerprint type
and subtype, as indicated in Table 1, contribute the most to the
CKA similarity, followed by fingerprint pretraining status, size,
and data format.

LDA clustering (VS III)

To further study the differences between fingerprint models, we
perform one-versus-all LDA classification of 2228 compounds
based on their ATC classes, using nine different fingerprinting
models to represent the molecules. The GAE 16 bits fingerprints
are omitted, since GAE 64 bits fingerprints extend their shorter
counterparts by concatenating average, min- and max-pooled
embedding spaces. Further, due to the comparable performance
of Morgan 300 and 1024 bits models in VS I and VS II experiments,
only Morgan 300 bits fingerprints are used in LDA clustering

experiments. VS III clustering results are in Table 5 and the
overview of DrugComb compounds with the corresponding ATC
classes is in Figure 5. The Infomax 300 bits model achieves
the best clustering results on the z-score normalized finger-
print matrices, followed by three rule-based fingerprints. Dimen-
sionality reduction following z-score normalization generally
improves clustering performance of all rule-based fingerprints.
It has the opposite effect on most DL fingerprints, with the
largest reduction seen in the Infomax 300 and GAE 64 models.
Longer DL sequence models, namely VAE 256 and Transformer
1024, perform better after dimensionality reduction steps, albeit
with a minimal improvement in relative rankings. Such differ-
ences between graph and sequence-based DL fingerprints are
supported by the CKA analysis (VS II study), indicating that the
graph-based fingerprints differ the most from other DL variants.

Conclusion
Choosing an optimal fingerprint type to represent molecular
features is an important step in computational drug discovery.
To this end, we systematically compared 11 variants of such
molecular representations in predicting drug combination sen-
sitivity and synergy scores, and evaluated their relationships
based on the clustering performance and CKA-based fingerprint
similarity. We found that VAE 256 bits long and 3D circular
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Figure 4. Heatmap of pairwise CKA distances between 11 fingerprints. Infomax and GAE 64 are DL fingerprints based on molecular graphs. VAE and Transformer are

sequence-based DL fingerprints. E3FP and variants of Morgan and topological fingerprints are generated using rule-based models. VS II task.

Table 5. One-versus-all LDA clustering in 10 ATC classes of 2228 DrugComb compounds represented with nine fingerprint types. Averaged
Silhouette and VRC scores are rescaled to [0,1]. Fingerprints are ranked according to scores on z-score normalized data. PCA- and PLS-based
dimensionality reduction improves rule-based fingerprint (denoted by rule_ prefix) performance, most DL fingerprints (data_ prefix) decrease
performance, VAE 256 and Transformer 1024 benefit from dimensionality reduction, although minimally in terms of relative ranking. VS III task

Fingerprint z-score z-score + PCA z-score + PLS

Silhouette VRC Silhouette VRC Silhouette VRC

data_Infomax 300 0.984 1.000 0.701 0.251 0.749 0.326
rule_E3FP 1024 1.000 0.831 0.993 0.958 0.988 0.959
rule_Topo 1024 0.979 0.771 1.000 0.997 1.000 1.000
rule_Morgan 300 0.967 0.655 0.993 1.000 0.997 0.984
data_GAE 64 0.440 0.122 0.258 0.064 0.303 0.062
data_VAE 256 0.399 0.049 0.547 0.170 0.574 0.190
data_VAE 16 0.223 0.056 0.076 0.036 0.000 0.006
data_Transformer 64 0.088 0.004 0.000 0.000 0.120 0.000
data_Transformer 1024 0.000 0.000 0.131 0.023 0.377 0.067

E3FP 1024 bits long fingerprints generated from SMILES strings,
as well as Infomax 300 bits long fingerprints based on molec-
ular graphs lead to the best regression performance. Out of
the four tested synergy scores, we observe that Loewe synergy
is the easiest to predict with best models reaching PCC 0.72.
CSS, a measure of drug combination efficacy, can be predicted
>0.85 PCC with any fingerprint type. We found that the rule-
based fingerprinting methods underperform in regression tasks

in comparison to the data-driven DL variants. However, the
gap between the best and worst performing fingerprint models
rarely exceeds PCC 0.05. Further, we adapted CKA to quantify
the extent of similarity between fingerprint matrices and to
demonstrate that similar types of fingerprints cluster together.
An optimal similarity measure for the comparison of single rule-
based and data-driven fingerprints remains an open question.
Lastly, in one-versus-all compound clustering using ATC classes
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Figure 5. ATC drug classes of the DrugComb compounds (n = 3421). Over one third (n = 1193) compounds do not have a mechanism of action assigned in the ATC

classification system.

as labels, rule-based fingerprints perform on par or better than
the best DL representations.

We conclude that the quantitative performance differences
between rule-based and DL-based fingerprints are likely to
be insignificant in the context of preclinical studies of small
molecule drugs [122, 123]. In order to identify an optimal
fingerprint type for a given project we advise enriching
quantitative performance metrics with qualitative concerns, e.g.,
available chemometric and DL expertise, model interpretability
requirements, opinions of project stakeholders and model
performance on unseen data. Fingerprints generated using
the E3FP 1024, Infomax 300, Morgan 1024 and VAE 256 bits
models are suggested as good starting points based on our
experimental results and distinct methodologies underlying
their data generating methods [124]. We recommend the Loewe
synergy score for use in drug combination screening due to its
best performance among four tested synergy models tested on
dose–response data from 14 DSRT studies.

This work focuses on the evaluation of single fingerprint
types. However, it is worth exploring the impact of combining
several fingerprints together. We expect a statistically signifi-
cant regression performance increase when combining molec-
ular representations with low CKA similarity, or using models
trained on multimodal data and/or key biological databases,
such as Gene Ontology, Protein Data Bank and UniRef [5, 125–
127]. Another line of inquiry could address high computational
costs of DL and E3FP models. To this end, we suggest exploring
alternative molecular representations and CPU-friendly gener-
ative models based on genetic algorithms, such as STONED on
SELFIES [128]. Finally, we hope that in the future biomedical
DL research will go beyond representation learning and will be
used to derive novel biological knowledge by e.g., inferring syn-
thetic and retrosynthetic chemical reactions, identifying novel

disease-associated druggable proteins and clinically actionable
biomarkers [129–131].

Key Points
• To choose an optimal molecular fingerprint type, it

is advised to enrich quantitative metrics of model
performance with qualitative concerns related to the
nature of downstream tasks, model interpretability
and robustness requirements, as well as available
chemometric expertise.

• Data-driven fingerprints, namely VAE 256 bits long
trained on SMILES and Infomax 300 bits long-trained
molecular graphs are well-suited for regression tasks.
1024 bits long 2D and 3D circular fingerprints are
flexible and well-performant rule-based models fit for
clustering tasks. GAE 64 bits long model may be used
in any analysis scenario as a baseline option.

• Loewe synergy scores enable the highest correlation
between in silico predictions and subsequent exper-
imental validation of drug combination synergy in
cancer cell lines.

• CKA is an effective measure of molecular representa-
tion similarity applicable to any combination of rule-
based and DL fingerprints.

Supplementary data

Supplementary data are available online at https://academic.
oup.com/bib.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab291#supplementary-data
https://academic.oup.com/bib
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Data and code availability

The data and code underlying this article are available in the
article and in its online supplementary material.

Code: https://github.com/NetPharMedGroup/publicatio
n_fingerprint/.

Data: https://doi.org/10.5281/zenodo.4843919.

Supplementary information
Combination sensitivity and synergy scores

It is known that the choice of an appropriate null model
of no interaction is crucial for an accurate assessment of
drug synergy. Four such models are used in the current
work. Bliss model is based on probabilistic independence
of drug effects, such that single agents are competing, but
independent perturbations each contributing to a total effect
[30]. HSA assumes that an expected drug combination effect
is the higher of the two single-agent effects at corresponding
concentrations [31]. Degree of non-interaction according to
Loewe is equal to the outcome of a sham experiment, that
is, combining a drug with itself [32, 33]. ZIP assumes that
non-interacting drugs minimally impact each other’s dose–
response curves [34]. CSS quantifies drug combination effi-
cacy, which is defined as an average of areas under drug
combination dose–response curves, whereby each curve is
determined by fixing one of the drugs at its IC50 concentra-
tion [29].

Regression model selection

Thirteen regression models, representing a wide spectrum
of ML algorithms, are compared in prediction of drug
combination synergy and sensitivity. All models are tested
with default hyperparameters in 5-fold cross-validation
using 1024 bits long Morgan and 300 bits long Infomax
fingerprints together with one-hot encoded cell line labels
on 10% of randomly sampled data in three replicates.
Thirteen tested regression models are: Bayesian Ridge,
Catboost Gradient Boosting, ElasticNet, Gaussian Process
Regression with a sum of Dot Product and White Kernels,
Histogram-based Gradient Boosting, Isotonic Regression,
Lasso regression, LassoLars regression, Linear regression,
Ridge regression, Random Forest, Support Vector Machines
with a linear kernel and XGBoost Gradient Boosting. All
trees-based models are limited to a depth of six. Neural
networks are not included in the comparison, since on
tabular data they tend to perform on par with the previously
mentioned methods, while being less interpretable and
more difficult to set up [132, 133].

Top four identified regression models are bagging and
boosting ensembles, followed by linear kernel Support Vec-
tor Regression and Bayesian Ridge. Gaussian Process Regres-
sion, Isotonic and Lassolars models failed to generate any
predictions and their results are omitted from Table 1. Cat-
boost implementation of GBDT is selected for further exper-
iments due to its efficient GPU utilization and two design
choices aimed at reducing overfitting: out-of-the-box cate-
gorical encoding that translates classes into numeric rep-
resentations, binning them based on the expected value of
target statistic, and ordered boosting whereby training data

are randomly permuted throughout tree growing process to
limit unwanted target metric prediction shift, one of well-
known GBDT disadvantages [134–136].

Tuned in 10-fold cross-validation best hyperparameters
for Catboost GBDT are Poisson bootstrap with 0.66 subsam-
pling ratio, L2 regularization of 9, tree depth of 10, learning
rate of 0.15 with 5000 boosting iterations and 50 early stop-
ping rounds. Overall, we conclude that ensembles are the
most powerful type of tested ML algorithms in prediction of
drug combination synergy and sensitivity [137].

Neural network training

For all DL models, the hyperparameter search consisted of
testing activation functions (GELU, ELU, LeakyReLU, ReLU,
SELU, Sigmoid, Softmax, Swish), dropout ratios (0.1–0.5 with
0.1 step size), initial learning rates (1e-01 to 1e-05, with a
step size of 0.1), number of patience epochs (1–30 with a step
size of 1) and the learning rate decay factor (0.9–0.1 with a
step size of 0.1). Transformer models were tested with 3–6
attention heads. VAE encoders were tested with up to five
convolutional layers and convolutional kernel sizes up to 10;
VAE decoder is tested with up to three recurrent GRU layers
of sizes up to 600.

Transformer. Two transformer models are trained in 5-
fold cross-validation, for up to 10 epochs on each fold with
a decay factor of 0.1 and patience of 5 epochs in batch
sizes of 650 and 340 for 16 bits and 256 bits long fingerprint
variants. The final cross-entropy losses are 2e-07 and 1e-08,
respectively.

VAE. Two VAE models with the latent spaces of 16 and
256 neurons are trained on ChEMBL 26 using 5-fold cross-
validation and 10 epochs on each fold with a decay factor of
0.2 and patience of 2 and 3 epochs, respectively. An equally
weighted sum of binary cross-entropy and KL-divergence is
used as a loss metric. The final losses are 0.9231 and 0.0984
for 16 bits and 256 bits models.

GAE. A single GAE model is trained on 3421 unique Drug-
Comb compounds in 5-fold cross-validation mode for 200
epochs with a batch size of 340 for up to 40 epochs per fold.
Learning rate decay factor is 0.1 with 30 epochs patience.
Cross-entropy over the molecular graph adjacency matrix is
used as a loss, with the best score of 0.8604 reached at the
end of the 200th epoch.

It is likely that longer training, more extensive hyper-
parameter optimization, or use of alternative optimizers,
such as SGD with a cyclic learning rate scheduling, may
result in lower final loss values. However, we do not expect
them to have a significant influence on the downstream
experiments [138]. It is interesting to note that optuna-based
optimization of the GAE model resulted in the encoder archi-
tecture consisting of seven convolutional layers 54-46-40-34-
28-22-16 neurons wide. Such a high number of convolutional
layers is somewhat unexpected, as performance of Graph
Neural Networks based on spectral convolutions is expected
to deteriorate with the convolutional layer count above six,
most likely due to excessive feature smoothing [139, 140].
Relatively deep GAE encoder architecture may be explained
by a positive correlation between the performance of DL
models and the number of trainable parameters, as the
seven layer GAE model with dot-product based Decoder has

https://github.com/NetPharMedGroup/publication_fingerprint/
https://github.com/NetPharMedGroup/publication_fingerprint/
https://doi.org/10.5281/zenodo.4843919
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circa 10 k learnable parameters, whereas large Transformer
and VAE models that reach lower test losses during training
have two orders of magnitude more parameters [141].

Prior work in drug combination synergy predictions

In three independent studies listed below single synergy
scores are predicted. Developed models are cross-validated
on single datasets.

Random forest. A Random Forest model developed by
Menden et al. achieved a 0.3 PCC in prediction of Loewe
synergy using drug and cell line labels on the AstraZeneca
dataset including 910 combinations tested in 85 cancer cell
lines [142].

Convolutional neural network. A CNN model introduced
by Preur et al. achieved a 0.73 PCC in prediction of Loewe
synergy from drug fingerprints, physicochemical molecular
descriptors and basal expression of 3984 cancer-associated
genes on the O’Neil dataset including 583 drug combinations
tested in 39 cancer cell lines [143, 144].

Gradient Boosting and Random Forest. XGBoost and Ran-
dom Forest models developed by Sidorov et al. achieved
a 0.64 PCC for a modified version of Bliss synergy from
drug fingerprints and their physicochemical characteristics
on the NCI-ALMANAC dataset including 5232 combinations
tested in 60 cancer cell lines [26, 145].
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