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Purpose: Deciphering salient features of biological tissue cellular microstruc-
ture in health and diseases is an ultimate goal of MRI. While most MRI
approaches are based on studying MR properties of tissue “free” water indirectly
affected by tissue microstructure, other approaches, such as magnetization
transfer (MT), directly target signals from tissue-forming macromolecules. How-
ever, despite three-decades of successful applications, relationships between MT
measurements and tissue microstructure remain elusive, hampering interpre-
tation of experimental results. The goal of this paper is to develop microscopic
theory connecting the structure of cellular and myelin membranes to their MR
properties.
Theory and Methods: Herein we introduce a lateral diffusion model (LDM)
that explains the T2 (spin–spin) and T1 (spin–lattice) MRI relaxation properties
of the macromolecular-bound protons by their dipole–dipole interaction modu-
lated by the lateral diffusion of long lipid molecules forming cellular and myelin
membranes.
Results: LDM predicts anisotropic T1 and T2 relaxation of membrane-bound
protons. Moreover, their T2 relaxation cannot be described in terms of a standard
R2 = 1/T2 relaxation rate parameter, but rather by a relaxation rate function R2(t)
that depends on time t after RF excitation, having, in the main approximation,
a logarithmic behavior: R2(t)∼ lnt. This anisotropic non-linear relaxation leads
to an absorption lineshape that is different from Super-Lorentzian traditionally
used in interpreting MT experiments.
Conclusion: LDM-derived analytical equations connect the membrane-bound
protons T1 and T2 relaxation with dynamic distances between protons in neigh-
boring membrane-forming lipid molecules and their lateral diffusion. This sheds
new light on relationships between MT parameters and microstructure of cellu-
lar and myelin membranes.
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1 INTRODUCTION

NMR imaging is a powerful tool for analyzing struc-
ture and functioning of human and animal brains in
health and disease. Relaxation (R1, R2, R∗2, etc.,), dif-
fusion, magnetic susceptibility and magnetization trans-
fer (MT) parameters are among the most important and
broadly used metrics characterizing brain tissue, where
these parameters differ from those in pure water due to
strong interaction between hydrogen protons of water and
macromolecules (lipids, proteins, etc.) forming biologi-
cal tissue cellular structure. These differences are espe-
cially pronounced in a so-called myelin water (MW), that
is, water trapped between lipid bilayers forming myelin
sheath around axons, where the surface-to-volume ratio
for interaction between water and macromolecules is very
high and, therefore, the strength of the interaction effects
is substantially elevated.

A theoretical analysis describing the influence of
macromolecules on water proton relaxation and MT prop-
erties is usually based on multi-compartment models.
In a simplest two-compartment model, one of the com-
partments (often-called free water or free pool) repre-
senting a combination of intra- and extra-cellular water,
and another compartment (usually called bound pool)
representing protons bound to macromolecules. Direct
experiments with the myelin extracts and myelinated
nerves1,2 revealed that the bound pool represents mostly
long-chain methylene protons. This bound pool protons
are characterized by a very short transverse magnetization
decay time T2 in the range of 10 microseconds, making
this compartment “invisible” in conventional MR exper-
iments. However, interaction of the bound protons with
the free water compartment, makes it possible to indi-
rectly detect protons bound to macromolecules in MT
experiments with off-resonance single3–5 and double6 exci-
tation pulses (see recent reviews7,8 and numerous refer-
ences therein), as well as with on-resonance RF pulses.9–14

Recent development of in vivo ultra-short TE tech-
niques, also demonstrated the presence of the components
with T∗2 in a sub-millisecond range.15–17 While MT-base
approaches found rather broad applications for studying
different diseases (see discussion in Refs.7,8), microscopic
mechanisms relating actual microstructure and dynam-
ics of macromolecules within myelin sheath to transverse
relaxation properties of bound protons remain largely
unknown.18

In the present study, we introduce a lateral dif-
fusion model (LDM) that explains the T2 (spin–spin)
and T1 (spin–lattice) MRI relaxation properties of the
macromolecular-bound protons by their dipole–dipole
interaction modulated by the lateral diffusion of long

lipid molecules forming cellular and myelin membranes.
We demonstrate that the transverse relaxation proper-
ties of the bound protons in the myelin layers can be
explained in the framework of the model accounting for
their spin–spin interaction modulated by the lateral diffu-
sion of long lipid molecules in the bilayers forming cel-
lular membranes and myelin sheath. We also show that,
the modulation of spin–lattice interaction of bound pro-
tons by the lateral diffusion of long lipid molecules can
substantially contribute to their T1 relaxation processes,
thus complementing previously discuss rotational mecha-
nisms19 and the recent study,20 where the dipolar induced
spin–lattice relaxation between water and bound protons
in the myelin sheath was numerically investigated by
using a computer-simulated atomistic model of the myelin
sheath with a realistic lipid composition.

Our results show that the decay of the transverse mag-
netization component M

⊥
(t) associated with the bound

protons in the bilayers forming myelin sheath is highly
anisotropic, and its time dependence differs from either
Lorentzian (linear exponential) or Gaussian (quadratic
exponential). Instead, the LDM presented here leads to the
following expression for the transverse magnetization of
the bilayer-bound protons:

M
⊥
(t) = M

⊥
(0) ⋅ exp [−R2(t, 𝛼) ⋅ t] (1)

with a transverse relaxation rate function R2(t, 𝛼) (an ana-
log of a common t-independent transverse relaxation rate
parameter) that depends on the time t after excitation
pulse and the local orientation (𝛼) of the main axis of
the lipid chains in the bilayers with respect to the mag-
netic field B0 (see Figure 1). For experimentally realistic
measurement times, t is much longer than the charac-
teristic diffusion time 𝜏d of bound protons (which is in a
sub-microsecond range as defined by Equation (31)
below), and R2(t, 𝛼) of the bilayer-bound protons can be
presented as follows:

R2(t, 𝛼) = 𝜆 ⋅
{(

1 − 3cos2
𝛼

)2

⋅
[

ln
(

t
𝜏d

)
− 𝜅0 + 4 ⋅

(
𝜋 𝜏d

t

)1∕2
]
+ 𝜅2 ⋅ sin4

𝛼

}

(2)

where numerical coefficients 𝜅0 and 𝜅2 (𝜅0 = 3.20, 𝜅2 =
0.75), as well as the parameter 𝜆 (Equation (20) below) are
the LDM-defined parameters depending on the spin–spin
interactions. In the opposite limit, that is, for small times
t, R2(t, 𝛼) → 0. Such a dependence of the bilayer-bound
protons R2(t, 𝛼) on the time t after excitation leads to their
lineshape that cannot be described by either Lorentzian
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F I G U R E 1 A, A simplified schematic
structure of the lipid bilayer; light yellow
lines represent lipid molecules within the
bilayer, oriented along the normal to the
layer (axis z). B, The geometry of the 2D
system under consideration. The external
field B0 lays in the (yz) plane and makes an
angle 𝛼 with the normal to the layer. The
molecules diffuse in the (xy) plane preserving
positions of their elements (including
methylene protons) along the z direction.

or Gaussian shape-functions. In fact, for large frequency
shifts Δ𝜔 ⋅ T2 > 1 usually used in MT experiments, the
LDM lineshape of the bilayer-bound protons can be
presented as

L(Δ𝜔, 𝛼) = Λ(Δ𝜔, 𝛼)
Δ𝜔2 (3)

where

Λ(Δ𝜔, 𝛼) =𝜆

2
⋅
{(

1 − 3cos2
𝛼

)2
⋅
[

ln
(

𝜋

4 ⋅ Δ𝜔 ⋅ 𝜏d

)

−𝜅0 + 𝜅1 ⋅ (Δ𝜔 ⋅ 𝜏d)1∕2
]
+ 𝜅2 ⋅ sin4

𝛼

}
(4)

with an additional numerical constant 𝜅1 = 12 − 4
√

2.
Equations (2)–(4) show a significant anisotropy of signal
transverse relaxation and the corresponding lineshape
function that reflects anisotropy of the lipid structure and
the membrane orientation.

While results presented above provide information on
protons’ spin–spin relaxation in “flat” bilayers (as shown
in Figure 1), in biological tissues these bilayers are orga-
nized in cellular membranes and myelin sheath. For a
bundle of parallel axons (i.e., white matter [WM] tracks)
with the main axis tilted by an angle 𝛽 with respect to
the external magnetic field B0, the LDM expression for
the axonal bundle lineshape for large frequency shiftsΔ𝜔 ⋅
T2 > 1 becomes as follows:

Laxon(Δ𝜔, 𝛽) = 𝜆

2(Δ𝜔)2
⋅
{[

ln
(

𝜋

4Δ𝜔 ⋅ 𝜏d

)

−𝜅0 + 𝜅1 ⋅ (Δ𝜔 ⋅ 𝜏d)1∕2
]
⋅
(

27
8

(
cos2

𝛽 − 5
9

)2
+ 1

3

)
+

+𝜅2 ⋅
(

cos2
𝛽 + 3

8
⋅ sin4

𝛽

)}
(5)

For randomly oriented membranes (as usually assumed
in MT experiments describing WM axonal structure), the
global LDM lineshape function for large frequency shifts,

Δ𝜔 ⋅ T2 > 1, can be presented as follows:

L(Δ𝜔) = 2𝜆
5(Δ𝜔)2

⋅
{

ln
(

𝜋

4Δ𝜔 ⋅ 𝜏d

)

+𝜅1 ⋅ (Δ𝜔 ⋅ 𝜏d)1∕2 − 𝜅0 +
2
3
𝜅2

}
(6)

For an arbitrary frequency shift Δ𝜔, the LDM line-
shapes can be approximated by an interpolation formula
given in Equation (37).

A list of all notations used in this paper is provided in
the Appendix.

2 THEORY

2.1 LDM

Myelin sheath is a multilamellar membrane surround-
ing the axons of neurons in central and peripheral nerve
systems. It consists of repeating units of double bilay-
ers separated by aqueous layers that alternate between
the cytoplasmic and extracellular fluid content. Each
bilayer comprises long lipid and protein molecules21–23

with the long axis oriented mostly perpendicular to the
bilayer’s surface. The MR spectrum of myelin lipids
is dominated by the alkyl chain methylene groups.1,2

Importantly, proton mobility in proton-carrying lipid
molecules is highly restricted along their long axes,
whereas these proton-carrying lipids can diffuse later-
ally in the xy-plane (see Figure 1). Experiments in model
bilayer systems revealed that the corresponding lateral
diffusion coefficient D varies in the range of 10−4 −
10−2

𝜇𝑚

2∕msec, depending on the bilayer-forming lipids
and the experimental settings. For example, Schoch et al24

reported D ∼ 0.8 ⋅ 10−4 − 4 ⋅ 10−3
𝜇𝑚

2∕msec for supported
lipid bilayers and D ∼ 13 ⋅ 10−3 − 20 ⋅ 10−3

𝜇𝑚

2∕msec for
free-floating bilayers. Quite a few other studies also
reported D for model bilayer systems in the range of
10−4 − 10−2

𝜇𝑚

2∕msec (e.g.,25–31). Hence, the motion of
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lipid-bound protons can be considered as a lateral 2D
diffusion, which is accompanied by lipid molecule rota-
tion (Figure 1). Importantly, for the range of diffusion
coefficients 10−4 − 10−2

𝜇𝑚

2∕msec, the diffusion compo-
nent of motion leads to the spin–spin correlation times
on the order of nanoseconds, while the rotation times
are much faster – in the picosecond range32 making
their contribution to the relaxation processes smaller than
the diffusion-mediated interaction between spins. Accord-
ingly, in this paper we focus only on the diffusion pro-
cesses and their contribution to the spin–spin (T2) and
spin–lattice (T1) relaxation of lipid-bound protons.

The very short correlation time along with the rapid
decrease of the dipole–dipole interaction with a distance
between dipoles makes it possible, as the first approxi-
mation, to account for interactions only between protons
located at the planes with the same z-coordinate. Note also
that in the application to the myelin sheath or lipid cel-
lular membranes, their curvature can be ignored because
the distance between neighboring lipid chains is on the
order of Angstroms, while the radii of the myelin sheath
or membranes are significantly bigger–in the μm scale. A
schematic simplified structure of the lipid bilayer and the
geometry of the system under consideration is depicted in
Figure 1.

3 METHODS

According to the classical theory of dipole–dipole relax-
ation,33,34 the dipole–dipole interaction of uncorrelated
identical spins results in the following expressions for the
relaxation parameters R1,2 = 1∕T1,2:

R1 =
3
2
⋅
(
ℏ𝛾

2)2
⋅ I(I + 1) ⋅

{
J(1)(𝜔) + J(2)(2𝜔)

}
(7)

R2 =
3
8
⋅
(
ℏ𝛾

2)2
⋅ I(I + 1)

⋅
{

J(0)(0) + 10 ⋅ J(1)(𝜔) + J(2)(2𝜔)
}

(8)

where ℏ is the Planck constant, 𝛾 is the gyromagnetic
ratio, I is the nuclear spin (1/2 in our case), 𝜔 = 𝛾B0 is
the Larmor frequency in the external magnetic field B0.
The spectral densities J(m)(𝜔) (m = 0, 1, 2) are the Fourier
transforms of the correlation functions G(m)(𝜏):

J(m)(𝜔) = ∫
∞

−∞
d𝜏 G(m)(𝜏) ⋅ e−i𝜔𝜏

G(m)(𝜏) = F(m)(t) ⋅ F(m)∗(t + 𝜏) (9)

The upper bar means averaging over positions and orienta-
tions of the dipoles. The factors F(m) depend on the vector

r between two dipoles:

F(0) =1 − 3 ⋅ cos2
𝜃

r3 , F(1) = sin 𝜃 ⋅ cos 𝜃
r3 ⋅ e−i𝜑

,

F(2) = sin2
𝜃

r3 ⋅ e−2i𝜑 (10)

where (r, 𝜃, 𝜑) are the distance, polar and azimuthal
angles of the vector r in the spherical coordinates with the
polar axis along the external field B0.

Assuming random lateral diffusion of spins and using
Equation (10), the correlation functions G(m)(𝜏) can be
presented in the form:

G(m)(𝜏) = n2

(8𝜋D𝜏)
⋅ ∫ ∫ d𝝆1 d𝝆2

pm (𝜃1, 𝜑1) ⋅ p∗m (𝜃2, 𝜑2)
𝜌

3
1 ⋅ 𝜌

3
2

⋅ exp

[
−
(
𝝆 − 𝝆0

)2

8D𝜏

]
(11)

where n2 is the spins’ surface density (number of spins per
unit area of 2D plane), D is the lateral diffusion coefficient,
and

p0(𝜃, 𝜑) = 1 − 3 ⋅ cos2
𝜃

p1(𝜃, 𝜑) = sin 𝜃 ⋅ cos 𝜃 ⋅ exp(−i𝜑)
p2(𝜃, 𝜑) = sin2

𝜃 ⋅ exp(−2i𝜑) (12)

The integrals in Equation (11) should be taken over the
regions 𝜌1,2 ≥ d, where d is a minimal “approachable”
distance between dipoles.33,34

The angles 𝜃 and 𝜑 entering Equations (12) are related
to the angle 𝛼 and the azimuthal angle 𝜓 in the xy plane
(see Figure 1) as follows:

cos 𝜃 = − sin𝜓 ⋅ sin 𝛼

sin 𝜃 ⋅ e−i𝜑 = cos𝜓 − i ⋅ sin𝜓 ⋅ cos 𝛼 (13)

After a series of tedious but straightforward transforma-
tions, the following expression for the correlation func-
tions can be obtained:

G(m)(𝜏) = n2𝜋

4d4 ⋅
[
𝜈

(m)
0 (𝛼) ⋅Ψ0(𝜀) + 𝜈

(m)
2 (𝛼) ⋅Ψ2(𝜀)

]

Ψ0,2(𝜀) = ∫
∞

0
x3dx ⋅ exp

(
−𝜀 ⋅ x2) ⋅ 𝜓2

0,2(x) (14)

𝜓0(x) =
1
2
⋅
[
−2 + J1(x) ⋅ (−2 + 𝜋x ⋅H0(x))

+ J0(x)
x

⋅
(
2 + 2x2 − 𝜋x2 ⋅H1(x)

)]
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𝜓2(x) =
1

3x2 ⋅
[
x2 − x ⋅

(
1 + x2) ⋅ J0(x) +

(
2 + x2) ⋅ J1(x)

]
−

− 𝜋x
6
⋅ [J0(x) ⋅H1(x) − J1(x) ⋅H0(x)] (15)

where J0,1(x) and H0,1(x) are the Bessel and Struve func-
tions, respectively, 𝜀 = 𝜏∕𝜏d, 𝜏d = d2∕2D is the characteris-
tic diffusion time. The angle-dependent coefficients 𝜈(m)0,2 (𝛼)
in Equation (14) are

𝜈

(0)
0 (𝛼) =

(
1 − 3cos2

𝛼

)2
, 𝜈

(1)
0 (𝛼) = sin2

𝛼 ⋅ cos2
𝛼,

𝜈

(2)
0 (𝛼) = sin4

𝛼

𝜈

(0)
2 (𝛼) = 9

2
⋅ sin4

𝛼, 𝜈

(1)
2 (𝛼) = 1

2
⋅ sin2

𝛼 ⋅
(
1 + cos2

𝛼

)

𝜈

(2)
2 (𝛼) = 1

2
⋅
(
8 ⋅ cos2

𝛼 + sin4
𝛼

)
(16)

The relaxation parameters are defined by the spec-
tral densities J(m)(𝜔), Equations (7) and (8). Substituting
G(m)(𝜏) in Equation (9), we get

J(m)(𝜔) = n2𝜋

4 D d2 ⋅
[
𝜈

(m)
0 (𝛼) ⋅ V0(Ω) + 𝜈

(m)
2 (𝛼) ⋅ V2(Ω)

]
(17)

where Ω = 𝜔 ⋅ 𝜏d and the functions V0,2(Ω) are

V0,2(Ω) = ∫
∞

0
dx 𝜙0,2(x, Ω),

𝜙0,2(x, Ω) = 𝜓

2
0,2(x) ⋅

x5(
x4 + Ω2) (18)

4 RESULTS

4.1 Spin–Lattice (Longitudinal)
Relaxation of Bound Protons in Lipid
Bilayers

Combining Equations (7) and (17), the longitudinal
(spin–lattice) relaxation rate parameter R1 can be pre-
sented as follows:

R1 = 8𝜆 ⋅
[
sin2

𝛼 ⋅ cos2
𝛼 ⋅ V0(Ω) + sin4

𝛼 ⋅ V0(2Ω)+

+ 1
2
⋅ sin2

𝛼 ⋅
(
1 + cos2

𝛼

)
⋅ V2(Ω)+

1
2
⋅
(
8 ⋅ cos2

𝛼 + sin4
𝛼

)
⋅ V2(2Ω)

]
(19)

where Ω = 𝜔 ⋅ 𝜏d, the functions V0,2(Ω) are defined in
Equation (18), and

𝜆 = 9𝜋 ⋅ n2

256 ⋅ D ⋅ d2 ⋅
(
ℏ𝛾

2)2 (20)

The functions V0,2(Ω) are illustrated in Figure 2. The inset
demonstrates V0,2(Ω) at small values of Ω.

F I G U R E 2 The functions V0,2(Ω) (solid lines). The dashed
lines show approximations describing V0,2(Ω) functions for Ω > 10:
V0(Ω) ≈ 0.080 ⋅Ω−1.28

, V2(Ω) ≈ 0.187 ⋅Ω−1.43. The inset shows
V0,2(Ω) at small values of Ω

The mean value of the parameter R1, averaged over
the uniform distribution of lipid bilayers’ directions can be
obtained by substituting the angle-dependent coefficients
in Equation (19) by their average values corresponding
to the random distribution of directions, resulting in the
following expression:

R1 aver =
16𝜆
15

⋅ [V0(Ω) + 4 ⋅V0(2Ω)+ 3 ⋅V2(Ω) +12 ⋅ V2(2Ω)]

(21)

Equation (19) can also be used to calculate an average
R1 for a bundle of parallel axons (i.e., WM tracks) with
the main axis tilted by an angle 𝛽 with respect to the
external magnetic field B0. In this case, the normal to
bilayers within the axon varies remaining perpendicular
to the main axonal axis. Assuming a cylindrical axonal
shape, by averaging Equation (19) with respect to this vari-
ation, we can obtain the following expression for R1 of a
WM track:

R1,axon =
𝜆

2
⋅
[
sin2

𝛽 ⋅ (5 + 3 cos 2 𝛽) ⋅ V0(Ω)

+
(
16 cos2

𝛽 + 6 ⋅ sin4
𝛽

)
⋅ V0(2Ω)+

+
(
8 − 3 sin4

𝛽

)
⋅ V2(Ω)

+
(
8 + 24 sin2

𝛽 + 3 sin4
𝛽

)
⋅ V2(2Ω)

]
(22)

Equations (19) and (22) reveal an anisotropy of the lon-
gitudinal relaxation parameter R1 in single flat bilayers
and in the axonal bundles with respect to their orienta-
tion in the magnetic field B0. To illustrate this anisotropy,
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F I G U R E 3 The dependence of the
ratio R1∕R1 aver on the angle 𝛼 between a
bilayer and the external field B0 (left panel)
and on the angle 𝛽 between the axonal
bundle axis and B0 (right panel) for several
values of the parameter Ω

F I G U R E 4 The dependence of the mean longitudinal relaxation rate parameter R1, aver on the diffusion coefficient D for different
values of d (shown by numbers near the lines) at B0 = 3T (A), for different B0 (shown by numbers near the lines) at d = 1.5Å (B), and
different B0 at d = 2.5Å (C)

in Figure 3 the ratio R1∕R1 aver is plotted as a function of
bilayer (𝛼) and axonal bundle (𝛽) orientations with respect
to the direction of B0 for several values ofΩ. For higherΩ,
these dependences become practically independent of Ω.
Note also that all the lines corresponding to different val-
ues of Ω cross each other at certain angle 𝛼 or 𝛽: 𝛼 ≈ 45◦
in the case of flat bilayers and 𝛽 ≈ 60◦ in the case of axonal
bundles.

The R1 dependence on the lateral diffusion coefficient
D and the distance of the nearest approach d is illustrated
in Figure 4 for a range of D = 0.5 ⋅ 10−4 − 10−2

𝜇𝑚

2∕msec,
and d = 1.5–2.5 Å. The surface density was estimated as
n2 = 1∕d2. In Figure 4A, the mean relaxation rate param-
eter R1 aver, Equation (21), is plotted as a function of the
diffusion coefficients D for different values of d (shown by
numbers near the lines) at B0 = 3T (𝜔0 = 8 ⋅ 108 sec−1).

Figure 4B and C illustrate the dependence R1 aver =
R1 aver(D) for different values of the external field B0
(shown by numbers near the lines) for two values of the
parameter d (d = 1.5 Å and d = 2.5 Å). A non-monotonic
dependence of R1 on the diffusion coefficient D should be
noted. It is a result of the trade-off between the decrease of

the coefficient 𝜆 and the increase of the functions V0,2(Ω)
with D increasing.

4.2 Spin–Spin (Transverse) Relaxation
of Bound Protons in Lipid Bilayers

In the framework of the classical theory of dipole–dipole
relaxation,33,34 the transverse relaxation parameter R2 is
defined by Equation (8). The spectral densities J(1)(𝜔) and
J(2)(2𝜔) in Equation (8) are the same as analyzed above.
However, the integral in Equation (9) for J(0)(0) in the
system under consideration diverges due to a slow time
decay of the correlation function. To resolve this problem,
we should take into account that the Fourier transform
in Equation (9) is an approximation (e.g., Ref.34 Chap-
ter VIII) that is valid only for a sufficiently fast decaying
correlation functions. Therefore, the integral for the spec-
tral density J(0)(0) ≡ J(0)(𝜔 = 0) should be replaced by a
time-dependent function ̃J(0)(0, t):

J(0)(𝜔 = 0) → ̃J(0)(0, t) = 2 ⋅ ∫
t

0
d𝜏 G(m)(𝜏) (23)
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Thus, the relaxation parameter R2 becomes
time-dependent,

R2 →R2(t) =
9

32
⋅
(
ℏ𝛾

2)2

⋅
{
̃J(0)(0, t) + 10 ⋅ J(1)(𝜔) + J(2)(2𝜔)

}
, (24)

and the equation for the transverse magnetization M
⊥
(t)

takes the form:

dM
⊥
(t)

dt
= −R2(t) ⋅M

⊥
(t) (25)

Hence, the decay of the transverse magnetization can be
described in terms of the relaxation function Γ(t),

M
⊥
(t) = M

⊥
(0) ⋅ exp[−Γ(t)]

Γ(t) = 2 ⋅ ∫
t

0
d𝜏 ∫

𝜏

0
d𝜏1 G(0) (𝜏1) (26)

Substituting the correlation function G(0)(𝜏),
Equation (14), into Equation (26), the relaxation function
Γ(t) takes the form:

Γ(t) = R2(t, 𝛼) ⋅ t

R2(t, 𝛼) = 2𝜆 ⋅
[(

1 − 3cos2
𝛼

)2
⋅ g0(𝜀) +

9
2
⋅ sin4

𝛼 ⋅ g2(𝜀)
]
;

𝜀 = t∕𝜏d, 𝜏d = d2∕2D (27)

where we introduced an anisotropic time-dependent
relaxation rate function R2(t, 𝛼) = Γ(t, 𝛼)∕t, which is a
time-dependent analog of a common transverse relax-
ation rate parameter. The second and third terms in
Equation (24) are much smaller than the first term

and, therefore, are omitted in Equation (27). The coef-
ficient 𝜆 is given in Equation (20), and the functions
g0,2(𝜀) are

g0,2(𝜀) = ∫
∞

0
dx ⋅ u0,2(x, 𝜀)

u0,2(x, 𝜀) = x ⋅

[
1 −

1 − exp
(
−𝜀 ⋅ x2)

𝜀 ⋅ x2

]
⋅ 𝜓2

0,2(x) (28)

The integral in Equation (28) can be calculated only
numerically. However, the following analytical represen-
tation can be obtained for the experimentally realistic
times t corresponding to 𝜀 >> 1:

g0(𝜀) =
1
2
⋅ ln 𝜀 − 𝜅0

2
+ 2 ⋅

√
𝜋

𝜀

+ O
( ln 𝜀

𝜀

)
(29)

g2(𝜀) =
1
9
⋅
(
𝜅2 −

ln 𝜀

2𝜀

)
+ O

(
𝜀

−1) (30)

where the numerical coefficients (rounded to two dec-
imal places) are: 𝜅0 = 3.20, 𝜅2 = 0.75. The parameter
𝜆, Equation (20), and the functions g0,2(𝜀) along with
their asymptotic expressions, Equations (29) and (30), are
shown in Figure 5.

Since the characteristic diffusion time 𝜏d is in
a nanosecond range, for any realistic time of inter-
est, the ratio t∕𝜏d > 100. Hence, the function g0(𝜀)
can be well approximated by the three first terms in
Equation (29) (green line in Figure 5B), and g2(𝜀) can
be approximated by its limiting value 0.083. Thus, the
relaxation of the transverse magnetization M

⊥
(t) is, in

general, non-linear-exponential, and in the time interval

F I G U R E 5 A, The dependence of the parameter 𝜆, Equation (20), on the diffusion coefficient D for different inter-proton distances of
the closest approach d. B, The function g0(𝜀) (blue line); the red dotted and green dashed lines correspond to the asymptotic expression,
Equation (29), with two and three terms included, respectively. C. The functions g2(𝜀) (blue line); the red dotted line corresponds to the
asymptotic expression, Equation (30).
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t∕𝜏d > 100 can be described by the following relaxation
rate function

R2(t, 𝛼) = 𝜆 ⋅
{(

1 − 3cos2
𝛼

)2

⋅
[

ln
(

t
𝜏d

)
− 𝜅0 + 4 ⋅

(
𝜋 𝜏d

t

)1∕2
]
+ 𝜅2 ⋅ sin4

𝛼

}

(31)

For a special case of the magic angle (cos2
𝛼m = 1∕3), the

relaxation rate function becomes time-independent and
reduces to R2 (t, 𝛼 = 𝛼m) = 4𝜅2𝜆∕9. However, for 𝛼 not
too close to 𝛼m, the last term is much smaller than the
combination of the first three terms and gives only a small
contribution to R2(t, 𝛼).

Note that only the last two terms in Equation (8)
depend on the magnitude of the external field B0, while
the first one considered here does not. Since these two
terms are much smaller than the first one, their contribu-
tion to R2(t, 𝛼) is very small. Hence, the dependence of R2
on the external field B0 is very weak and is not considered
herein.

Since the relaxation rate function R2 depends on time
t, the transverse relaxation time T2 cannot be defined sim-
ply as 1∕R2. Instead, we can introduce T2 as a time, by
which the transverse magnetization has decreased e-fold.
This apparent T2 is a solution of the transcendent equation

R2 (T2, 𝛼) ⋅ T2 = 1 (32)

The dependence of the transverse relaxation time T2 on the
diffusion coefficient D at different values of inter-proton
distances d is shown in Figure 6 for three orientations of

the plane with respect to the external field B0: 𝛼 = 0, 𝛼 =
𝜋∕2, and for the magic angle 𝛼 = 𝛼m.

4.3 LDM Absorption Lineshape

In this section, we discuss the absorption lineshape corre-
sponding to the transverse magnetization M

⊥
(t) obtained

in the previous sections, Equation (26). For a single bilayer
forming an angle 𝛼 with magnetic field B0 (Figure 1),
the frequency dependence of the lineshape L(Δ𝜔, 𝛼) is
described by a Fourier transform of M

⊥
(t) in Equation (26):

L(Δ𝜔, 𝛼) = 1
𝜋

⋅ ∫
+∞

0
dt M

⊥
(t)

M
⊥
(0)

cos(Δ𝜔 ⋅ t)

= 1
𝜋

⋅ ∫
+∞

0
dt exp [−t ⋅ R2(t, 𝛼)] ⋅ cosΔ𝜔 ⋅ t

(33)

where R2(t, 𝛼) is defined by a general Equation (27) with
a long-time asymptotic in Equation (31). For a special
case of the magic angle 𝛼m, the relaxation rate function,
R2 (t, 𝛼 = 𝛼m) = 4𝜅2𝜆∕9, does not depend on time t, and
L (Δ𝜔, 𝛼m) reduces to a standard Lorentzian form:

L (Δ𝜔, 𝛼m) =
1
𝜋

⋅
4𝜅2𝜆∕9

Δ𝜔2 + (4𝜅2𝜆∕9)2
(34)

In the general case 𝛼 ≠ 𝛼m, the relaxation rate function
R2(t, 𝛼) depends on time t in a rather complicated way, and
an analytical closed expression for the function L(Δ𝜔, 𝛼)
is unavailable. However, for realistic experimental con-
ditions typical for MT experiments, the frequency offset

F I G U R E 6 The dependence of the transverse relaxation time T2 on the diffusion coefficient D at different values of inter-proton
distances d for 𝛼 = 0, 𝛼 = 𝜋∕2, and for the magic angle 𝛼 = 𝛼m(cos2

𝛼m = 1∕3). Note a different T2 time scale and the units (ms vs. μs) for the
magic angle
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F I G U R E 7 Numerically calculated lineshape function L(Δ𝜔, 𝛼) (solid lines) and its approximations. A, High-frequency
approximation (dashed lines), Equation (35), d = 1.6Å, D = 0.5 ⋅ 10−4

𝜇𝑚

2∕msec. B,C, Interpolation expressions (symbols), Equation (37),
d = 1.6 Å, 𝛼 = 0 and 𝛼 = 𝜋∕2, and different values of the diffusion coefficient D

Δ𝜔 = 2𝜋 ⋅ Δf is usually much bigger than the values of the
relaxation rate defined as 1∕T2, and it can be shown that
the function L(Δ𝜔, 𝛼) tends to the following asymptotic
expression:

L(Δ𝜔, 𝛼) = Λ(Δ𝜔, 𝛼)
Δ𝜔2

Λ(Δ𝜔, 𝛼) = 𝜆

2
⋅
{(

1 − 3cos2
𝛼

)2
⋅
[

ln
(

𝜋

4Δ𝜔 ⋅ 𝜏d

)

−𝜅0 + 𝜅1 ⋅ (Δ𝜔 ⋅ 𝜏d)1∕2
]
+ 𝜅2 ⋅ sin4

𝛼

}
(35)

with the numerical coefficients 𝜅0 = 3.20, 𝜅2 = 0.75,
𝜅1 = 12 − 4

√
2. The correspondence of the numerically

calculated L(Δ𝜔, 𝛼) and its high-frequency asymptote,
Equation (35), is exemplified in Figure 7A for 𝛼 = 0
and 𝛼 = 𝜋∕2 (d = 1.6Å, D = 0.5 ⋅ 10−4

𝜇𝑚

2∕msec). One
can see that for 𝛼 = 0, the asymptotic expression in
Equation (35) describes the exact shape of the lineshape
function L(Δ𝜔, 𝛼) rather well if Δ𝜔 ⋅ T2 > 1, while the
case 𝛼 = 𝜋∕2 requires slightly higher frequencies, Δ𝜔 ⋅
T2 > 2.

In the opposite case of small Δ𝜔, (T2 ⋅ Δ𝜔) < 1,
Equation (35) is not valid, moreover, in the limit Δ𝜔→ 0
it diverges. The two limits of small and large Δ𝜔 can be
combined together using an interpolation formula:

L(Δ𝜔, 𝛼) = Λ(Δ𝜔, 𝛼)
Δ𝜔2 + Λ(Δ𝜔, 𝛼)∕L0(𝛼)

(36)

with L(Δ𝜔, 𝛼) defined by Equation (35) and L0(𝛼) =
L(Δ𝜔 = 0, 𝛼) should be calculated from Equation (33)
with Δ𝜔 = 0 and R2(t, 𝛼) defined by the original
Equation (27).

In the case when the angle 𝛼 is not too close to the
magic angle (i.e., the first term in Equation (35) is much
bigger than the second one), the function L0(𝛼) allows the

following expansion:

L0(𝛼) =
1

𝜋𝜆 ⋅
(
1 − 3cos2

𝛼

)2 ⋅

(
1
𝜇

+ ln𝜇 − 1 + C
𝜇

2

)
+ O

(
𝜇

−3)

𝜇 =
|||| ln

(
𝜆𝜏d ⋅

(
1 − 3cos2

𝛼

)2
) |||| >> 1 (37)

while in the case of magic angle, L0(𝛼) is given by the
general formula in Equation (34) (C is the Euler constant).

The lineshape function L(Δ𝜔, 𝛼) calculated numer-
ically from Equation (33) and its approximation,
Equations (36) and (37), are exemplified in Figure 7B and
C for d = 1.6 Å, 𝛼 = 0 and 𝛼 = 𝜋∕2, and different values of
the diffusion coefficient D.

While the results presented above provide informa-
tion on protons’ spin–spin relaxation in “flat” bilayers (as
shown in Figure 1), in biological tissues these bilayers are
organized in cellular membranes and myelin sheath.

In the case of uniformly distributed orientations of the
main axis of the lipid chains with respect to the magnetic
field B0, the absorption lineshape averaged over 𝛼 can be
presented as

L(Δ𝜔) = ∫
𝜋∕2

0
sin 𝛼d𝛼L(Δ𝜔, 𝛼)

= ∫
𝜋∕2

0
sin 𝛼d𝛼 ⋅

Λ(Δ𝜔, 𝛼)
Δ𝜔2 + Λ(Δ𝜔, 𝛼)∕L0(𝛼)

(38)

It can be readily verified that the function L(Δ𝜔) has
a typical sharp maximum at Δ𝜔→ 0 characteristic to
super-Lorentzian (SL) lineshape function and, therefore,
can be referred to as “pseudo”-SL (pSL). Note, however, in
contrast to the commonly used SL lineshape based on the
Gaussian or Lorentzian distributions (e.g., Refs.2,5,35–37),
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the function pSL L(Δ𝜔) remains finite at Δ𝜔→ 0 due to
the term proportional to 𝜅2 in R2(t, 𝛼) and would diverge at
Δ𝜔 → 0 without it. For large Δ𝜔, the lineshape function,
Equation (38), can be calculated based on Equation (35),
resulting in the following equation:

L(Δ𝜔) = 2𝜆
5(Δ𝜔)2

⋅
{

ln
(

𝜋

4Δ𝜔 ⋅ 𝜏d

)
+ 𝜅1 ⋅ (Δ𝜔 ⋅ 𝜏d)1∕2

−𝜅0 +
2
3
𝜅2

}
, Δ𝜔 ⋅ T2 > 1 (39)

Another important case represents a bundle of parallel
axons (i.e., WM tracks) with the main axis tilted by an
angle 𝛽 with respect to the external magnetic field B0. In
this case, the normal to bilayers within the axon varies
remaining perpendicular to the main axonal axis. Assum-
ing a cylindrical axonal shape, by averaging Equation (33)
with respect to this variation, we can obtain a general
expression for the axonal bundle lineshape. For large fre-
quency shifts Δ𝜔 ⋅ T2 > 1 this expression becomes as fol-
lows:

Laxon(Δ𝜔, 𝛽) =
𝜆

2(Δ𝜔)2
⋅
{[

ln
(

𝜋

4Δ𝜔 ⋅ 𝜏d

)

−𝜅0 + 𝜅1 ⋅ (Δ𝜔 ⋅ 𝜏d)1∕2
]
⋅
(

27
8

(
cos2

𝛽 − 5
9

)2
+ 1

3

)
+

+𝜅2 ⋅
(

cos2
𝛽 + 3

8
⋅ sin4

𝛽

)}
(40)

5 DISCUSSION

Deciphering salient features of biological tissue cellular
microstructure in healthy organs and the microstructural
changes in diseases is an ultimate goal of MRI. While most
MRI approaches are based on studying MR properties of
“free” water that is abundant in biological tissues, they
can only provide indirect information on the tissue cellu-
lar structure. Other MRI approaches with off-resonance
RF excitation, such as MT2,5,7,38,39 and inhomogeneous
MT (ihMT),6,40,41 as well as with on-resonance RF exci-
tation that are based on gradient echo sequences,9–11

chemical exchange,12 inversion recovery,13 SMART,14 and
UTE MRI,2,15–17 − provide more direct access to cellular
microstructure because they target MRI signals originated
directly from protons bound to biological-tissue-forming
macromolecules. However, despite of three decades of suc-
cessful applications, interpretation of these experiments
is still based on assumed phenomenological parameters
(including bound protons T1 and T2 relaxation properties),
whereas the relationship between these parameters and
cellular structure is still not known. This hampers not only

interpretation of experimental results but also designing
new experiments targeting macromolecular signals.

In the present study, we provide a theoretical analy-
sis of the spin–spin and spin–lattice relaxation properties
of the protons bound to the lipid chains within cellu-
lar membranes and the myelin sheath. Up to our best
knowledge, this is the first analytical theory establishing
a dependence of the transverse (spin–spin) and longitu-
dinal (spin–lattice) relaxation times of lipid-chain-bound
protons and cellular membranes on the myelin sheath
molecular structure and dynamic properties. We have
established a contribution to the bound protons relaxation
properties of the dipole–dipole interaction between proton
spins modulated by the lateral diffusion of the macro-
molecules “dragging along” protons of the alkyl chains
in methylene groups. We derived quantitative analytical
equations showing how the bound protons T1 and T2 relax-
ation mechanisms depend on the lateral diffusion coef-
ficient D and the distance of the proton-proton nearest
approach d. Our results are in a qualitative agreement with
direct analysis of myelin proton spectrum (e.g.,1,2) that
revealed a presence of bound pool protons with T2 ranging
between 10 and 100 μs.

While direct measurements of T2 in lipid and myelin
membranes are limited,1,2 a number of indirect esti-
mates were presented in the literature (see for example,
Refs.2,5–7,14,19,38–41) following pioneering work of Morrison
and Henkelman5 who proposed a basic exchange model
describing MT experiments. However, due to the complex-
ity of biological system, even this basic model inevitably
relied on quite a few phenomenological parameters that
were not available from experimental data and had to be
assumed for estimating T2 of bound protons. For example,
T1 of bound protons was assumed to be equal to 1 s and
independent of their location in the cellular structure.
Under this assumption, the T2 of bound protons was esti-
mated as 10.4 μs supposing SL lineshape, 18 μs supposing
Gaussian lineshape and 230 μs supposing Lorentzian line-
shape. The assumption of a 1 s T1 and a SL lineshape
became since then a broadly accepted paradigm for inter-
pretation of MT experiments. However, it worth noting
that several SL compartments were required to explain
direct T2 measurements by Wilhelm et al.2 It also worth
noting that the assumption of the same T1 but distribution
of T2s described by the SL model is, to some extent, con-
tradictory. Indeed, the nature of SL distribution is rooted
in the Wennerstrom theory35,36 that explains distribution
of bound protons T2s by the distribution of the orienta-
tions of lipid membranes. Our theory shows that such a
distribution of lipid membranes orientations also leads to
a distribution of bound protons T1s that can potentially be
incorporated in the analysis of MT data.



380 SUKSTANSKII and YABLONSKIY

Our approach is based on the classical theory of
dipole–dipole relaxation,33,34 where the relaxation param-
eters R1,2 are determined by the spectral densities J(m)(𝜔),
which are the Fourier transforms of the correlation func-
tions G(m)(𝜏), Equations (7) and (8). In the case of 3D diffu-
sion, the latter decrease with 𝜏 as G(m)(𝜏) ∼ 𝜏

−3∕2 at 𝜏 >>

𝜏d (𝜏d is the characteristic diffusion time),33,34 and the inte-
grals defining the Fourier transforms converge at any 𝜔.
This behavior is different in our case of the 2D diffusion,
where G(m)(𝜏) ∼ 𝜏

−1. As discussed above, in this case one
of the spectral densities, J(0)(0), entering Equation (8) for
the transverse relaxation, does not exist and was replaced
in our approach by a time-dependent quantity ̃J(0)(0, t),
Equation (23).

The spin–lattice (longitudinal) relaxation is defined by
the spectral densities J(1,2)(𝜔) at non-zero frequencies, for
which the Fourier transforms of G(1,2)(𝜏) are well defined.
Hence, they were calculated in a regular way without
involving a time-dependent spectral densities. Our results
presented in Figure 4 demonstrate how the R1 relaxation
of bound protons depends on the model parameters – the
lateral diffusion coefficient D, the parameter d defining
the distance of the closest approach between diffusing pro-
tons. The results also show the R1 dependence on the
strength of the external field B0. In particular, it is shown
that R1 decreases with B0 increases, qualitatively similar to
that predicted and analyzed by Schyboll et al20 but with a
sharper decrease with B0 increase (R1 ∼ B−1.3

0 in our LDM
theory, versus, R1 ∼ B−0.45

0 found in20). The LDM predicts
that depending on the values of parameters D, d, and B0,
the T1 relaxation time (T1 = 1∕R1) can vary in the range of
100 μs to a few seconds, that is in the range of values found
in phospholipids membranes.42–45 The dependence of R1
on the diffusion coefficient D is not monotonic and has a
maximum at D ≈ 3 ⋅ 10−3

𝜇𝑚

2∕msec.
It is important to note that the LDM predicts an

anisotropic behavior of R1 in bilayers and axonal bundles,
that is, the R1 dependence on the bilayers’ and bundles’ ori-
entation with respect to the external magnetic field B0. The
results show that the mean R1 relaxation of axonal bun-
dles with the main axis parallel to the magnetic field B0 is
about 30% smaller than the R1 of axonal bundles perpen-
dicular to B0. For bilayers, the perpendicular orientation
of their normal to B0 results in the smallest R1, besides,
the R1 angular dependence is not monotonic, reaching
a maximum around 30–400 from B0, followed by a shal-
low minimum for the parallel orientation. While there are
no known to us direct measurements of R1 anisotropy of
lipid-bound protons, the report on free water measure-
ment in WM showed increased R1 relaxation rate for nerve
bundles oriented perpendicular to B0 as compared with
bundles oriented parallel to B0, as observed in healthy
subjects investigated at 3 T.46

The properties of the spin–spin relaxation are sub-
stantially different - the relaxation function Γ(t) =
− ln

[
M

⊥
(t)∕M

⊥
(0)

]
, describing the transverse relaxation

of lipid-bound protons in bilayers is not linear in time t:
Γ(t) = R2(t) ⋅ t. As the quantity R2(t) depends on time t,
it cannot be referred to as a “relaxation rate constant”,
instead we call it a relaxation rate function. Impor-
tantly, the main contribution to the transverse relaxation
rate function R2(t) ∼ ln t, Equation (31), with the pro-
portionality coefficient strongly orientation dependent,
nulling at the magic angle orientation. This logarithmic
R2(t) behavior is intermediate between the case of unre-
stricted diffusion,33,34 where R2 is a constant (does not
depend on time), and the case of fully restricted diffusion
proposed by Furman et al,47 where the relaxation was
described by a Gaussian-type function, that is, Γ(t) ∼ t2.
It can be readily verified that in another “intermediate”
case–1D diffusion–the relaxation function Γ(t) ∼ t3∕2 and,
correspondingly, R2(t) ∼ t1∕2.

It is important to note that the values of the trans-
verse relaxation function R2(t) of the lipid-bound pro-
tons in bilayers are several orders of magnitude bigger
than those of R1. Also, in contrast to R1, the relaxation
function R2(t) has a very weak dependence on the exter-
nal field B0. Similar to R1, the relaxation function R2(t)
also vary significantly as a function of the lateral diffu-
sion coefficient D and the parameter d defining the dis-
tance of closest approach between diffusing protons. Since
the transverse relaxation function R2(t) depends on time,
the transverse signal decay cannot be characterized by a
single time-independent parameter similar to T1 = 1∕R1.
Instead, to characterize transverse relaxation, we have
introduced an apparent transverse relaxation time param-
eter T2 defined as a time, by which the transverse mag-
netization has reduced e times, Equation (32). The results
presented in Figure 6 show that this apparent T2 relax-
ation time parameter also varies significantly as a function
of the lateral diffusion coefficient D, the parameter d, and
the membranes’ orientation with respect to the external
magnetic field (anisotropic effect). The T2 can vary between
10 μs to a few seconds, being especially long for the case of
the magic angle orientation. The shortest T2 is achieved for
slow lateral diffusion (D ∼ 0.5 ⋅ 10−4

𝜇𝑚

2∕ms) and smaller
parameter d (d ∼ 1.5A).

In addition to the time dependence of the trans-
verse relaxation function R2(t) of the lipid-bound protons
in bilayers, the LDM also predicts the R2(t) orientation
dependence that is in agreement with experimental data.
Indeed, the LDM-predicted angular dependence of the
relaxation function R2(t) in flat bilayers (

(
1 − 3cos2

𝛼

)2

per Equation (31)) is similar to that found experimen-
tally by Morris et al.48 Indeed, Morris et al measured
the orientation dependence of the second moment (M2)
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of the lineshape in an oriented phospholipid bilayer at
9.4T. They found a strong orientation dependence that was
maximized when the bilayers were aligned perpendicu-
lar to B0 and minimized near the magic angle (∼54.7◦)
and followed an orientation dependence given by the sec-
ond Legendre polynomial squared. Also, the LDM pre-
dicted strong anisotropy of T2 relaxation in WM is in
agreement with the previous MT-based discovery of Pam-
pel et al.39 The authors39 found a distinct correlation
between the diffusion-tensor orientation with respect to
the B0-magnetic field and the apparent transverse relax-
ation time, T2, of the semisolid pool (i.e., the width of its
absorption line). This orientation dependence was quan-
titatively explained by a refined dipolar lineshape that
explicitly considered the specific geometrical arrangement
of lipid bilayers wrapped around a cylindrical axon, which
is similar to our axonal model in Equation (40).

The important features of R2(t) behavior outlined
above, might have important implications for interpre-
tation of MT experiments. Traditionally, MT results are
analyzed based on the so-called SL absorption lineshape,
proposed by Wennerstrom35,36 for randomly distributed
membranes directions and the analysis of the secular part
of the dipole–dipole Hamiltonian that has a

(
1 − 3cos2

𝛼

)
membranes orientation dependence. The Wennerstrom’s
approach leads to a SL lineshape LSL(Δ𝜔):

LSL(Δ𝜔) = ∫
1

0

dx
|3x2 − 1| ⋅ f

(
Δ𝜔

R2 ⋅ |3x2 − 1|
)
, x = cos 𝛼

(41)
where f (.) is a normalized function, usually assumed
Gaussian or Lorentzian, and R2 is a phenomenological
relaxation rate parameter. It is interesting to note that
the assumption that the projections of all proton-proton
vectors in the dipole–dipole Hamiltonian on the mem-
brane’s plane (in our case, xy-plane) average to zero,
made in,35,36 is “opposite” to our approach that consid-
ers interactions between protons located in the neigh-
boring lipid macromolecules. The time-dependence of
the relaxation function R2(t, 𝛼) lead to more complicated
LDM-defined absorption lineshapes, Equations (35)–(40),
than in Equation (41). Consequently, for uniformly dis-
tributed orientations of bilayers, the global absorption line-
shape is referred to here as a “pseudo-Super-Lorentzian”,
or pSL. Though both SL and pSL have the same hallmark–a
very sharp maximum atΔ𝜔→ 0,− there are several differ-
ences between them. First, the integrand in Equation (38)
(the LDM analog of Equation 41) is the well-defined
angle-dependent pseudo-Lorentzian function L(Δ𝜔, 𝛼)
from Equation (37). In addition, in contrast to the SL line-
shape LSL(Δ𝜔), the pSL lineshape remains finite atΔ𝜔→ 0
due to the term proportional to the coefficient 𝜅2, which
plays an important role in the vicinity of the magic angle.

The LDM-defined lineshape function for axonal bundles,
Equation (40), predicts anisotropic behavior with respect
to the axonal orientation with B0.

6 CONCLUSIONS

In the present study, we have introduced the LDM that
microscopically relates longitudinal and transverse relax-
ation properties of protons bound to the lipid chains form-
ing cellular and myelin membranes to the lipid chains’
structure and diffusional dynamic. Our results predict
that:

a. The transverse relaxation of bound protons cannot
be described in terms of a commonly used R2 relaxation
rate parameter. Instead, LDM approach describes trans-
verse relaxation in terms of a transverse relaxation rate
function R2(t, 𝛼) that in the main approximation has a log-
arithmic behavior with respect to the time t after the RF
excitation pulse: R2(t, 𝛼) ∼ ln t.

b. T1 (spin–lattice) and T2 (spin–spin) relaxation prop-
erties of bound protons in cellular and myelin membranes
are highly anisotropic, that is, they depend on the ori-
entations of the membranes with respect to the external
magnetic field B0.

c. The anisotropic non-linear transverse relaxation of
bound protons leads to a pSL global lineshape that is
different from an SL lineshape commonly used in inter-
preting MT and ihMT experiments. For bundles of parallel
axons (WM tracks), the pSL lineshape is anisotropic, that
is, depends on the axonal direction with respect to the
external magnetic field B0.
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APPENDIX A

A.1 Table of parameters
B0–external magnetic field.

𝛼–angle between a normal to bilayer and B0.
𝛽–angle between an axonal main axis and B0.
ℏ–Planck constant.
𝛾–gyromagnetic ratio.

I–nuclear spin (= 1/2 in our case).
J(m)(𝜔) (m = 0, 1, 2) – spectral densities.
̃J(0)(0, t)–time-dependent spectral density.
G(m)(𝜏) (m = 0, 1, 2) - correlation functions.
D–lateral diffusion coefficient.
d–minimal “approachable” distance between dipoles.
𝜏d = d2∕2D–characteristic diffusion time.
n2–surface spin density.
R1–longitudinal (spin–lattice) relaxation parameter.
R1, aver–R1 averaged over uniform orientation distribu-

tion of bilayers.
R1, axon–R1 averaged over orientation distribution of

bilayers in an axonal bundle.
R2(t)–time-dependent transverse (spin–spin) relax-

ation parameter.
Γ(t)–relaxation function.
T2–effective transverse relaxation time.
Δ𝜔–frequency offset of RF field.
L(Δ𝜔, 𝛼)–absorption lineshape for a single bilayer

forming an angle 𝛼 with B0

L0(𝛼) = L(Δ𝜔 = 0, 𝛼)

L(Δ𝜔)–lineshape averaged over uniform orientation dis-
tribution of bilayers.

Laxon(Δ𝜔, 𝛽)–lineshape averaged over orientation dis-
tribution of bilayers in an axonal bundle.
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