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A B S T R A C T   

Repetitive DNA sequences occupy the major proportion of DNA in the human genome and even in the other 
species’ genomes. The importance of each repetitive DNA type depends on many factors: structural and func-
tional roles, positions, lengths and numbers of these repetitions are clear examples. Conserving such DNA se-
quences or not in different locations in the chromosome remains a challenge for researchers in biology. Detecting 
their location despite their great variability and finding novel repetitive sequences remains a challenging task. To 
side-step this problem, we developed a new method based on signal and image processing tools. In fact, using this 
method we could find repetitive patterns in DNA images regardless of the repetition length. This new technique 
seems to be more efficient in detecting new repetitive sequences than bioinformatics tools. In fact, the classical 
tools present limited performances especially in case of mutations (insertion or deletion). However, modifying 
one or a few numbers of pixels in the image doesn’t affect the global form of the repetitive pattern. As a 
consequence, we generated a new repetitive patterns database which contains tandem and dispersed repeated 
sequences. The highly repetitive sequences, we have identified in X and Y chromosomes, are shown to be located 
in other human chromosomes or in other genomes. The data we have generated is then taken as input to a 
Convolutional neural network classifier in order to classify them. The system we have constructed is efficient and 
gives an average of 94.4% as recognition score.   

1. Introduction 

Repetitive DNAs are sequences with multiple copies in the genome. 
They are rarely associated with clearly defined biological functions. 
Some of the moderately-repetitive sequences may be involved in gene 
expression regulation. Other mobile DNA can be constituted by trans-
posable genetic elements (TEs) that are involved in the genome evolu-
tion process. The transposition mechanism and the structure of these TEs 
are the keys to dividing this DNA into classes. Retrotransposons, are an 
example of TEs class that move via an RNA intermediate. This RNA is 
transcribed from the DNA and subsequently copied back into DNA. As 
repetitive DNA we can find tandem repeats or scattered repeated se-
quences. These repetitive DNA sequences can be classified into two 
types: highly repetitive or moderately repetitive sequences [1,2]. 

The major repetitive sequences in all eukaryotic cells are classified 
into five types according to the sequence’s length. In this classification, 
the microsatellite sequences (Short Tandem Repeat: STR) are the 

smallest. They are characterized by periodicity between 2 and 4 nucle-
otides per unit. The second class is constituted by the minisatellites with 
a length varying between 10 and 60 base pairs (bp). The third class is 
composed of the satellites which can contain up to 100 nucleotides 
(100–200 base pairs) [3–5]. The retrotransposons like SINE and LINE 
are part of the fourth-class which is characterized by a length varying 
from 50 bp to 6 kb. The final class consists of Ribosomal RNA gene 
repeat (rDNA) which is the longest with a length between 9 and 45 kb. 

In the Human genome, rare fragile sites are chromosomal DNA re-
gions especially characterized by repetitive sequences. In fact, in these 
regions, DNA damage occurs more frequently than in other locations. 
Due to chromosome structure, the common fragile sites can be sensitive 
to replication stress, and they are often rearranged in cancer. In the 
mammalian centromeres and telomeres, the presence of repetitive se-
quences is necessary in order to protect chromosomes from damage. For 
example, alphoid DNA is a kind of DNA satellite having a length of 173 
bp. This DNA is located in the middle of a chromosome and makes up the 
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larger part of the Human centromeres region [6]. Moreover, telomeres 
regions located at the chromosome extremities are made up of repeat 
sequences of 5–7 bp. These elements are called telomere repeats [7]. The 
repetitive sequence ‘TTAGGG’ is one example. The chromosome integ-
rity is protected by telomere repeats [8,9]. In fact, telomeres hinder the 
chromosomes’ fusion and protect them against degradation by exo-
nucleases [10]. 

These repetitive functional elements are not susceptible to become 
fragile sites because they are hidden in heterochromatin. This hetero-
chromatin prevents unusual DNA structures occurrence leading to 
recombination by not yet identified mechanisms [11]. 

Repetitive sequences are abundant in various genomes, from bacte-
ria to mammals, and they cover nearly half of the Human genome [5]. 
Finding new common repetitive sequences within and between different 
chromosomes and genomes is an important theme of research in 
biology. In fact, the detection of all repetitive sequences in DNA could 
serve in elucidating important biological phenomena. To identify the 
repetitive sequences, different bioinformatics tools were used [12,13]. 
Their principle is based on comparison between DNA consensus se-
quences and repeats candidates. The Mreps [14], MISA [13], Sputnik 
[15], EMBOSS (etandem and equitandem) [16], TRF [17] and Repeat-
Masker [18] are obvious examples. In the comparison step, these tools 
used different approaches such as regular expression [18], Hamming 
distance [12], recursive match and penalty scores [17]. Localizing new 
repetitive sequences presents always technical challenges. This is due to 

the ambiguities that such repeats can create in alignment and assembly 
programs [19]. In this work, we have developed a new algorithm to 
detect repetitive patterns that correspond to new repetitive sequences. 
For this purpose, we used a combination of coding techniques, signals, 
and image processing techniques. As a result, we have constructed a 
repetitive sequence database which we subdivided into two 
sub-databases. The first one contains the existing and validated repeti-
tive sequences. The second DNA repetitive database regroups the newly 
detected sequences. 

In this context, we called "new repetitive sequence", a sequence that 
was not detected by all current bioinformatics systems as well as 
alignment programs. In this research, we converted all of the DNA se-
quences into a synthetic image representation. After that, we extracted 
all patterns that correspond to the repeat DNA sequences. The second 
part of this work consists in classifying the obtained data. A deep 
learning model is chosen for this purpose: Convolutional neural network 
(CNN). 

This paper is divided into four sections. After the introduction, we 
describe the materials and methods. In Section 2, we first present the 
biological database subject of this study. We also introduce the coding 
technique we used to transform the biological data into a numerical one. 
After that, we describe how we convert the obtained signal into an image 
based on the wavelet analysis. Further, we introduce the CNN archi-
tecture we establish for the repetitive DNA classification. The final parts 
of this section consist of the employed detection steps and the adopted 

Fig. 1. Organizational flowchart of the identification of the Repetitive sequences.  
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evaluation system. In Section 3, we provide and discuss the results in 
terms of repetitive DNA sequences detection and classification. Finally, 
Section 4 concludes the paper. 

2. Material and methods 

Two-thirds of the human genome consists of repetitive DNA se-
quences [20]; which confers great importance to identification and 
localization of these elements. In this section, we expose a novel 
approach for the repetitive DNA sequence identification. This method is 
effective in detecting dispersed or tandem repeats such as minisatellites 
and satellites. The detection system is composed of four main blocks. 
The first one consists in extracting the Human DNA sequences from 
existing database. The second block is the DNA coding into a numerical 
representation. The third block consists of "Find Human Repetitive Se-
quences" (FHRS) method which we propose to the Repetitive DNA se-
quences detection. It is the application of the wavelet analysis and thus 
for detecting the repetitive patterns. The last block consists of deter-
mining the repetitive sequences and the repetitive DNA sequences 
database establishment. Fig. 1 shows the corresponding flowchart. 

2.1. Human sequences database (DNA library) 

The human genome (Homosapiens) contains 22 autosomes and two 
chromosomes that determine human sex: X and Y, with a total number of 
46 chromosomes. We find one pair of sex chromosomes in each human 
cell. In females, the cell contains two X chromosomes, while in males we 
have one X and one Y chromosome. A detailed description of the human 
DNA material is available in the NCBI database (National Center for 
Biotechnology Information) [21]. From the human DNA data, we count 
2.91-billion base pairs (bp) consensus sequence in the euchromatic 
portion [22]. Given that this is a huge amount of data, we based our 
work only on X and Y chromosomes. Even, at the level of these two 
chromosomes, we have an important mass of data. As an example, we 
give in Fig. 2 the number of apparition of dinucleotides in both X and Y 
chromosomes. 

Our goal is to find repetitive DNA on these chromosomes. It is 
important to mention that the more complex the genome is, the more 
difficult is to find new repetitive sequences within. Therefore, the 
challenge presented in this work is identifying new repetitive DNA se-
quences in human X and Y chromosomes. 

2.2. DNA coding for numerical representation 

Aiming to visualize repetitive patterns in the human genome, the 
DNA sequences have to be transformed into numerical data. This 
transformation is called “DNA coding”. In this work, we opted for a 
special coding technique called “Order 2 Frequency Chaos Game Signal” 
(FCGS2) [23,24]. The FCGS2 coding is a statistical representation of 
DNA. In the proposed method, chromosomes are transformed based on 

the occurrence probability of the successive dinucleotides groups. This 
technique represents the time-frequency evolution of the dinucleotides 
in the chromosome. In the following, we give the transformation 
equation (eq. 1). 

{FCGS2(x) =
∑

x

∑

i
P2nucléotide (i, x),

P2nucléotide = N2nucleotide

/
LengthChr.

(1)  

where N2nucleotide is the occurrence number of dinucleotides group in the 
whole chromosome and LengthChr is the chromosome’s length. 

In this work, we coded the entire human chromosomes X and Y. The 
sequence that represents chromosome X is a signal with a length of 
156,040,895 bp. As for chromosome Y, it is a signal of size equal to 
57227415bp. 

2.3. Find human repetitive sequences (FHRS) approach 

The identification of repetitive DNA sequences is taking greater and 
greater importance these days. Many algorithms, using various knowl-
edge fields, have been implemented for repetitive sequences localiza-
tion. In this context, signal processing approaches were used to detect 
repetitive sequences, according to the correspondent periodicity 
[25–29]. In this paper, we propose an efficient algorithm based on the 
signal and image processing tools to localize repetitive DNA sequences. 
This method has the advantage of being independent from prior 
knowledge about the repeated sequences. This section presents the new 
algorithm we designed to detect the repetitive DNA-sequences after 
transforming them into numerical signals. This algorithm is called Find 
Human Repetitive Sequences (FHRS). It contains three steps:  

- DNA signals to DNA images transformation: the scalogram 
representation;  

- Energy calculation of each scalogram image which is obtained by the 
wavelet analysis. After that, retaining the image whose energy 
amplitude exceeds a chosen threshold (equal to 10 here);  

- Finding the reference repetitive sequence in the retained image. It is 
the longest repeated unit in the considered DNA sequence. 

2.3.1. The DNA time frequency representation by the complex Morlet 
analysis 

The scalogram representation of a DNA sequence is an image that we 
obtain by wavelet analysis and encode in the RGB space (three color 
channels: Red, Green, and Blue). This time-frequency representation is 
shown to be efficient in terms of visualizing and detecting repetitive 
patterns. Here, the idea is to use this type of DNA image to find repetitive 
patterns that correspond to periodic sequences. 

The motivation behind this choice is that changing a pixel in the 
image has no influence on the overall shape of the repetitive pattern. 
Indeed even if the repetition pattern contains variations in nucleotide 
composition, this does not greatly impact the overall shape of the re-
petitive pattern at the level of DNA image. Furthermore, our choice for 
this method is reinforced by its performance in characterizing different 
classes of transposable elements [30,31]. For the wavelet analysis, we 
use the complex Morlet wavelet which is best suited to localize repetitive 
DNA in the time-frequency domain. The principle consists of applying 
the wavelet analysis to the signal obtained by the FCGS2 coding. This 
analysis is done by decomposing a given DNA signal into a sum of basic 
functions called wavelets. The latter wavelets are issued from the 
mother wavelet by two operations: expansion and translation. These 
wavelets take into account both time and frequency variations, which 
allow them to easily capture all the different hidden frequencies in the 
signal [32–34]. Unlike the mother wavelet, which only has a 
time-varying parameter expressed by the function ψ(t), the daughter 
wavelet expression depends on time and scale parameters (a and b 

Fig. 2. Dinucleotide occurrence in X and Y chromosomes in the 
human genome. 
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respectively). It is generated following this equation: 

ψa, b(t) =
1̅
̅̅
a

√ ψ*
(

t − b
a

)

, a > b ∈ R (2)  

where* indicates the conjugate complex. As we have chosen a Gaussian- 
windowed complex sinusoid (complex Morlet) to be applied as analysis 
window, the Continuous Wavelet Transform (CWT) will be written as: 

ψcmor(t) = П− 1
4

⎛

⎜
⎝eiɷ0 t − e− 1

2 iɷ0
2

⎞

⎟
⎠e− t2

2 (3)  

Here the oscillation’s number (ɷ0) must be greater than 5 (admissibility 
condition). The continuous wavelet coefficients of a DNA signal x(t) is a 
matrix which elements are calculated by the following formula: 

W(a,b)[x(t) ] =
1̅
̅̅
a

√

∫ +∞

− ∞
x(t)ψ*

(
t − b

a

)

dt (4) 

The modulus of these coefficients | W(a,b)| provides the scalogram 
representation of the DNA sequence. 

2.3.2. The energy calculation of the DNA scalograms 
Since chromosomes X and Y are too long, we decompose x(t), which 

is the correspondent FCGS2 signal, in a set of segments. Each segment 
xi(t) has a size of 1000 bp. After segment cut, we apply the CWT wavelet 
and calculate the correspondent energies. As a result, we obtain a new 
database of the human DNA representations. In total, we count 156,041 
images of the X chromosome and 57,228 images of the Y chromosome. 
The wavelet coefficients matrix contains the time-frequency information 
about a signal. To further explore this information, we calculate the 
scale-energy (E) of each nucleotide position, according to following 
equation: 
{

Ei(a) =
∑1000

b=1

⃒
⃒W(a,b)[xi(t)]

⃒
⃒2
,

for each i = 1 : LengthChr/1000.
(5)  

Here, the parameter a represents the scale in the wavelet analysis; it 
varies from 1 to 64. As for the indicator i, it represents the image 
number. 

By applying (eq.5), we obtain a vector that contains the energy of the 
DNA scalogram. Peak values higher than 10 in the vector indicate the 
existence of repetitive patterns in the DNA image. Fig. 3 shows an 

Fig. 3. Illustration of the repetitive DNA detection steps based on CWT analysis: a) DNA coding with FCGS2 b) 3D scalogram c) Energy peaks greater than 10 in-
dicates the existence of repetitive sequences. 
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example of the FCGS2 signal, the correspondent scalogram in a 3D 
representation and the energy wavelet of a sequence located in chro-
mosome X of the human genome. This sequence corresponds to the 
portion [342,500 bp: 344,000 bp] in the PPP2R3B gene. 

As we can see, magnitude of the energy wavelet indicates the pres-
ence of periodicities in the sequence. If we consider the frequency 
content, we can note that the repetitive sequence is characterized by a 
specific frequency band. The limits of this frequency band correspond to 
the repetitive DNA portion in the analyzed sequence. As for the 3D 
representation, it contains repetitive patterns of particular shape that 
are related to the DA repetitions. Following this method, we have con-
structed our database of the repetitive DNA images. The patterned im-
ages were selected according to the energy-wavelet peaks. The 
generated database was named "repeat-Data". 

2.3.3. The reference repetitive sequence search 
For each DNA image into the repeat-Data database, we aim to identify 

a DNA-reference sequence, to which corresponds the existing repetitive 
pattern in the scalogram. This DNA-reference sequence is the longest 
subsequence in terms of size and repetition numbers. After this step, we 

have built a database that contains the location and the repetition 
number of all the localized sequences of reference. As we focus on 
detecting new repetitive sequences in the human genome, we verified 
the availability of the reference repetitive sequence in the public data-
bases. For this, we checked if this sequence is annotated or not in both 
DFAM and NCBI databases. Hence, if our new repetitive sequence is not 
listed in these public databases, we added it to our new database. This 
new repetitive sequence is called "New-repeat-Data". 

2.4. Patterns extraction based on adaptive local thresholding and 
morphological processing 

After collecting the new repetitive sequences using the FHRS algo-
rithm, we move on to the step of extracting the repeat patterns using 
image processing tools. The Fig. 4 summarizes the proposed methodol-
ogy of extracting tandem repeat patterns in the DNA images. It illus-
trates the results obtained when we considered the “TRseq1” sequence. 
The sequence is 261 base pairs lengthen; its position is 28,076,765 bp to 
28,077,025 bp along the human X chromosome. 

As in this example, the data we are treating here is the set of 

Fig. 4. Flowchart diagram of the adopted segmentation methodology to extract the repetitive patterns.  
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scalogram images that we stored before in the database "New-repeat- 
Data". The main goal of this part of work is to detect and localize the 
repetitive patterns in the scalogram representations. That’s why we 
based our work on a segmentation algorithm. Our method consists first 
in decomposing the DNA image into three color channels (red, green and 
blue) and choosing the blue one. This choice is justified after testing all 

the color bands. The best segmentation result corresponds to the bleu 
channel since it is best contrasted compared to the others. Then for a 
binarization purpose, a simple thresholding is applied to keep only the 
pixels having an intensity value less than or equal to 26. Then, to keep 
only the region of interest, we have used an edge detection technique. 
The Canny edge detector provides good detection and localization 
relatively to other operators [35,36]. The algorithm detects brightness 
discontinuities in the image using a Canny filter. It is a multi-stage al-
gorithm used to detect a wide range of edges in images [37,38]. The 
Canny operator uses double thresholds: high and low thresholds. The 
high threshold algorithm detects important and significant information 
like lines and contours in the image. The low threshold algorithm en-
sures that no details are missing. The Canny edge detector is widely used 
to locate sharp intensity changes and to find object boundaries in an 
image, especially in computer vision domains. The classification of one 
pixel as an edge, using the Canny edge detector, is achieved by gradient 

Table 1 
Position of “Rseq1” on both X and Y chromosomes of the human genome.  

Start (bp) End (bp) Start (bp) End (bp) 

26,609 26,669 41,241 41,301 
26,792 26,852 42,400 42,460 
28,317 28,377 243,312 243,372 
34,474 34,534 244,958 245,018 
34,657 34,717 246,787 246,847 
41,058 41,118 248,556 248,616  

Fig. 5. Illustrative example of using BLAT algorithm to search a new repetitive DNA sequence in the whole human genome and in other genomes.  

Fig. 6. Architecture of convolutional neural network for DNA images recognition. First layer is convolutional layer. It consists of 64 channels with kernel size of 3*3 
voxels. The second is the maxpooling layer. Output of maxpooling layer is the input of the third layer: convolutional layer with 32 channels. Each convolutional layer 
is the input of the fourth layer: maxpooling layer. Then, the output of maxpooling layer is concatenated, a vector is formed and then inputted to the fully connected 
layer. The images from the dataset (N = 980) were splitted into 80% for training (780 images) and 20% for testing (200 images). Multiple epochs were used in the 
training procsess, where the epoch’s number used is equal to 100. 
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magnitude computation of this pixel. The result is then compared with 
one of its neighbors, where the maximum intensity varies the most. 
Finally, we fill the holes in areas of interest based on morphological 
operators [39]. The result is an image that only contains repetitive 
patterns. Based on this method, we can then extract and isolate the 
particular regions of repetitive DNA patterns. 

2.5. DNA-reference sequences location in other human chromosomes and 
other species 

After finding the DNA repetitive sequences in the human X and Y 
chromosomes (which can be tandem or scattered repeated sequences), 
we verified their existence in other chromosomes or even in other ge-
nomes. To achieve this goal, we have used two public bioinformatics 
algorithms: BLAT [40] and DFAM [41]. For each new repetitive 
sequence we detected, we searched it in the whole human genome and 
in all other genomes using the BLAT platform. As an example, we 
consider the new scattered repeated sequence “Rseq1”. 

Rseq1="CTTTAGAGTCTGCATTGGGCCTAGGTCTCATTGAGGACA-
GATAGAGAGCAGACTGTGCAAC". 

It is a 61 base pair (bp) lengthen sequence with a repetition number 
equal to12 in the whole human genome. The corresponding positions on 
both X and Y chromosomes are given in the following table (Table 1). 

After localizing “Rseq1” in X and Y chromosomes, we searched for 
the existence of this sequence in other regions. Fig. 5 shows the result of 
the checking of the “Rseq1” existence in other species. As we can see, 
“Rseq1” exists in several genomes such as; Human, Gorilla, Chimpanzee, 
Greenmonkey, Bonobo, etc. 

After proving the existence of the newly discovered repetitive 
sequence in all genomes, we tried to find whether this sequence is 
located in genes. We, especially, searched for its existence in exonic 
regions or in other families of DNA. If this sequence exists nowhere in 
these DNA types, we classified it as a new repetitive DNA sequence type. 
On the other hand, we verified the uniqueness of these new sequences 
using our approach FHRS, and thus by comparing the repetitive patterns 
in the scalogram representations. 

In order to ensure that our work is as meaningful and effective as 
possible, we thought of establishing a classification system to classify 
these new datasets (new repetitive DNA sequences). For this reason, we 
considered the scalogram representation (2D image) as input data to the 
system. As for the classifier, we have chosen CNNs as they are efficient in 
terms of images classification Fig. 6. 

2.6. Convolutional neural network: CNN 

CNN is a special neural networks type which works using data having 
a grid topology [42]. CNNs classification technique were developed by 
LeCun et al. (in 1998) in the aim to recognize handwritten characters 
from bank checks. CNNs is a deep learning model inspired by the visual 
mechanism of living organisms. It uses convolutional layers to the fea-
tures extraction from input data. In the CNN model, convolutional layer 
neurons are able to extract higher-level abstraction features from fea-
tures extracted at the previous layer. CNN was applied with success in 
DNA studies [43–46], Breast Cancer Cell Segmentation [47,48], medical 
diagnosis [49,50], character recognition [51] and in other areas of 
application. 

In this work, we used CNN to establish a system of new repetitive 
DNA sequences recognition in human X and Y chromosomes. For this, 
we took the RGB scalogram representations of DNA as the input of the 
classification system with a size of 75 × 100. 

The DNA images are passed, then, through a stack of convolutional 
layers, where we used filters with a very small receptive field (3 × 3). 
These filters act in the role of a scanner as they capture motifs in 
different orientations (up/down, center, left/right). Each neuron output 
on a convolutional layer is the result of a convolution operation between 
the kernel matrix and the neuron input. As for Max-pooling, it is 

performed over a 2 × 2 pixel window. For each convolutional layer, the 
second layer is a global max-pooling layer. Each one of max-pooling 
layers only outputs the maximum value of all of its respective con-
volutional layers outputs. The second layer is considered as a sample- 
based discretization process. This process has a goal to down the sam-
ple of input and to reduce its dimensionality. 

After transforming the image into a suitable form for the Multi-Level 
Perceptron, the image must be flattened into a column vector. The result 
is a flattened output that is fed to a feed-forward neural network. 

A back-propagation was applied to every iteration of training. A 
Fully-Connected layer was added to ensure a non-linear combination 
learning of the high-level features (which are represented by the output 
of the flatten layer). The Fully-Connected layer is learning a possibly 
non-linear function in that space. Over an epoch’s series, using the 
Softmax Classification technique our model is eligible to distinguish 
between dominating and certain low-level features in images and it can 
classify repetitive DNA classes. 

After transforming the image into a suitable form for the Multi-Level 
Perceptron, the image must be flattened into a column vector. The result 
is a flattened output that is fed to a feed-forward neural network. A back- 
propagation was applied to every iteration of training. A Fully- 
Connected layer was added to ensure a non-linear combination 
learning of the high-level features (which are represented by the output 
of the flatten layer). The Fully-Connected layer is learning a possibly 
non-linear function in that space. Over an epoch’s series, using the 
Softmax Classification technique our model is eligible to distinguish 
between dominating and certain low-level features in images and it can 
classify repetitive DNA classes. 

3. Results 

Only sexual chromosomes provide opportunities to know the evo-
lution mechanisms from one specie to another. These mechanisms can 
depend on the accumulation of repetitive sequences [2]. In this work, we 
first applied the FHRS technique to detect new repetitive sequences 
within human sexual chromosomes (X and Y). After that, we entered 
these sequences to a CNN based on classification system aiming at 
recognizing them. 

3.1. New repetitive DNA detection results 

In this work, we used the FHRS approach (Find Human Repetitive 
Sequences), which combines wavelet analysis and a specific coding 
technique, to represent repetitive patterns in the form of an image. This 
method has the advantage of identifying new repetitive sequences 
without using any prior knowledge about the input DNA sequence. 
Based on this, we have discovered various new repetitive DNA se-
quences within sexual chromosomes, be they tandem or interspersed. 
After that, we have looked for the existence of these sequences in the 
whole human chromosomes or in other genomes. Afterward, we 
checked if these sequences exist or not in genes. Finally, we classed these 
repetitive sequences in terms of their relative location to heterochro-
matin, telomere, and centromere. 

As a result, we have constructed a database comprising two sub- 
databases. The first one contains newly discovered repetitive se-
quences of type satellites and minisatellites. The second one encloses 
existing repetitive sequences. 

Here, the new repetitive sequences database provides the composi-
tion of the new highly repetitive DNA sequences and the correspondent 
locations. The repetitive sequences are of different sizes and are classi-
fied into two types: tandem repeat sequences or interspersed repeat 
sequences. We called this new database "New-repeat-Data". 

With our approach, highly conserved repetitive DNA sequences, 
having no annotations in the DNA library (NCBI or DFAM), have been 
found in the human genome. 

In the telomere of X and Y chromosomes, we have found highly short 
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Fig. 7. Telomere image signature of homologue regions corresponding to the minisatellite “Rseq2” (CTTTAGAGTCTG)n within X and Y chromosomes.  
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or long repetitive sequences. The sequence “Rseq2” (Rseq2=CTTTA-
GAGTCTG) is an example of short Minisatellite of 21 base pairs. Its 
repetition number is 312 extending from 26,304 bp to 249,544 bp. In 
addition, the sequence (CCCTAA)n, which is annotated in NCBI data-
base, has been well localized using our algorithm. 

As long repetitive Minisatellite sequences, we have discovered a new 
sequence “Rseq1” of 61 base pairs and a repetition number of 12. These 
repetitive sequences exist in the same location within great portions of 
chromosome Y. Fig. 7 shows an example of the global signature of a new 
telomeric repetitive sequence with a 71000bp of size. 

On the other hand, a high repetitive sequence “Rseq3” 
(Rseq3=‘TTTAAAGAT’ of size equal to 9 bp) has shown as a new re-
petitive sequence in the human genome. This short repetitive DNA 
sequence was found also in many species such as chimpanzees, bonobo, 
and even in SARS− COV2 (COVID-19) coronavirus genome with a 
repetition number of 2. Table 2 shows the location of this microsatellite 
in some chromosomes of the human genome. 

Other sequences are found to be very high repetitive in the human 
genome, like the sequence “Rseq4” (Rseq4= ‘GTATACA’) which appears 
in the X chromosome 1375 times. This sequence exists also in the 
COVID-19 coronavirus. 

Furthermore, we have found a new minisatellite with a size of 61bp 
in human. Using the BLAT algorithm, this sequence was also found in the 
X chromosome of Gorilla (gorGor4) with a position of 15499bp to 15,559 
bp. Fig. 8 shows the method adopted to localize this repetitive sequence 
in other regions. 

Fig. 8 is divided into two result blocks. In the first one, we expose the 

scalogram corresponding to the new repetitive DNA sequence. The 
second one contains the sequence location result in all the other ge-
nomes using the BLAT algorithm. 

In the first result block, we provide the scalogram representation of 
the DNA sequence we have located at the X chromosome of the human 
genome (Xp22.33, position: [321001:322000bp]). The scalogram rep-
resentation makes possible to see all the specific repetitive patterns. 
After that we extracted the reference sequence which is the maximum 
repetitive sequence having a maximum size in the DNA sequence. Then, 
we have found two new repetitive sequences that were not referenced by 
the current bioinformatic systems or sequence alignment programs. 
Locations of these two new repetitive sequences in both X and Y chro-
mosomes are given by Table 3. The repetitive patterns in the scalograms 
prove the presence of two microsatellites: Rseq5 whose size is 61bp and 
reRseq6 size is 28 bp. 

These sequences are: 

- Rseq5=‘AAAAAAAAAAAAAAAAGAAAAGCCGGGCGTGGTGGTGG-
GTGCCTGTGGTCCCAGCTGCTCGGGACGCTGAGGTGGGAG-
GATTGCTTGAGCCCAGGAGTTTGACACCAGCATGGGCAA-
TATGGTAAGACCC’.  

- Rseq6=‘CCCAGGAGTTTGACACCAGCATGGGCAA’. 

Table 2 
Positions of the new discovered repeat sequence “Rseq3” in 12 chromosomes of 
the human genome.  

Chromosome Repetition number Chromosome Repetition number 

Chr X 2302 Chr 6 3016 
Chr 1 3447 Chr 7 2562 
Chr 2 4193 Chr 8 2405 
Chr 3 3450 Chr 9 1916 
Chr 4 3647 Chr 10 837 
Chr 5 3263 Chr 11 2021  

Fig. 8. Repetitive DNA sequence detection in X chromosome. (a): The 2-D representation provides a visual way to see three characterized long repetitive sequences; 
(b): Location of these repetitive sequences in other regions. 

Table 3 
Positions of the two new discovered repeat sequences Rseq5 and Rseq 6 in the X 
and Y chromosomes of the human genome.  

Start End Size (bp) sequence 

321,472 321,602 130 
“Rseq5” 321,612 321,742 130 

321,752 321,882 130 
321,267 321,295 28 

“Rseq6” 

321,419 321,447 28 
321,561 321,589 28 
321,701 321,729 28 
321,841 321,869 28 
322,148 322,176 28 
323,095 323,123 28  
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After the localization of these two repetitive DNA sequences (Rseq5 
and Rseq6), we have chosen to use the BLAT alignment tool in order to 
see if these sequences have other locations in the other human chro-
mosomes or in other genomes. Indeed, the repetitive sequences that 
migrate to different regions of the genome have a great importance and 
they have been classified as conservative mobile DNA sequences. Their 
importance will be higher if these conservative regions are localized in 
genes. 

As a result, we have found the Rep2 sequence at the position 321,267 
bp to 321447 bp in the intronic region of a non-protein coding RNA 685 
(LINC00685) gene, and thus in both X and Y chromosomes [52]. 

In the sub-figure b of Fig. 8 (second result), we show that the new 
repetitive sequence Rep2 is located, not only within other chromosomes 
(1, 5, 15, X and Y) of the human genome, but also in other genomes like 
chimpanzee and bonobo. Results shown in Table 4 prove that Rep2 has 

been located in intronic region of different chromosomes of the human 
genome: 1, 5, 15, X and Y. 

In fact, the sequence “Rseq6” presents a special intronic conservative 
region located, not only in different chromosomes but also in different 
genomes. Rseq6 sequence that have a size of 29 bp has been localized in 
two genes corresponding to chimpanzee genome. It is located at the po-
sition: 135476733–135476760 in the DDX46 gene 
([135444165:135519361 bp]) of the chromosome 5. It is also localized 
at the position: 86759–57686796 bp positions in the FAM13C gene 
([57587233:57707637bp]) of the chromosome 10. 

In addition, we present another example of a special new repetitive 
sequence “Rseq7” which has been found using our approach. The Fig. 9 
shows the time-frequency representation of the LOC652,608 gene which 
has a size of 2532 bp. The gene is found at the position: 
1172583–1175114 bp in the X chromosome of the human genome. This 

Table 4 
Position corresponding to the new discovered scattered repeat sequence Rseq6 (28bp) in different chromosomes in the human genome.  

Start end Chromosome Gene location in gene location in genome 

321,267 321,295 X and Y LINC00685 intron 1/1 Xp22.33 and Yp11.31 
157,332,849 157,332,876 5 CYFIP2 intron 21/31 5q33.3 
22,225,387 22,225,414 

15 LOC101928039 uncharacterized 15q11.2 22,225,680 22,225,707 
237,615,395 237,615,421 1 RYR2 intron 37/104 1q43  

Fig. 9. LOC652608 Gene in the X chromosome contains a tandem repeat sequence: Rseq7 started in Intronic region (Intron 2) until Exonic region (Exon 3).  

Fig. 10. Two examples of conserved intronic repetitive sequences (satellites) and noncoding sequence located in coding region such as senescence [53].  
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pseudo-gene is a 60S ribosomal protein L6-like. The DNA image shown 
in Fig. 9 demonstrates three exonic regions and two intronic regions. 

We can clearly see that the second intronic region is composed by a 
specific tandemic sequence which we called “Rseq7”. The correspondent 
modified version has the same size as “Rseq7” which is equal to 208 bp. 

This particular repetitive sequence starts in the intronic zone: 
Intron2 until reaching and exceeding the exonic zone: Exon3; with a 
modification of 11 nucleotides. 

Intron 2 is a noncoding sequence (208 bp) which is composed of 
multiple repetitions of “Rseq7”. 

Rseq7=‘TGATGGTTTTCCTGAAGCAGCTGGCTAGTGGCTTGT-
TACTCGTAACTGGACCTCTGGTCCTCAATCGAGTCCCTCCACGAA-
GAACGCACCA-
GAAATTTGTCATTGCCACCTCAACCAAAATCGGTATCAGCAATG-
TAAAAATCTCAAAACATCTTAGTGATGCTGACTTGAAGAAGAA-
GAAGCTGTGGAAGCCCAGACACCAGGAGAG’. 

Then, we searched this new tandem repeat “Rseq7” in the other 
chromosomes. As a result, we found that this sequence exists in 7 

chromosomes with some nucleotides modifications. Moreover, we have 
located this modified intronic sequence in genes regions of other chro-
mosomes of the human genome. 

Fig. 10 shows two reference sequences and the modified version. The 
first exonic sequence example corresponds to the LOC652608 gene in 
located in the X chromosome (Fig. 10a). The second exonic sequence 
corresponds to the RPL6P22 gene in which is located in the chromosome 
7 (Fig. 10b). 

For these two examples the nucleotides variation number between 
the intronic sequence “Rseq7” and the exonic sequence is equal to 11 
base pairs but with different locations. 

On the other hand, we have chosen to use image processing tech-
niques to extract the repetitive sequences. The idea consists in seg-
menting the scalogram image in order to extract the repetitive patterns. 
For this purpose, we developed a new segmentation algorithm applied to 
the DNA scalograms. Fig. 11 illustrates the obtained results by our 
segmentation algorithm with a thresholding value equal to 26. It shows 
the location of the “Rseq7” repetitive sequences and the correspondent 

Fig. 11. Example of DNA image segmentation by which we can obtain the begining and the end of the repetitive patterns located in intronic region (Intron 2), and 
the corresponding modified sequences (especially in exonic region) with the modification region. 

Table 5 
Location of repetitive intronic satellites sequence “Rseq7” and the corresponding exonic modified sequences in different chromosomes of the human genome.  

Start end Chromosome Gene location in gene location in genome sequence Description 

1,174,105 1,174,312 

X and Y LOC652608 Intron 2 Xp22.33 and Yp11.2 Rseq7(208 bp) 60S ribosomal protein L6-like 1,174,313 1,174,520 
1,174,521 1,174,728 
1,174,729 1,174,936 Exon 3 modified Rseq7 
45,781,761 45,781,958 1 RPL6P1 Exon 1 1p34.1 modified Rseq7 ribosomal protein L6 pseudogene 1 

65,573,946 65,574,144 4 
EPHA5 Exon 1 4q13.1-q13.2 modified Rseq7 EPH receptor A5 
RPL6P10 Exon 1 4q13.2 modified Rseq7 ribosomal protein L6 pseudogene 10 

137,722,471 137,722,672 
7 

DGKI Intron 2 7q33 modified Rseq7 OTTHUMP00000208597 
14,070,714 14,070,911 RPL6P21 Exon 2 7p21.3 modified Rseq7 ribosomal protein L6 pseudogene 21 
64,141,719 64,141,920 AC091685.2 Exon 2 7q11.21 modified Rseq7 ribosomal protein L6 pseudogene 11 

33,859,542 33,859,740 8 
LOC105379364 uncharacterized 8p12 modified Rseq7 uncharacterized LOC105379364 
RPL6P22 Exon 1 8p12 modified Rseq7 ribosomal protein L6 pseudogene 22 

83,151,812 83,152,006 
12 

RPL6P25 Exon 1 12q21.31 modified Rseq7 ribosomal protein L6 pseudogene 25 
112,405,884 112,406,338 RPL6 Exon 6 12q24.13 modified Rseq7 ribosomal protein L6 
6,462,328 6,462,526 18 RPL6P27 Exon 1 18p11.31 modified Rseq7 ribosomal protein L6 pseudogene 27  
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modified versions. Here, we can see in the first subfigure (scalogram) 
that the repetitive pattern is located at: 1173583bp-1175114 bp in the X 
chromosome of the human genome. The second subfigure presents the 
segmented image. The repetitive patterns correspond to the repetitive 
sequences which start in intronic sequences and end in exonic region 
with some nucleotides modification (11 nucleotides) in the beginning 
and in the end (Fig. 11). 

After the repetitive sequences localization, we checked if these se-
quences are located in other regions in the human genome and even in 
the genomes of other species. Table 5 shows the location of the repetitive 
sequence “Rseq7” and its modified repetitive sequences in different gene 
regions of different chromosomes in the human genome. We can note 
that this new repetitive sequence characterizes a ribosomal protein 
(RPs) region in the human genome. The ribosomal RNA gene repeat 
(rDNA) is the largest repetitive region in the eukaryotic genome. The 
genome stability depends on the stability of the rDNA, the latter affects 
cellular functions 

The next example in Fig. 12 shows highly repetitive patterns in the X 
chromosome at position: 2277000–2282500 bp (Xp22.33 region) in the 
human genome. This region contains tandem repeat sequences and 
interspersed repeat sequences. In addition, the localization results have 
shown that these specific patterns are localized in the intronic region of 
the DHRSX gene ([2,219,506 bp: 2,500,974 bp]) in the X chromosome 
and even in other genes located in other chromosomes. 

DHRSX gene is a new gene discovered in 2014 at the Xp22.33 and 
Yp11.2 in the human genome. It has been shown that the protein 
encoded by this gene is implicated in the positive regulation of starva-
tion induced autophagy [54]. 

The scalogram represented in Fig. 12 indicates the presence of re-
petitive patterns in intronic regions. The reference sequence corre-
sponding to tandem repeat sequence “Rseq8” has a size equal to 89bp 
and 14 as a repetition number. Other repetitive sequences are localized 
in these intronic regions which are:  

- “Rseq9” with a size of 42 bp and 26 as repetition number  
- “Rseq10” with a size of 19 bp and 63 as repetition number  
- “Rseq11” with a size of 6 bp and 123 as repetition number. 

All these repetitive sequences are minisatellite type. In the NCBI 
database, these regions are defined as a low complexity G-rich repetition 
and there is no further given information. 

• Rseq8="AGGGAGAGAGAGGGAGGGCAAACGAGAGGGAGAGAGAA-
GGAGGAGGAGGAAATGGGGGAAAGAGAGAGAAAGAGAGATGGA-
GAGGGAAC" 

• Rseq9="AGAGAGATGGAGAGGGAACAGGGAGAGAGAGGGAGGGC-
AAAC"  

• Rseq10="AGAGAGATGGAGAGGGAAC"  
• Rseq11= "AGAGAGAA" 

These repetitive sequences are also located at the same position in 
intronic region within the DHRSX gene in the Y chromosome of the 
human genome. 

Table 6 details the location of the new repetitive sequence “Rseq8” 
inside the X and Y chromosomes. 

Furthermore, this repetitive sequence is located inside the intronic 
region of the DHRSX gene with tandem repeat and dispersed repeat 
forms. 

Fig. 13 shows an example of another repeat tandem pattern found in 
the X chromosome at position 27210460− 27211308bp in the human 

Fig. 12. Scalogram corresponding to a DNA sequence in X chromosome that contains repetitive sequences in intronic region.  

Table 6 
Location of the intronic repetitive sequence “Rseq8” in the X and Y chromosomes 
of the human genome.  

Start End Repetition 
types 

Gene Location in 
gene 

location in 
genome 

2,277,547 2,277,635 
Tandem 

DHRSX Intron 4/6 Xp22.33 and 
Yp11.2 

2,277,636 2,277,724 
2,277,725 2,277,813 
2,277,903 2,277,991 Dispersed 
2,278,791 2,278,879 

Tandem 2,278,880 2,278,968 
2,278,969 2,279,057 
2,279,147 2,279,235 Tandem 
2,279,236 2,279,324 
2,280,290 2,280,378 

Tandem 2,280,379 2,280,467 
2,280,468 2,280,556 
2,280,646 2,280,734 

Tandem 
2,280,735 2,280,823 

The Table7 provides the locations of “Rseq9” in the X chromosome of other 
genomes. 

Table 7 
Position of “Rseq9” in X chromosome of other genomes.  

Start End chromosome genome 

1,833,384 1,833,425 X Gorilla 
1,927,705 1,927,746 

X Chimpanzee 

1,927,883 1,927,924 
1,928,326 1,928,367 
1,928,414 1,928,455 
1,928,503 1,928,544 
1,928,592 1,928,633 
1,928,771 1,928,812 
2,220,841 2,220,882 X Bonobo 
1,800,783 1,800,824 X Rhesus  
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genome. The annotation of this sequence in the NCBI database indicates 
the presence of the simple repeats classes (TA)n ([27,210,497 : 
27,210,679]), (CATATA)n ([27,210,682 : 27,210,757]) and (TA)n 
([27,210,758 :27211323]). These confirmed repetitive sequences have 
been also located with our approach. In addition we discovered the new 
repetitive sequences:‘ATATATGATATATACTATATATGTCATATATA-
CATATACAC’, ‘ATATATGATATATAC’, ‘TGATAT’, ‘TACATA’ and 
‘GATATA’ These sequences have been localized inside the 
LOC105373150 gene ([27153368:27399005]) within the Xp21.3 region 

of the human genome.  

•

Rseq12=“ATATATGATATATACTATATATGTCATATATACATATACAC” 

The short repetitive sequence "TACATA" (6 bp) appears 22 times in 
this DNA sequence and has 69,710 as a repetition number in the X 
chromosome. 

After searching for the existence of this tandem repeat sequence 

Fig. 13. Scalogram representation of a new discovered tandem repeat sequence “Rseq12”:(ATATATGATATATACTATATATGTCATATATACATATACAC)n.  

Fig. 14. Scalogram image corresponding to DNA sequence “TRseq1” (with size equal to 261) containing the tandem repeat sequence “Rseq13” with a repetition 
number equal to 9. 
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“Rseq12” in other locations, we have searched it in the X chromosome of 
other genomes: Bonobo genome [27,166,538 bp: 27,166,578 bp]; 
Chimpanzee genome [27158028:27158068 bp]. 

Using our algorithm, we have successfully found 9 repetitions of 
another new short repetitive sequence as a tandem repeat sequence 
(TRs). We called this sequence of 29 base pairs “Rseq13”.  

- Rseq13=“CTGTATAACCTAAATAATATAGGTTATAT” 

Fig. 14 shows the scalogram of a new repetitive DNA sequence that 
we called “Rseq13”. The sequence has a size of 261 bp and it is localized 
at 28076765–28077025 bp in the X chromosome. It is a tandem repeat 
sequence, with patterns of 29 bp length: “Rseq13”. The NCBI and the 
Dfam databases don’t indicate the existence of such repetitive sequence 
(“Rseq13”). With our approach we succeeded to detect this tandem 
repeat without any prior knowledge about its existence. 

The repetitive sequence “Rseq13” is located not only in the X chro-
mosome of human genome but also in other genomes like in the X 
chromosomes of Bonobo (at [28,032,917 bp-28,033,158 bp]), Chim-
panzee ([28,028,604 bp-28,028,816 bp]) and Gorilla ([28,333,971 bp- 
28,334,231 bp]) with two nucleotides modification. 

Fig. 15 shows the scalogram of a new DNA sequence “TRseq2” with a 
size of 261 bp. The sequence is positioned at 156029111–156029371 bp 
in the X chromosome. As we can see, the scalogram contains a repetitive 
pattern corresponding to a tandem repeat sequence: “Rseq14”. This 
subsequence ("TCTCTGCGCCTGCGCCGGCGCGGCGCGCC") has a size of 
29 bp and 9 as a repetition number. 

Rseq14 is not annotated as a tandem repeat in the NCBI or the Dfam 

databases but it is defined as a TAR1of the telomeric satellite family 
[55]. 

In Table 8, we provide the localization results of “Rseq14” in the 
whole human genome and in other genomes. 

Fig. 16 shows the scalogram of another new DNA sequence: 
“TRseq3” with a size of 500 bp and extending from 2845001bp to 
2845500bp in the X chromosome of human genome. The sequence 
contains a tandem repeat sequence: “Rseq15” (CGTGTGTATGTA-
TATTTATATACA), which size is a 24 bp and its repetition number is 
equal to 18. This sequence is not annotated as a tandem repeat sequence 
in the NCBI database nor in the Dfam database. 

Our "New-repeat-Data" database of all new discovered repetitive 

Fig. 15. Scalogram image corresponding to DNA sequence “TRseq2” confirm the existing of the “Rseq14” tandem repeat sequence 
(TCTCTGCGCCTGCGCCGGCGCGGCGCGCC)n annotated in [45] as a minisatellites sequence which their repetition number equal to 9. 

Table 8 
Repetitive sequence location corresponding to “Rseq14” in the X human chro-
mosome and in other genomes.  

Start End Repetition 
number 

Repetition type chromosome 

12,491 12,751 9 

TAR1 : 
Satellitetelomeric 

5 
12,520 12,780 9 5 
57,215,631 57,215,891 9 Y 
156,029,111 156,029,371 9 X 
10,629 10,950 2 

1 181,167 181,311 2 
10,754 11,079 2 12 
10,601 10,629 1 16 
101,980,093 101,980,000 1 15 
135,076,184 135,076,000 1 11  
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sequences are presented in “Supplementary Material” file. To conclude, 
we succeeded to implement an efficient algorithm for repetitive se-
quences detection. The sequences we detected are of two types: satellites 
and minisatellites. On the other hand, we have obtained better results 
than those of the bioinformatics tools. The main advantage presented by 
this work is being independent of any prior knowledge about the 
searched repeat. 

3.2. CNN classification results 

In this section, we present the results of using CNN model to classify 
DNA scalograms obtained in the first part of this work. Our goal is to 
identify the different classes of the new repetitive sequences we 
discovered and stocked in the "New-repeat-Data" database. As a data, we 
randomly took 200 non-repetitive sequences (NonRep) and 780 repeti-
tive sequences (Rep). Repetitive sequences data consists of 780 se-
quences divided into 4 classes depending on their repetitive pattern 
length (Table 9). These classes are: Rep1 (with a size >100), Rep2 (with 
a size between 60 and 100), Rep3 (with a size between 30 and 60) and 
Rep4 (with a size <30). In globally, our constructed database contains 

five classes that four contain scalograms of repetitive sequences and one 
contains scalograms without repetitive sequences. For the classification 
purpose, all the dataset (980 scalogram images) was splitted into 80% 
for training (784 images) and 20% for testing (196 images). Thus, by 
such classification system we can discover images that contain similar 
repetitive patterns. We can also differentiate these images from others 
that don’t contain repetitions. 

The Fig. 17 represents the classification results of the four repetitive 
DNA classes (images with repetitive patterns) against one class of non- 
repetitive DNA (images with no repetitive patterns). 

Fig. 16. Scalogram image corresponding to the DNA sequence “TRseq3” that contains “Rseq15” as tandem repeat motif.  

Table 9 
Description of the input data to the CNN classification system.  

CLASS Repetitive pattern with size X NUMBER 

Rep1 X>100 180 
Rep2 60<X<100 150 
Rep3 30<X<60 200 
Rep4 X<30 250 
NonRep NONE 200  

Fig. 17. Confusion Matrix result obtained by our classification system.  
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With the CNN model, we distinguished different specific types of 
DNA images. The score ranges from 89% to 100%. The obtained results 
yield an average score of 94.4%. 

The confusion matrix of the classification rates confirms that our 
system is efficient in distinguishing between small repetitive patterns 
(Rep4) and non-repetitive DNA sequences (NonRep) with score equal to 
100%. This result is quite clear, since the scalogram images of these two 
classes are very different. 

The following Table 10 contains three evaluation measurements: 
precision, recall and F1-score which we used to evaluate our classifi-
cation system. 

Overall, our system gives good results in recognizing the four new 
repetitive DNA sequences with an average of 95% in precision, recall 
and F1-score. 

4. Conclusion 

Genetic knowledge improvement of the human genome is a complex 
and a continuous research process. To contribute to this process, bio-
informatics and signal and images processing tools have been applied to 
reveal hidden spectral features of DNA sequences. Although the repeti-
tive DNA sequences occupy 40% of the Human genome, the localization 
of these sequences remains insufficient as it is a very difficult task. 

In this paper, we proposed a new algorithm based on the signal and 
image processing tools to extract the repetitive patterns from DNA im-
ages that correspond to the repetitive DNA sequences. The main goal of 
this is to create a new database that contains locations of all the new 
discovered repetitive sequences. As an example of the obtained results, 
we found a new modified repetitive sequence that can characterize 60S 
ribosomal protein: “Rseq7”. Therefore, deeper studies that may give a 
biological interpretation of these results will be welcome. 

In this article, we proposed a novel and highly-effective method for 
DNA images prediction based on CNN model. In our prediction system, 
the obtained accuracy scores over 100 fold cross validation ranged from 
89% to 100% with an overall score of 94.4%. 
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