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Transient-rare Bacterial Taxa Are Assembled Neutrally across Temporal Scales
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Despite the importance of microbial communities in ecosystem functions, the mechanisms underlying the assembly of
rare taxa over time are poorly understood. It remains largely unknown whether rare taxa exhibit similar assembly processes
to common taxa in local communities. We herein retrieved the 16S rRNA sequences of bacteria collected bimonthly for 2
years from the Pohang wastewater treatment plant. The transient-rare taxa showed different abundance distributions from
the common taxa. Transient-rare taxon assemblages also exhibited higher temporal variations than common taxon
assemblages, suggesting the distinct ecological patterns of the two assemblages. A multivariate analysis revealed that
environmental parameters accounted for 25.3 and 61.6% of temporal variations in the transient-rare and common taxon
assemblages, respectively. The fitting of all observed taxa to a neutral community model revealed that 96.4% of the
transient-rare taxa (relative abundance, 71.4%) and 73.3% of the common taxa (relative abundance, 45.6%) followed the
model, suggesting that stochastic mechanisms were more important than deterministic ones in the assembly of the transient-
rare taxa. Collectively, the present results indicate that the transient-rare bacterial taxa at the Pohang wastewater treatment

plant differed from the common taxa in ecological patterns, suggesting that dispersal is a key process in their assembly.
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Local microbial communities influence ecosystem func-
tions in their habitats. For example, local microbial com-
munities are involved in plant growth in the soil (Nannipieri
et al., 2003), wastewater treatment in bioreactors (Briones
and Raskin, 2003), and obesity in humans (Turnbaugh et al.,
2006). Microbial communities are typically characterized by
species diversity (e.g., richness or phylogenetic diversity)
and relative abundance (community structure); however,
these measures vary across spatiotemporal scales (Torsvik et
al., 2002). Despite the speculated significance of microbial
community diversity in ecosystem functions (e.g., see
[Nemergut et al., 2014]), the factors that drive and maintain
the diversity dynamics of a community remain unclear. To
better understand the mechanisms shaping local microbial
communities, the ecological processes affecting the dynamic
patterns of microbial diversity need to be evaluated.

Local microbes exhibit similar community structure pat-
terns to larger organisms, namely, few taxa comprise a
major part of the structure, while most are numerically rare.
Therefore, the local community structure is strongly typified
by rare microorganisms at both the micro- (Sogin et al.,
2006; Fuhrman, 2009) and macroecological scales (Grady et
al., 2019; Shade and Stopnisek, 2019; Morella ef al., 2020).
Although rare species are often presumed to be inactive in
local ecosystems, they contribute to ecosystem functions
when environmental conditions become favorable for their
growth (Shade and Gilbert, 2015). Nevertheless, the mecha-
nisms underlying the assembly of rare taxa and their ecolog-
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ical functions within local habitats remain largely unknown.

There are two main perspectives explaining species
assembly in local communities across spatiotemporal scales:
the niche and neutral theories. According to the niche
theory, competition for resources among species and their
different abilities to utilize resources (i.e., niche differentia-
tion) (Hubbell, 2001; Nemergut et al., 2013) shape the
structure of local communities. According to the neutral
theory, species at the same trophic level are equivalent, and
the community structure is shaped by stochastic mecha-
nisms involving immigration, emigration, birth, death, spe-
ciation, and ecological drift (Hubbell, 2001; Nemergut et
al., 2013). These two contrasting views are unlikely to be
mutually exclusive; the processes underpinning the two the-
ories function synergistically to shape the local community
structure (Ofiteru et al., 2010; Ayarza and Erijman, 2011).
Nevertheless, an outstanding question is how niche and neu-
tral processes differently contribute to the dynamics of both
rare and common taxa. The assembly of taxa with similar
abundance (e.g., rare versus common) or spatiotemporal dis-
tribution patterns (e.g., persistent versus transient) may be
driven by similar processes. Therefore, our overarching goal
was to partition the contributions of niche and neutral proc-
esses to diverse community components, with a focus on
processes governing the patterns of rarity.

Activated sludge bioreactors (Tchobanoglous and Burton,
1991) are the central units of biological wastewater treat-
ment plants (WWTPs). In these bioreactors, naturally
occurring microorganisms (mostly bacteria; >95%) are har-
nessed to degrade organic matter, oxidize inorganic nitrogen,
and inactivate pathogens (Lee ef al., 2015). Microorganisms
continuously enter and leave the bioreactor (<30 days of
residence), in which they grow, die, and evolve. In this
regard, each bioreactor may be viewed as an island at which
ecological processes occur (Daims et al., 2006). Therefore,
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a bioreactor may serve as a platform for testing community
assembly theories at a tractable temporal scale relevant to
microbial growth and community turnover. We herein used
an activated sludge bioreactor to evaluate our hypothesis
that niche and neutral processes contribute differently to the
local assembly of rare and common taxa. To test this
hypothesis, we used a 2-year time series of microbial com-
munity sequencing from the Pohang WWTP in South
Korea. We focused our analysis on a comparison of the tem-
poral dynamics of rare and common taxa and examined the
relative contributions of niche and neutral processes to com-
munity assembly.

Materials and Methods

Sampling site, sample collection, and operational data

The Pohang WWTP (36.00°N, 129.35°E) treats approximately
160,000 m* of domestic wastewater daily through a conventional
activated sludge process (Rittmann and McCarty, 2001) with a low
nutrient removal efficiency. Between May 2005 and April 2007, 12
samples were collected bimonthly at the same time of day from the
bottom of the aeration tank of the treatment plant using a bucket
grab sampler. Samples were immediately stored in an icebox and
transferred to the laboratory for metacommunity DNA extraction.
Plant operational data, including those related to biochemical oxy-
gen demand, total nitrogen, total phosphorus, and mixed liquor,
were collected. Suspended solids were analyzed using the standard
method for the examination of water and wastewater (APHA et al.,
1989), and the data obtained are shown in Table S1. The flow rate,
temperature, and dissolved oxygen level were monitored using
installed online instruments.

DNA extraction, PCR, and pyrosequencing

DNA from each sludge sample was extracted using the auto-
mated nucleic acid extractor (Obata et al., 2001) Magtration Sys-
tem 6GC (PSS) following the manufacturer’s protocol. Nucleic
acid purity was assessed based on absorbance at 260 nm and con-
centration (ng L) quantified using ND-1000 (NanoDrop Technol-
ogies). The universal primers, 27F (5'-AGAGTTTGATCMTGGCT
CAG-3') (Lane, 1991) and SI8R (5'-ATTACCGCGGCTGCTG
G-3") (Muyzer et al., 1993), were used to amplify the bacterial 16S
rRNA gene from each sample. Purified PCR amplicons from each
sample were subjected to barcoded 454 pyrosequencing (Genome
Sequencer FLX Titanium Series; 454 Life Science) at Macrogen
(Seoul) following the manufacturer’s protocol.

Sequence analysis

Low-quality (<Q20) reads were removed from raw 16S rRNA
sequences. Adaptor sequences were trimmed using the custom Perl
script trimBarcode.pl (Macrogen). In addition, short reads
(<300 bp) and potential chimeric sequences were removed using
Mothur (chimera.uchime) (Schloss ef al., 2009). After quality fil-
tering, the phylogenetic affiliations of the sequence reads were
assigned using the RDP Classifier (Wang et al., 2007) for the taxo-
nomic database (version 11.5). Operational taxonomic units
(OTUs) were selected based on 97% sequence identity using
Mothur (RDP Aligner, distance matrix, and UCLUST). Among all
sequence reads, 2,988 (35,856 sequences and 4,999 OTUs from 12
samples) were randomly selected to reduce the error associated
with the OTU richness estimation (Roesch et al., 2007). Singleton
OTUs (OTUs with only one sequence) were excluded from further
statistical analyses (calculation of bacterial richness and generation
of OTU rank abundance curves).

Species (OTU) abundance distribution analysis

To evaluate how OTU abundance distribution patterns fit the

2/10

LEE et al.

theoretical models (e.g., neutral and/or niche models), histograms
of power-of-2 abundance classes (octave classes) of OTUs
included in the rare-transient and common cohorts were plotted
and then fit to the abundance models. Log-normal and log-series
algorithms (Krebs, 1989) were applied to fit the model curves to
each dataset, and the chi-squared test was used to evaluate the sig-
nificance of each dataset. All statistical analyses were performed
using PAST (version 2.12; http://folk.uio.no/ohammer/past/), and
plots were generated using Sigmaplot (version 10.0; Jandel Scien-
tific). A stacked bar plot of the relative distribution of transient-
rare and other taxa at the phylum and proteobacterial class levels in
the 12 activated sludge samples was generated using SigmaPlot
10.0.

Non-metric multidimensional analysis (NMDS)

Temporal variations in transient-rare and other bacterial taxa
were analyzed using NMDS ordination in PRIMER 6 (version
6.1.13; Primer-E) based on weighted UniFrac distances (Lozupone
and Knight, 2005). A weighted UniFrac distance matrix for each
group was generated for NMDS ordination by running the
beta_diversity.py command on the equal-subsampled OTU table in
QIIME (version 1.9.1, [Caporaso et al., 2010]). The dimensionality
of the ordination was selected by comparing the final stress values
inR.

Multivariate analyses

To assess the relative importance of environmental parameters in
explaining patterns across the 12 activated sludge samples, a sim-
plified redundancy analysis (RDA) and canonical correspondence
analysis (CCA) were performed as described previously (ter Braak
and Verdonschot, 1995; Van der Gucht et al., 2007) using Canoco
4.5 (ter Braak and Smilauer, 2002). RDA and CCA were used for
the common and transient-rare taxa, respectively, based on the
results of a detrended correspondence analysis in Canoco 4.5. In
both analyses, the total variation in the bacterial community matrix
under unique environmental components with the corresponding P
values was decomposed. The significance of each operational fac-
tor was evaluated with a Monte Carlo permutation test (999 permu-
tations under the null hypothesis) using the forward selection
method (ter Braak and Verdonschot, 1995). The explanatory envi-
ronmental (E) variable was employed to measure the degree of var-
iation (computed as the percentage of total variation for axes 1 and
2) using the multivariate extension of the linear regression with the
corresponding R? values. Unexplained variation was calculated as
(1-[E]). To test our hypothesis by assessing differences in the com-
munity structure between the transient-rare and common taxa, a
permutational multivariate analysis of variance (PERMANOVA)
was performed based on weighted UniFrac distances. Additionally,
to test the null hypothesis (no difference in dispersion between
groups), a permutational multivariate dispersion (PERMDISP) test
was conducted. PERMANOVA and the PERMDISP test were per-
formed using the “adonis” and “betadisper” functions of the vegan
package in R, respectively.

Sloan and beta-abundance null model fitting

To evaluate the contribution of the neutral processes to com-
munity assembly, the OTU occurrence frequency and abundance
data were fit to the Sloan neutral community model (Sloan et al.,
2006). This model was developed to predict the relationships
between the occurrence frequencies and mean relative abundances
of taxa sampled from an activated bioreactor at a given time point.
The goodness-of-fit of the observed dataset to the model was cal-
culated using the following equation: model fit=1-SS_,/SS,..,; (gen-
eralized R% [Ostman et al., 2010]), where SS,, is the sum of
squares of residuals and SS,,, is the total sum of squares. More-
over, to establish whether incorporating drift and dispersal limita-
tions improves the model fit, fitness was compared between the
neutral model and a binomial distribution model beyond the ran-
domly sampled source metacommunity (Sloan et al., 2006). All
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plots and statistical analyses were performed with the minpack.lm
package in R (R Core Team, 2015) (Elzhov ef al., 2013) using the
script provided by Burns et al. (2015). Moreover, 95% confidence
intervals around model predictions were calculated using the
HMisc package (Wilson score interval) in R (Brown et al., 2001;
Harrell Jr. and Dupont, 2006). The Student’s #-test was used to
compare the taxonomic compositions of assemblages using R.

Beta-abundance null model fitting was performed based on both
Bray—Curtis and weighted UniFrac distances for each transient-
rare and common taxon OTU matrix using custom R scripts pro-
vided by Tucker et al. (Tucker et al., 2016). Abundance null
deviation values closer to zero indicate neutral communities in
which species are ecologically equivalent to one another (Tucker et
al.,2016; Lee et al., 2017).

Dynamic simulation of the community assembly dataset

To confirm the effects of definition changes on the OTU classifi-
cation at the detection limit using a dynamic simulation, 60 differ-
ent dataset combinations (12 different relative abundances and 5
different occurrence frequencies) of various relative abundances
and the occurrence frequencies of transient-rare and common taxa
were used. The species abundance histograms of both transient-
rare and common taxa were plotted from each dataset. Log-series
and log-normal regression curves were then fit, and the goodness-
of-fit (chi-squared test) of each regression was tested using both
observed and expected regression values (Table S6). The closed
box in Table S6 represents the dataset with the same transient-rare
and common taxa.

Accession numbers

The 16S rRNA gene sequences obtained in the present study are
deposited in GenBank under the accession numbers HQ462572 to
HQ524318.

Results

Definition of rare taxa

We performed 16S rRNA pyrosequencing to assess
microbial community diversity. After removing singleton
sequence reads (reads with a single sequence occurring only
once in the dataset), 2,544 unique OTUs were retrieved at a
3% identity cut-off from 35,856 sequence reads of 12 sam-
ples collected bimonthly over 2 years (Table S2). Ranked
taxon abundance distribution (Fig. S1) showed few abun-
dant (i.e., common) taxa and many rare taxa, similar to the
commonly reported distributions of microorganisms in the
soil, sediment, freshwater, and seawater (Nemergut et al.,
2011; Kim et al., 2013; Mariadassou et al., 2015; Roguet et
al., 2015). Rare taxa were defined as OTUs comprising less
than 1% of all sequence reads (<334 reads), and were fur-
ther classified as transient- (<4 occurrences [33%]) and
persistent-rare taxa (>8 occurrences [66%]). Transient-rare
taxa constituted 74.7% of the observed OTUs and 28.7% of
the total sequence reads, but were numerically less impor-
tant than the common taxa (Table S4). Persistent-rare taxa
constituted 1.5% of the observed OTUs and 6.2% of the
total sequence reads. Thereafter, analyses were focused on
comparisons between the transient-rare and common taxa.

Ecological patterns of transient-rare taxa

OTU abundance distributions were analyzed based on the
logarithmically binned abundance of the transient-rare and
common taxa (Fig. 1). In the bioreactor, the two groups of
taxon assemblages demonstrated very different patterns. The

3/10

A 1000

800 -

g

600

400 H

OTU frequency

200 -

1 2 3 4 5 6 7 8 9 10 11

Octave

B 140
120 m

100 - N

80 - \

60 -

OTU frequency

40 -
20

0 1 2 3 4 5 6 7 8 9 10 11

Octave

Fig. 1. Operational taxonomic unit abundance distribution of (A)
transient-rare and (B) common taxa. The fitted lines predicting the
frequency and abundance of each taxon were obtained based on log-
normal and log-series models. The octaves represent power-of-2
abundance classes.

transient-rare taxa followed a log-series distribution
((*=29.14, P<0.0001) (Fig. 1A), whereas the common taxa
followed a near log-normal distribution (y*=843.6,
P<0.0001) (Fig. 1B). These results remained unchanged
even when the definition of the transient-rare taxa was
changed (relative abundance of 0.05—4.00% and occurrence
frequency of 2—6; Table S6). Since species abundance distri-
bution is affected by metacommunity diversity and the
immigration rate (Brown and Kodric-Brown, 1977; Shmida
and Wilson, 1985) and the taxon groups defined in this
study were assembled from the same regional species pool,
these two groups of taxa were expected to show similar
abundance distributions. Accordingly, differences in their
abundance distributions may be indicative of different con-
tributions of niche and neutral processes in the bioreactor.

Temporal variations in transient-rare taxon assembly

We assessed the community composition of the transient-
rare and common taxa by taxonomically classifying the
observed OTUs at the phylum and proteobacterial class lev-
els (Fig. 2A). Overall, the taxonomic compositions of the
two assemblages were very similar (#test, P=1.000).
Betaproteobacteria and Bacteroidetes were the two major
groups, followed by Gammaproteobacteria, Alphaproteobacteria,
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Fig. 2. Taxonomic affiliations of transient-rare taxa and their
temporal variability. (A) Classification of the transient-rare and
common taxa according to the phylum and proteobacterial class levels.
The error bars indicate the SD of 12 samples. (B) Non-metric
multidimensional analysis ordination based on the weighted UniFrac
distances for the assemblages of the transient-rare and common taxa.

and Deltaproteobacteria. Nevertheless, a few groups (e.g.,
Epsilonproteobacteria, Nitrospirae, and Actinobacteria)
showed significant differences between the transient-rare
and common taxa (P<0.05). The composition of the two
cohorts was evidently different at the family level. A Venn
diagram analysis demonstrated that specific families
belonged to each cohort. Therefore, among 162 families, 60
and 11 families were only observed in the transient-rare and
common cohorts, respectively (Fig. S2). Furthermore, the
temporal community dynamics of the transient-rare and
common taxa were compared across the samples. The rela-
tive abundance of the transient-rare taxa ranged between
18.4 and 40.9% and that of the common taxa ranged
between 58.5 and 85.4%; however, the overall community
composition of the two cohorts remained relatively stable
over time (Fig. S3). The transient-rare taxa were dominated
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by Betaproteobacteria (average and standard deviation:
6.0+3.0%) and Gammaproteobacteria (average and standard
deviation: 5.0+2.5%), while the common taxa were domi-
nated by Betaproteobacteria (average and standard devia-
tion: 17.7£5.2%) and Bacteroidetes (average and standard
deviation: 12.3+6.6%). However, the relative abundance of
the transient-rare and common taxa did not significantly dif-
fer across the samples over time (P>0.05). Moreover, tem-
poral variations were investigated using NMDS ordination
based on weighted UniFrac distances (Lozupone and
Knight, 2005) between samples (Fig. 2B), which demon-
strated that the phylogenetic distances between assemblages
of the transient-rare taxa (average, 0.366 in 12 samples)
were greater than those between assemblages of the com-
mon taxa (average, 0.275 in 12 samples). This result indi-
cates a higher temporal variation in the transient-rare taxa
than in the common taxa with respect to the phylogenetic
distance (PERMDISP, F=8.011 and P=0.013). In addition,
distinct clusters of the assemblages of the transient-rare and
common taxa demonstrated that the two assemblages were
phylogenetically distinct (PERMANOVA, F=8.011 and
P<0.001) at the OTU level (97% sequence identity), which
was not evident at the phylum and proteobacterial class lev-
els (Fig. 2A). PERMANOVA and the PERMDISP test for
the two cohorts based on unweighted UniFrac distances also
supported our inference.

Deterministic and stochastic processes contributing to the
community assembly

The effects of explanatory variables related to the bio-
reactor (i.e., environmental and operational parameters) on
temporal variations in the two assemblages were assessed
by quantifying their explanatory power using multivariate
analyses (CCA for the transient-rare taxa and RDA for the
common taxa) (Kelley, 1940). Twelve deterministic factors
(temperature, dissolved oxygen, pH, hydraulic retention
time, solid retention time, and mixed liquor suspended sol-
ids in the bioreactor and the biochemical oxygen demand,
total nitrogen, and total phosphorus of the influent and efflu-
ent; Table S3) were tested, and the significance of differen-
ces in community assembly and environmental factors was
estimated (Table S3). Collectively, these parameters may
explain 23.5 and 63.4% of the variations in the transient-rare
and common taxa, respectively. The significance of the
results of RDA and CCA was also calculated for both the
transient-rare and common taxa (Table S3). While the scores
for both axes were significant for the transient-rare taxa
(both P<0.01), the score was significant for axis 1 alone for
the common taxa (for axes 1 and 2, P=0.04 and 0.382,
respectively).

Furthermore, the contribution of neutral processes to the
assembly of the transient-rare taxa was tested by fitting the
OTU occurrence frequency and abundance data to the Sloan
neutral community model (Sloan et al., 2006). This model
was developed to explain the occurrence and abundance pat-
terns of prokaryotic communities based on dispersal and
ecological drift and successfully described the neutral
assembly of bacterial communities in activated sludge bio-
reactors (Ofiteru et al., 2010), lakes (Roguet et al., 2015),
human lungs (Venkataraman et al., 2015), trees (Woodcock
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et al., 2007), and zebrafish guts (Burns et al., 2015). Fig. 3A
shows the goodness-of-fit scores of the neutral model to all
OTUs observed in the present study (solid line) with 95%
confidence intervals of the prediction (dashed lines). The
proportion of taxa (inserted box in Fig. 3A) within 95%
confidence intervals was 96.4% (relative abundance, 71.4%)
for the transient-rare taxa and 73.3% (relative abundance,
45.6%) for the common taxa, and both assemblages fol-
lowed the neutral community model (Table S4). The neu-
trality fraction (defined as the fraction of OTUs within 95%
confidence intervals of the neutral model) was inversely
proportional to the mean relative abundance (Fig. 3B), and
this result remained unchanged even when the definition of
the transient-rare taxa was changed (relative abundance of
0.05-4.00% and occurrence frequency of 2—6; Table S6).
Therefore, when taxa are relatively rare, neutral processes
are more important for explaining their patterns.
Additionally, to understand the deviation of the observed
differences in beta-diversity from null expectations,
abundance-based beta-null approaches were used to distin-
guish between the niche and neutral processes, as described
by Tucker et al. (Tucker et al., 2016) and Lee et al. (Lee et
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al., 2017). In this comparative approach, deviations to and
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interpret the relative contributions of the neutral and niche
processes, respectively. Transient-rare communities deviated
from the null expectation, with the transient-rare taxa
occurring closer to the null expectation than the common
taxa (Fig. 4). In addition, the common taxa showed a signif-
icantly higher beta-null deviation than the transient-rare taxa
(P<0.05).

In the present study, the transient-rare taxa were defined
as those with an occurrence frequency of <4 and a relative
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Evaluation of neutral community assembly. (A) Fitting of the operational taxonomic units (OTUs) observed in the bioreactor to the Sloan
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5/10

Article ME20110



(A) o.ss - Bray-Curtis

0.50 -
0.45
0.40

0.35

Abundance null deviation

+

0.30 T T :
All Transient-rare Common

B) 0.0 - Weighted Unifrac

(@)
0.45

0.40 -

0.35

Abundance null deviation

0.30 T T :
All Transient-rare Common
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individual samples. In both Bray—Curtis and weighted UniFrac
resemblances, the transient-rare and common taxa showed distinct null
deviations (P<0.05).

In all tested dataset combinations, the transient-rare taxa
mostly fit well to the log-series regression curves (red area
in Table S6A), except in 10 combinations (blue area in
Table S6A). In contrast, the common taxa fit better to the
log-normal regression curves than to the log-series regres-
sion curves (blue area in Table S6B). The highest log-
normal goodness-of-fit score for the common taxa was
observed in a dataset with an occurrence frequency of >6
and a relative abundance ranging between >0.075 and 0.8%
(#*=10.8); however, a relatively higher log-series goodness-
of-fit score was obtained for the transient-rare taxa in the
same dataset (y’=603.8). The lowest goodness-of-fit score
(x’=89.4) for the transient-rare taxa was obtained in a data-
set with an occurrence frequency of >4 and relative abun-
dance of >1%; however, the log-normal goodness-of-fit
score for the common taxa (y’=32.8) was slightly higher
than the lowest value for the transient-rare taxa (y’=10.8).
Therefore, based on the best results of the chi-squared test
on various combinations of the community dataset (occur-
rence frequency of 1-12 and relative abundance of 0.05—
4.00%), we defined the transient-rare taxa as those with an
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occurrence frequency of <4 and relative abundance of <1%.
Collectively, these results suggest that the species abun-
dance distributions of the transient-rare and common taxa
did not shift due to sampling artifacts.

Discussion

Recent advances in high-throughput sequencing technolo-
gies, together with increased computational performance,
have enabled us to uncover the members of rare biospheres
in diverse ecosystems (Sogin et al., 2006; Pedrés-Alio,
2012). Although this has further opened avenues for charac-
terizing and understanding the microbial rare biosphere,
how and why numerous species are rare remain unclear
(Pedrés-Alio, 2012). Accordingly, the present study demon-
strated the contributions of the transient-rare taxa to local
community dynamics (in an activated sludge bioreactor).
Environmental conditions and operational parameters mini-
mally accounted for the variations observed in the transient-
rare taxa in the bioreactor (25.2%), implying that abiotic
deterministic factors did not play a prominent role in driving
the assembly of transient-rare taxa. The remaining high pro-
portion of the unexplained variation (76.5%) in the
transient-rare taxa may be explained by unmeasured deter-
ministic factors, microbial interactions (e.g., viral infection),
and neutral factors. However, neutral processes may explain
most of the variations in the transient-rare taxa, as evi-
denced by the Sloan neutral community model (Fig. 3A).
Neutral processes describe the occurrence of the transient-
rare taxa as the stochastic replacement of open sites (gener-
ated by random death or emigration) by other taxa in the
inflow or within the bioreactor. These findings indicate that
neutral processes are likely to be more important than deter-
ministic ones for the assembly of transient-rare taxa in the
bioreactor. Similar findings have been reported in several
non-bacterial ecosystems. Based on a study of six rare and
six abundant amoeba species in a soil ecosystem, Finlay ef
al. (Finlay et al., 2001) demonstrated that rare species fol-
lowed a Poisson distribution (i.e., random distribution). In
addition, Magurran and Henderson (Magurran and
Henderson, 2003) examined an estuarine fish community
using a 21-year dataset and demonstrated that the abundance
of occasional species was low, and they followed a random
distribution in a headland ecosystem. These findings, together
with the present results, suggest that the neutral assembly of
the transient-rare or occasional species may be a common
phenomenon in various organisms and ecosystems.

Diverse bacterial species from the influent wastewater
and atmosphere continuously arrive in activated sludge bio-
reactors (Lee et al., 2015), which may affect the bacterial
community compositions of these bioreactors. Some bacte-
ria arriving in the bioreactors are selected by deterministic
factors and, in turn, these proliferate in the bioreactors,
whereas the other bacteria are not selected. The transient-
rare taxa arrive in the bioreactors infrequently and at low
numbers, but are not selected by deterministic factors. How-
ever, it remains unclear which factors (deterministic or neu-
tral) drive the assembly of persistent-rare taxa. Such taxa
may be assembled similar to the transient-rare taxa (i.e.,
neutral assembly), and they may frequently immigrate to the
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bioreactor, but are not selected, suggesting that their
standing populations are supported by continuous dispersal
(e.g., the mass effect [Leibold et al., 2004]). Another possi-
bility is that abiotic and/or biotic conditions maintain these
taxa in the bioreactor, but grow markedly slower than the
abundant taxa (Fuhrman, 2009). We also fit our cohort of
persistent-rare taxa to the Sloan neutral community model
(Fig. 3A and Table S8). Notably, their percentage was mark-
edly lower than that of the transient-rare taxa (96.4%),
suggesting that the second scenario explains the assembly of
the persistent-rare taxa. Additionally, we performed beta-
null deviation analyses and found that the transient-rare taxa
occurred closer to the neutral expectations than the common
taxa (Fig. 4). In addition, the common taxa showed signifi-
cantly higher beta-null deviations than the transient-rare
taxa (P<0.05). Furthermore, the phylogenetic composition
of the transient- and persistent-rare taxa was distinct. The
persistent-rare taxa included significantly higher proportions
of Betaproteobacteria and Planctomycetes, but lower pro-
portions of Alphaproteobacteria, Gammaproteobacteria,
and Bacteroidetes than the transient-rare ones (Fig. 5). In
our simulation test, the persistent-rare taxa with a relative
abundance of >1% and an occurrence frequency of >10
showed a better goodness-of-fit for the log-normal distribu-
tion than the log-series distribution, indicating that the dis-
tribution of the persistent-rare taxa was affected by
deterministic factors of the Pohang WWTP (Table S8).
Overall, these results suggest that the two rare taxon
assemblages differed in terms of their ecological roles in the
bioreactor.

Difficulties are associated with predicting community
assembly processes based on ecological patterns because a
similar pattern may be generated by interactions among
multiple processes (Hanson et al., 2012) and different proc-
esses may predict similar patterns (Harpole, 2010). Never-

(%)
80 -
EE Persistent-rare taxa
] [ Transient-rare taxa
60
40 -

Fig. 5. Classification of transient-rare (open bars) and persistent-rare
(solid bars) taxa at phylum and proteobacterial class levels. The error
bars indicate the SD of 12 samples.
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theless, community assembly processes may be projected in
ecological patterns in a certain manner (Fargione et al.,
2003). In this regard, different ecological patterns observed
between the transient-rare and common taxa (e.g., taxa
abundance distribution in Fig. 1) suggest that different com-
munity assembly processes acted on these two groups of
assemblages. Similar to the present results, the transient-rare
and common taxa showed a log-series and log-normal distri-
bution, respectively, in other assemblages, including marine
prokaryotes (Galand ef al., 2009), estuarine fish (Magurran
and Henderson, 2003), and terrestrial insects (Southwood,
1996). However, the patterns of community similarity decay
over time (“time-decay” [Korhonen ef al., 2010]) were not
significant for both cohorts (Fig. 6).

In the present study, the transient-rare taxa were defined
as those with an occurrence frequency of <4 and relative
abundance of <1%. To confirm the effects of changes in this
definition on the OTU classification at the detection limit, a
dynamic simulation of 60 different dataset combinations
was performed. The simulation results indicated that sam-
pling artifacts were unlikely to shift the species abundance
distributions of the transient-rare and common taxa (Table
S6). In addition, we evaluated the neutrality of both
transient-rare and common taxon assemblages in response to
the dynamic OTU abundance and occurrence frequency
based on the Sloan neutral community model fit (Table S7).
The results obtained showed that even when relative abun-
dance and occurrence frequency were changed, up to 90%
OTUs belonging to the transient-rare taxa showed stronger
neutrality than the common taxa. Specifically, the transient-
rare taxa with an occurrence frequency of 2—5 showed sig-
nificant neutrality in this analysis, indicating that the
overarching patterns remain the same regardless of nuances
in the thresholds applied.

Several explanations and conceptual models have been
proposed for the roles of rare microbial taxa. The most com-
mon explanation is that rare microbial taxa do not actively
grow in local communities (Pedrés-Alio, 2012), and, in turn,
simply pass through the local systems (Shade et al., 2014).
Jones and Lennon (2010) investigated the activity of bacte-
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Fig. 6. Time-decay relationships for transient-rare and common taxa.
Data were fit to a model describing the relationship between decayed
richness and time based on the calculation method described by
Korhonen et al. (2010).
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rial taxa (relative recovery of 16S rRNA relative to 16S
rDNA) across abundance ranks in two lakes and observed
that many rare bacterial taxa showed high relative recovery
of 16S rRNA. Based on this observation, they claimed that
rare bacterial taxa serve as a seedbank (Lennon and Jones,
2011) and respond to environmental changes. Furthermore,
Shade et al. (2014) demonstrated that bacterial and archaeal
rare taxa occasionally become abundant (conditionally rare
taxa) in diverse ecosystems and then contribute to temporal
changes in bacterial and archaeal diversity. This analysis
included a distinction between taxa that were observed only
once and those that were more persistent within a commun-
ity. In this regard, although the transient-rare taxa defined in
the present study had low abundance and were generally
insensitive to the available resources in the bioreactor, they
may become abundant in response to perturbation or chang-
ing conditions in the future. We observed a portion of the
taxa within the present study that may be classified as
exhibiting “conditional rarity” (2.0%), and all these condi-
tionally rare taxa belonged to the persistent-rare cohort and
not to the transient-rare cohort. They were occasionally rare,
but remained prevalent during some periods. Notably, the
neutral models often fit well to microbial communities
(Sloan et al., 2006; Woodcock et al., 2007; Roguet et al.,
2015; Venkataraman et al., 2015), which may have been due
to the high proportion of transient-rare taxa in microbial
communities because of high dispersal (Shade et al., 2014).
Nevertheless, the present study suggests that the transient-
rare taxa may arguably not contribute to the key functional
processes within the community in an activated sludge bio-
reactor.

It currently remains unclear whether the transient-rare
taxa contribute to key functional processes within the bio-
reactor. However, previous studies suggested that these taxa
are important for serving novel or redundant functions when
the environment changes (Shade ef al., 2014). As a “micro-
bial seedbank”, rare species are important because they con-
tribute to the genetic diversity of the microbial community
(Fuhrman, 2009) and potentially contribute to ecological
functions if they exhibit blooming dynamics (Fuhrman,
2009; Shade ef al., 2014). Accordingly, rare taxa may play
pivotal ecological roles in local communities when the envi-
ronmental conditions in the bioreactor change. The present
results demonstrating the importance of neutral processes in
the assembly of the transient-rare taxa within a local com-
munity deepen our understanding of the various roles and
dynamics of members of the microbial rare biosphere. In
studies on communities, the transient-rare taxa impart sig-
nificant noise due to their stochastic behavior instead of
interactions with abiotic and biotic factors; however, they
have been proposed to be important after awakening from
dormancy (Jones and Lennon, 2010), and their neutrality is
not considered to be permanent because of their existence at
the limit of detection (Shade et al., 2014; Shade and Gilbert,
2015). Therefore, if we remove these taxa from such
studies, we may be able to further our understanding of the
standing community and better explain deterministic driv-
ers. Furthermore, the present results showing that the rela-
tive importance of diverse assembly processes is specific
and that the composition of the transient- and persistent-rare
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taxa is distinct suggest that rare taxa with various occur-
rence patterns play ecological roles within their local com-
munities (Shade and Gilbert, 2015).

The present results indicate that the community assembly
of the transient-rare taxa is highly diverse and mostly
affected by stochastic processes in the bioreactor. In con-
trast, the common taxa show relatively low diversity in an
activated sludge bioreactor. Moreover, the common taxa
may play important ecological roles in a WWTP because
their distribution patterns are affected more by the opera-
tional conditions in an activated bioreactor (niche processes);
therefore, the common taxa may be used as indicators of
performance when evaluating bioreactor function.

In conclusion, microbial communities are dynamic in
space and time, and their collective dynamics are underpin-
ned by changes in discrete microbial populations, the rela-
tive contributions of which to the community fluctuate. The
present study focused on a prominent subset of microbial
populations within their community—the transient-rare
taxa. Since microbial communities are species-rich, rare
taxa often comprise the majority of the total observed taxa
within these communities. We found that the neutral pat-
terns of assembly best described the dynamics of these
transient-rare taxa, supporting the notion that these taxa are
not the contributing members of the community, but are
rather driven by stochastic forces. Therefore, the dynamics
of the transient-rare taxa may be explained by their patterns
of dispersal in regional metacommunities.
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