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Abstract

Cydia splendana and C. fagiglandana are two closely related chestnut feeding lepidopteran moth species. In this study, we
surveyed the bacterial endosymbiont Wolbachia in these two species. Infection rates were 31% in C. splendana and 77% in
C. fagiglandana. MLST analysis showed that these two species are infected with two quite diverse Wolbachia strains. C.
splendana with Sequence Type (ST) 409 from the A-supergroup and C. fagiglandana with ST 150 from the B-supergroup.
One individual of C. splendana was infected with ST 150, indicating horizontal transfer between these sister species. The
mitochondrial DNA of the two Cydia species showed a significantly different mtDNA diversity, which was inversely
proportional to their infection rates.
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Introduction

Wolbachia pipientis are gram-negative Alphaproteobacteria.

They are members of the family Rickettsiales, which are

considered the most ubiquitous obligate intracellular symbionts

reported so far in Arthropods [1]. Current estimates suggest that

about 40% of all arthropod species may be infected with

Wolbachia [2]. By establishing both somatic and gonadal

infections, Wolbachia is able to manipulate many aspects of the

biology, physiology, ecology and evolution of its hosts, including

their reproductive properties [3–4]. In insects, Wolbachia has been

reported to induce thelytokous parthenogenesis, feminization of

genetic males, male killing, while the most abundant phenotype is

cytoplasmic incompatibility (CI); however, Wolbachia infections

with no obvious reproductive effect have also been detected [3–4].

All the above reproductive alterations favor an increase in infected

females in host populations and thus the spread of Wolbachia,

since the predominant mode of transmission of this symbiont is

maternal [5].

Several studies suggest that Wolbachia infections can be

transferred horizontally between different hosts. This is supported

by the lack of congruence between host and symbiont phylogenetic

trees [6–7]. Experimental evidence has been provided implicating

parasitism, cannibalism and predation as potential routes for

horizontal Wolbachia transfers in different systems [8–10].

Hybridization and introgression may have played a pivotal role

in the movement of Wolbachia between closely related species

[11–14]. In addition, ecological niche sharing could also be a

driving force of horizontal transmission events [15].

During the last few years, many cases of mito-nuclear

discordance have been reported in insect systems and, in most of

them, Wolbachia has been identified as the driving factor. Being

both maternally transmitted, mitochondrial DNA (mtDNA) and

Wolbachia are in linkage disequilibrium. The spreading of a given

Wolbachia strain will also result to the spreading of the associated

mtDNA haplotypes (selective sweep), thus changing the frequency

of the mtDNA haplotypes in a host population. Such selective

sweeps have a significant impact on mtDNA, but not on nuclear

DNA evolution and have to be considered in population,

phylogenetic and phylogeographic studies [16–23].

The presence of Wolbachia in insect pests has implications for

the management and control of these insects [24–25]. Population

control of agricultural pests could be achieved with the Incom-

patible Insect Technique (IIT), which is based on the mechanism

of Wolbachia-induced CI. The application of IIT requires,

however, a perfect sexing system for male-only releases. In the

absence of such a system, a combination of IIT with the Sterile

Insect Technique (SIT) is recommended [26].

The chestnut feeding Cydia moths, C. splendana and C.
fagiglandana comprise two of the most abundant and dangerous

insect pests of sweet chestnut in European countries [27]. As a

result, most pertinent studies so far aimed mainly at mapping their

spatial distribution and refining control measures to reduce the

damage caused by these pests [28–30]. However, trapping the two

Cydia species using pheromones has been proven to be rather

difficult [31]. Even the disentanglement of their distributions has

been less than satisfactory, as these sympatrically occurring species

not only resemble each other morphologically but also share
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similar life cycles [32]. DNA barcoding seems to provide the most

precise approach to define their geographical distributions with

accuracy [33].

Given that Wolbachia affects many aspects of the biology of its

hosts and that it is a potential tool for pest control, we investigate

here the prevalence of this symbiont in Greek populations of the

two Cydia moth species. In addition, we genotype the detected

bacterial strains via MLST and wsp gene-based approaches. We

finally discuss the influence of Wolbachia infections on mitochon-

drial evolution and host population structure.

Materials and Methods

Sample collection, mtDNA barcoding and Wolbachia
genotyping

Chestnuts suspected of moth infestation were collected from 15

chestnut-producing regions of Greece (Figure 1 and Table S1) and

sent to the Forest Research Institute (Vassilika, Thessaloniki,

Greece). For the collection of populations no specific permission

was required while it did not involve any endangered, protected or

threatened species. Chestnuts were manually opened and live

larvae were placed individually into vials with 100% ethanol.

Figure 1. Distribution map of the sampled Greek populations (taken from NASA Earth Observatory–public domain). Underlined
acronyms indicate those populations that participated in the MLST analysis.
doi:10.1371/journal.pone.0112795.g001
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From each of the 243 larvae, DNA was extracted using the

GenElute Kit (Sigma) and processed following the manufacturer’s

protocol. Amplification of an approximately 800 bp long locus

from the 39 end of mitochondrial cytochrome oxidase I (COI) gene

was carried out with primers ‘‘Jerry’’ and ‘‘Pat’’ [34] in reactions

containing 0.6 ml of MyTaq (BioLine, GmBH, Germany), 5 ml of

the 56MyTaq Red Reaction Buffer (BioLine, GmBH, Germany),

20 m of each primer, 8 ml of DNA extract and ddH2O to a final

volume of 25 ml. PCR conditions were: an initial denaturation step

at 94uC for 3 minutes, followed by 40 cycles of 94uC for 30 s,

45uC for 30 s and 72uC for 1 minute, followed by a final extension

step of 5 minutes at 72uC. PCR products were purified with the

PureLink PCR Purification Kit (Invitrogen) and sequenced with

an ABI 3730XL at CEMIA SA (Larissa, Greece) using both PCR

primers.

A specific 16S rRNA gene-based PCR assay was used for

detection of Wolbachia with primers WspecF and WspecR

resulting in an amplicon of 438 bp [35]. PCR amplifications were

performed in 20 ml reaction mixtures containing 4 ml 56 reaction

buffer (Promega), 25 mM MgCl2, deoxynucleotide triphosphate

mixture (25 mM each), 25 mM of each primer, 0.1 U of Taq

polymerase (Promega), 12.2 ml water and 1 ml of template DNA.

The PCR protocol was: 35 cycles of 30 sec at 95uC, 30 sec at

54uC and 1 min at 72uC. The Wolbachia strains were genotyped

with MLST- and wsp gene-based approaches. The wsp and MLST

genes (gatB, coxA, hcpA, ftsZ and fbpA) were amplified using the

respective primers reported in Baldo et al. [36] (Table S2). PCR

amplifications were performed in 20 ml reaction mixtures

containing 16 reaction buffer (Promega), 25 mM MgCl2,

deoxynucleotide triphosphate mixture (25 mM each), 25 mM of

each primer, 0.1 U of Taq polymerase (Promega), 12.2 ml water

and 1 ml of template. PCR reactions were performed as follows:

5 min of denaturation at 95uC, followed by 35 cycles of 30 sec at

95uC, 30 sec at the appropriate temperature for each primer pair

(52uC for ftsZ, 54uC for gatB, 55uC for coxA, 56uC for hcpA, 58uC
for fbpA and wsp) and 1 min at 72uC. All reactions were

concluded by a final extension step of 10 min at 72uC. For all

PCR reactions described the appropriate negative (no DNA) and

positive controls were included. All PCR were performed in

triplicates. The PCR products were purified using a PEG

(polyethylene glycol) - NaCl method [37]. Both strands of the

products were sequenced using the corresponding forward and

reverse primers. A dye terminator-labelled cycle sequencing

reaction was carried out with the BigDye Terminator v3.1 Cycle

Sequencing Kit (PE Applied Biosystems). Reaction products were

analyzed using an ABI PRISM 310 Genetic Analyzer (PE Applied

Biosystems).

Phylogenetic analysis
Wolbachia sequences were manually edited with SeqManII by

DNAStar and aligned using MUSCLE [38] and ClustalW [39], as

implemented in Geneious 6.1.6 [40]. A final adjustment was done

by eye. Phylogenetic analyses were performed using Maximum-

Likelihood (ML) estimation and Bayesian Inference (BI) for a

concatenated data set of the protein coding genes (gatB, coxA,

hcpA, ftsZ and fbpA), as well as for the wsp gene. For the

Maximum-Likelihood phylogeny, PAUP version 4.0b10 [41], as

implemented in Geneious 6.1.6 [40], was used to select the

optimal evolution model by critically evaluating the selected

parameters, using the Akaike Information Criterion (AIC) [42].

For the concatenated data set and the wsp sequences, the

submodels GTR+I+G and TVM+I+G were selected, respectively.

The ML tree was constructed with 1000 bootstrap replications.

Bayesian analyses were performed as implemented in MrBayes 3.1

[43]. The selected options were: random starting trees, four

separate runs, each composed of four chains which were run for

6,000,000 generations; the first 20,000 generations were discarded

and the cold chain was sampled every 100 generations. Posterior

probabilities were computed for the remaining trees. All phylo-

genetic analyses were done with Geneious, version 6.1.6 [40].

MtDNA sequences were visualized using CHROMAS v. 1.45 and

then aligned using CLUSTAL X [44] with the default settings.

Table 1. Wolbachia infection status in Greek C. splendana and C. fagiglandana populations. (n.d.: not detected).

Wolbachia infection

Population Cydia splendana Cydia fagiglandana

1 AO-HAL 4/4 (100%) 12/16 (75%)

2 KA-LAR 2/3 (67%) 9/10 (90%)

3 ME-DRA 2/7 (28,6%) 2/7 (22,2%)

4 EA-CRE n.d. 4/5 (80%)

5 HO-THE 1/1 (100%) 13/15 (86,67)

6 ME-LAR 3/20 (15%) 16/19 (84,2)

7 KA-TRI 5/40 (12,5%) n.d.

8 AG-LES 4/16 (25%) n.d.

9 SPE-FTH 3/7 (42,9%) 4/4 (100%)

10 HA-EVI 2/7 (28,6%) n.d.

11 WE-CRE 1/2 (50%) 3/6 (50%)

12 AN-KAR 0/5 (0%) 3/4 (75%)

13 KA-LAK 16/28 (57,1%) n.d.

14 AR-HAL 0/4 (0%) 2/2 (100%)

15 PA-PEL 3/3 (100%) 6/6 (100%)

Total 46/147 (31%) 74/96 (77%)

doi:10.1371/journal.pone.0112795.t001
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Verified haplotypes were deposited in NCBI GenBank and

referenced by haplotype designations provided below. Patterns

of molecular diversity based on the mtDNA sequences were

assessed by estimating haplotype (Hd), nucleotide diversity (p) [45]

and the average number of nucleotide differences (k) [46] for every

population using MEGA v.5 [47]. MEGA v.5 was also used in

constructing the phylogenetic tree containing the C. splendana
and C. fagiglandana haplotypes. For that, we employed the

Neighbor Joining algorithm on the pair-wise Tamura-Nei [48]

distances while the statistical support was assessed by 500

bootstrap replicates. Additionally, all populations were tested for

the neutral mutation hypothesis with Tajima’s D and Fu’s F
statistics [46,49–50] using DNASP version 5 [51]. All these

parameters were also calculated for each species separately,

complemented with the mismatch distribution plot estimated with

DNASP version 5 [51]. Finally, the correlation between genetic

diversity (haplotype and nucleotide diversity) and Wolbachia
prevalence was estimated with GenStat 12th Edition (supplied

by VSN International).

Nucleotide sequence accession numbers
All MLST, wsp and COI gene sequences generated in this study

have been deposited into NCBI GenBank under accession

numbers KJ139995–KJ140075 and KJ398246–KJ398313 respec-

tively. The MLST and wsp gene sequences have been also

deposited in the Wolbachia MLST database.

Results

Wolbachia in chestnut-feeding Cydia populations
A total of 147 field-collected adult insects from 14 populations of

C. splendana and 96 field-collected adult insects from 11

populations of C. fagiglandana were tested. A significant

difference was observed in the prevalence of Wolbachia between

the two species (Table 1). Wolbachia infections were more

prevalent in C. fagiglandana (77%) than in C. splendana (31%).

This difference was not associated with the origin of the insects:

cultivation or forest populations (data not shown). All populations

of C. fagiglandana were infected while Wolbachia infection

appeared to be absent from 2 out of 11 populations of C.
splendana (Table 1). The prevalence of infection varied in the

populations of both species ranging from 12.5 to 100% (Table 1).

The Wolbachia strains present in nine adult insects originating

from different C. fagiglandana populations (one forest- and two

plantation-derived) and C. splendana populations (one forest- and

two plantation-derived) were genotyped using MLST analysis.

These samples were collected from different regions of Greece, as

illustrated in Figure 1. As shown in Table 2, all C. fagiglandana
specimens were found to be infected with the same B-supergroup

Wolbachia strain with MLST gene alleles and Sequence Type

(ST150) belonging to the clonal complex Sequence Type Complex

41 (STC-41). In addition, all these four specimens carried

Wolbachia strains with an identical wsp protein profile (allele 10;

Table 2). Four out of the five C. splendana specimens studied were

infected with the same A-supergroup Wolbachia exhibiting new

alleles for the MLST genes coxA (206), hcpA (241) and fbpA (396)

and consequently a new sequence type (ST 409). In addition, a

new wsp gene allele (674) was identified, closely related to allele

597, with new Hyper Variable Region (HVR) profile and HVR3

(262) and HVR4 (299) haplotypes (Table 2). The fifth C.
splendana specimen (sample code 8E.1BK, originating from Paiko

Pella or PA-PEL) carried the same B-supergroup Wolbachia strain

detected in the C. fagiglandana samples (Table 2).T
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Phylogenetic analysis based on the concatenated dataset of all

MLST loci revealed that the Wolbachia strain infecting all C.
fagiglandana specimens and one of C. splendana (8E.1BK, PA-

PEL population) belong to supergroup B, while the Wolbachia
strain infecting the other four C. splendana specimens is a member

of supergroup A, as shown in the Maximum Likelihood tree

presented in Figure 2. The MLST analysis also showed that the

Cydia Wolbachia strain of supergroup B is member of the common

clonal complex STC-41 while the A supergroup Wolbachia strain

infecting C. splendana (excluding the population PA-PEL) clusters

with ST 99 and ST 264 strains (Figure 2). Phylogenetic analysis

based on the wsp gene confirmed the MLST-based data (data not

shown). MLST- and wsp gene-based Bayesian phylogenetic

analysis provided identical results.

Mitochondrial DNA analysis
A 792 bp locus of the mtDNA COI gene was analyzed for each

of the 243 Cydia samples tested for Wolbachia infection.

Phylogenetic analysis indicated the presence of two distinct clades

(Figure 3). The first clade included all samples of C. fagiglandana,

while all C. splendana samples were assigned to the second clade,

in complete agreement with the morphological identification.

Forty-eight haplotypes were retrieved from the 147 C. splendana
larvae (Hdiv. = 0.3265), whereas only 17 haplotypes were detected

in the 96 C. fagiglandana larvae (Hdiv. = 0.1770). Despite the

significantly lower haplotype diversity estimated for C. fagiglan-
dana, the mean number of single nucleotide polymorphisms (k)

was threefold higher compared to the value for C. splendana
(9.765 versus 3.199 single nucleotide polymorphisms). As a

consequence, the mean nucleotide diversity (p) was also threefold

higher (0.0123 and 0.0040 for C. fagiglandana and C. splendana,

respectively) (Table 3). Neutral evolution was tested for each

population separately and the results are presented in Table 3. In

general, estimates of Tajima’s D and Fu & Li’s F statistics were not

statistically significant. While Tajima’s D and Fu & Li’s F values

were statistically supported when calculated for C. splendana
samples (D = 22.48522, P,0.01 and F = 24.51468, P,0.02),

indicating an excess of rare variants, they were not for C.
fagiglandana samples (D = 0.00147, P.0.1 and F = 20.21269 P.

0.1) (Table 3). Finally, the mismatch distribution plots of the two

species were considerably different, with that for C. splendana
exhibiting a unimodal curve (Figure S1) whereas the one for C.
fagiglandana appears ragged (Figure S1).

The influence of Wolbachia on mitochondrial DNA diversity

was also investigated. As shown in Figure 3, Wolbachia was

detected in 24 out of 51 and in 15 out of 17 haplotypes of C.
splendana and C. fagiglandana, respectively. The infection was

fixed in 15 C. splendana and 9 C. fagiglandana haplotypes, while

6 haplotypes of C. splendana and 6 of C. fagiglandana included

both infected and uninfected specimens. As shown in Table 3, a

strong positive correlation was revealed between haplotype

diversity (Hd) and Wolbachia infection for C. splendana
(y = 0.3947x+50.97, R2 = 0.2935) while for C. fagiglandana, this

correlation is negative (y = 20.0182x+48.461, R2 = 0.0013). The

Figure 2. Maximum Likelihood inference phylogeny based on the concatenated MLST data (2,079 bp or 2073 bp). The two Wolbachia
strains present in Cydia are indicated in bold letters; the other strains represent supergroups A, B, D, F and H. Strains are characterized by the names
of their host species, the ID code and the ST number from the MLST database (excluding the strain of Pammene fasciana, unpublished data).
Wolbachia supergroups are shown to the right of the host species names. ML bootstrap values based on 1000 replicates are given (only values.50%
are indicated). *This Wolbachia stain was detected in all C. fagiglandana and in the C. splendana (8E. 1BK) specimens.
doi:10.1371/journal.pone.0112795.g002
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results for the correlation between nucleotide diversity (p) and

Wolbachia infection were similar. In C. splendana, the correlation

is still positive but weaker (y = 0.0005x+0.2638, R2 = 0.0311),

whereas in C. fagiglandana, it is strongly negative (y = 20.007x+
1.8884, R2 = 0.3948).

Discussion

The detection of Wolbachia in Cydia splendana and C.
fagiglandana species infesting chestnuts in Greece, in concert

with the pronounced differences in the levels of mtDNA genetic

Figure 3. Neighbor-Joining Tree of Cydia splendana (Splenda 1–49) and C. fagiglandana (Fagi 1–17) haplotypes. Calculations were based
on 792 bp of mtDNA COI. Bootstrap support values above 80% are presented above nodes, and the horizontal bar represents 0.005 Tamura-Nei
distance. Shaded haplotypes indicate those that contained at least one Wolbachia infected individual. Arrows identify the haplotypes that were MLST
genotyped.
doi:10.1371/journal.pone.0112795.g003
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diversity, suggest that the presence of the symbiont might have

shaped the population structure of these two species in Greece.

Our findings clearly suggest that the species exhibit different

Wolbachia-infection patterns associated with contrasting mtDNA

diversity levels. MLST genotyping also allows a robust separation

of Wolbachia strains infecting these two species, and indicates

horizontal Wolbachia transfer between these sister species.

Wolbachia infection status and mtDNA diversity
Our research adds both chestnut feeding Cydia species to the

long list of insect species that are infected with Wolbachia [52].

Cydia splendana as well as C. fagiglandana were carrying

Wolbachia infections; yet the infection status varied significantly

between the two species. While Wolbachia was found in more than

L of C. fagiglandana individuals analyzed (77%), the rate was

considerably lower for C. splendana (only 31%). The high level of

Wolbachia infection of C. fagiglandana is coupled with a reduced

haplotype diversity index (Hd = 0.1770), compared to that of C.
splendana (Hd = 0.3265). C. fagiglandana, in which Wolbachia
infection is more prevalent, shows a lower mtDNA diversity than

the less frequently infected C. splendana. Lower mtDNA diversity

is attributed to many different factors that range from recent

population expansions after bottleneck [46] to selective sweeps

[18] and selection against deleterious mutations [53]. The fact

that, for both species, no mtDNA haplotype was found to be

consistently associated with a specific Wolbachia strain for both

species [54], along with the fact that several haplotypes contain

infected and uninfected individuals, argue against a Wolbachia-

driven selective sweep.

The strong negative correlation between Wolbachia-infection

and mtDNA diversity supports the notion that Wolbachia has

influenced intraspecific divergence, thus reducing the genetic

diversity of Greek C. fagiglandana populations. This is congruent

with previous studies demonstrating a similar effect of Wolbachia
[18,55–59]. It is interesting to note, however, that the C.
fagiglandana-clade shows stronger intraspecific divergence, de-

spite harbouring fewer haplotypes. According to Ritter et al. [23],

deep intraspecific divergences in DNA barcode studies can be due

to both Wolbachia infection and phylogeographic structure.

However, as for the C. fagiglandana individuals, no significant

effect of phylogeography could be inferred (both neutrality tests

exhibited values with P.0.1 while the mismatch distribution plot

was ‘‘ragged’’, indicating a steady-state population), it can thus be

assumed that the dominance of Wolbachia rather than other

phylogeographic events shaped the intraspecific divergence. For

the C. splendana individuals in contrast, molecular mtDNA

indices (statistically significant negative neutrality tests coupled

with a unimodal mismatch distribution plot) argue for population

expansion after a recent bottleneck [60–61].

Horizontal transfer
In addition to differentiation at infection level, MLST revealed

a further difference in the identity of Wolbachia strains infecting

the sister species. A strain that belongs to Supergroup B and is

identical to the one found in Colotis amata (Pieridae, Lepidoptera)

from India, was identified in samples of C. fagiglandana regardless

of geographic origin and genetic assignment. This indicates that

Wolbachia infection of C. fagiglandana was not determined by

any other agent, such as environment or intraspecific divergence,

something that was already reported before [62–63]. On the other

hand, most of the C. splendana samples were infected with a

Supergroup A strain. However, the population PA-PEL was,

based on MLST and wsp-based analysis, infected with the same

strain present in C. fagiglandana samples suggesting a possible

horizontal transmission event. Several studies have provided

evidence that Wolbachia strains can be horizontally transferred

not only between sister species, but even between distantly related

taxa [64–65]. By enhancing vertical transmission through hori-

zontal transfer, Wolbachia strains increase their potential to spread

rapidly and to overcome evolutionary dead-ends that could

threaten their survival. Even though it seems to be a rare

phenomenon (given the similarities in life cycles and their

sympatric distributions), there are still some indications that argue

for the scenario of horizontal transfer. The same Wolbachia strain

infects individuals of different haplotypes, while different Wolba-
chia strains are detected in individuals of the same haplotype. In

conclusion, haplotype assignment does not seem to be correlated

with the prevalence of Wolbachia, which argues for multiple,

independent infections [66].

Distribution of Wolbachia infections
At the population level, Wolbachia infection varies greatly in

both species. The occurrence of Wolbachia in C. fagiglandana
populations ranges from 22.2% to 100%, while in C. splendana
populations the range was even wider (0–100%). Such strong

differences of the infection status between populations have also

been recorded in several other arthropod species [63,67]. The

non-uniform infection level among populations is thought to be

associated with geographic origin and attributed to local differ-

ences in environmental conditions [68]. In our case, the

simultaneous study of two sister species from the same sites allows

an evaluation of correlation between geographic origin and

Wolbachia infection status. This approach revealed indeed a weak

yet positive correlation (0.1561) between geographic origin of each

population and its infection level. As demonstrated in previous

studies, the occurrence and prevalence of Wolbachia in a given

population can depend on environmental conditions, temperature

being the stronger effector [69–70]. That both species occur

broadly in sympatry, and thus are subject to the same

environmental conditions, suggests that the Wolbachia strains

differ in their interactions with these hosts.

Conclusions

In summary, our investigation reveals the presence of Wolbachia
in two of the most harmful pests of chestnut production. Screening

of several populations of these pests in Greece showed that the

prevalence of Wolbachia-infection between these species differed

significantly, being inversely proportional correlated with mtDNA

diversity. The varying Wolbachia infection levels among popula-

tions of both species suggest an influence of local environmental

conditions.

Supporting Information

Figure S1 Mismatch Distribution diagrams inferred from the

haplotypes of Greek C. splendana (A) and C. fagiglandana (B).

The expected frequency is represented by a continuous line, while

the observed frequency is shown by a dotted line.
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