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Improved understanding of the molecular mechanisms and immunoregulation of muscle-
invasive bladder cancer (MIBC) is essential to predict prognosis and develop new targets
for therapies. In this study, we used the cancer genome atlas (TCGA) MIBC and
GSE13507 datasets to explore the differential co-expression genes in MIBC
comparing with adjacent non-carcinoma tissues. We firstly screened 106 signature
genes by Weighted Gene Co-expression Network Analysis (WGCNA) and further
identified 15 prognosis-related genes of MIBC using the univariate Cox progression
analysis. Then we systematically analyzed the genetic alteration, molecular mechanism,
and clinical relevance of these 15 genes. We found a different expression alteration of 15
genes in MIBC comparing with adjacent non-carcinoma tissues and normal tissues.
Meanwhile, the biological functions and molecular mechanisms of them were also
discrepant. Among these, we observed the ANLN was highly correlated with multiple
cancer pathways, molecular function, and cell components, revealing ANLN may play a
pivotal role in MIBC development. Next, we performed a consensus clustering of
15 prognosis-related genes; the results showed that the prognosis, immune infiltration
status, stage, and grade of MIBC patients were significantly different in cluster1/2. We
further identified eight-genes risk signatures using the least absolute shrinkage and
selection operator (LASSO) regression analysis based on the expression values of
15 prognosis-related genes, and also found a significant difference in the prognosis,
immune infiltration status, stage, grade, and age in high/low-risk cohort. Moreover, the
expression of PD-1, PD-L1, and CTLA4 was significantly up-regulated in cluster1/high-
risk-cohort than that in cluster2/low-risk-cohort. High normalized enrichment score of the
Mitotic spindle, mTORC1, Complement, and Apical junction pathway suggested that they
might be involved in the distinct tumor immune microenvironment (TIME) of cluster1/2 and
high-/low-risk-cohort. Our study identified 15 prognosis-related genes of MIBC, provided
a feasible stratification method to help for the future immunotherapy strategies of MIBC
patients.
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INTRODUCTION

Bladder cancer has become common globally due to its prevalence,
high recurrence risk, and treatment failures (Antoni et al., 2017;
Martinez Rodriguez et al., 2017; Bhanvadia, 2018; Richters et al.,
2020). The principal diagnosis of BLCA is non-muscle invasive
bladder cancer (NMIBC), muscle-invasive bladder cancer (MIBC),
andmetastatic bladder cancer (Kamat et al., 2016).MIBC is defined
by tumor invasion into the detrusor muscle, perivesical tissues, or
neighboring organs. Although the treatment of MIBC has
improved, the prognosis of MIBC patients with metastatic
urothelial cancer is generally poor, with overall 5-years survival
of 15% despite chemotherapy (Schneider et al., 2019). Therefore,
better biomarkers for specific prognosis and progression of MIBC
are necessary. Moreover, an improved insight of MIBC molecular
mechanisms and immunoregulation might lead to identifying new
targets for future therapies.

The development of genomic techniques provides a
foundation for utilizing bioinformatics to explore the genome-
wide characterization of diseases (Akalin, 2006). As a significant
public health concern, the pivotal biomarkers of MIBC remain
ambiguous. Bioinformatics provides a reference to screen the
potential biomarkers of MIBC and predict the molecular
mechanism and clinical relevance of these biomarkers.
Combined analysis of different databases, such as TCGA and
GEO, helps to elevate the discriminating ability of highly related
genes of MIBC that are useful to serve as candidate biomarkers.
Meanwhile, the combination of multi-bioinformatics methods,
such as differential expression analysis andWGCNA, also elevate
the precision of screened biomarkers of MIBC. Furthermore,
emerging bioinformatics resources could assist in characterizing
the MIBC immune microenvironment and revealing the
correlation between biomarkers and immune infiltration.

In this study, we analyzed the mRNA expression of MIBC in
the TCGA and GEO database using differential expression
analysis and WGCNA. The univariate Cox progression
analysis identified 15 MIBC prognosis-related genes. Further,
we conducted a series of analyses, such as survival analysis,
Protein-protein interaction (PPI), Gene Set Enrichment
Analysis (GSEA), and Gene Set Variation Analysis (GSVA),
to discover the molecular mechanism, clinical relevance, and
cross-talk of these 15 genes. Finally, we established consensus
clustering and risk model of these 15 genes, provided a potential
stratification method to screen out MIBC patients who are
sensitive to immunotherapy, and help for the future
treatment strategies of these patients.

MATERIALS AND METHODS

Datasets From TCGA, GTEX, and GEO
Database
We downloaded the gene expression profiles of MIBC from the
TCGA (https://xena.ucsc.edu/), GTEX (https://xena.ucsc.edu/),
and GEO (https://www.ncbi.nlm.nih.gov/gds) database. The
RNA-seq expression value of the TCGA and GTEX datasets
were transformed to log2(FPKM + 1) unit to allow for

subsequent analysis. There were 435 bladder samples, including
407 muscle-invasive bladder cancer tissues, 19 adjacent non-
carcinoma tissues, and nine GTEX normal tissues. The
GSE13507 dataset obtained from the GEO database was
transformed to log2(count) and normalized using limma
R-package. GSE13507 dataset consisted of 62 MIBC samples, 58
adjacent non-carcinoma tissues, and 10 normal tissues from the
patients. We matched the probes to the gene symbols on the basis
of a manufacturer-provided annotation file. The duplicated probes
for the same gene were removed by determining the median
expression value of all its corresponding probes.

Differential Expression Analysis and
Identification of Key Co-Expression
Modules
We respectively screened the differential expression genes (DEGs)
between MIBC and adjacent non-carcinoma tissues applying the
limma R-package downloaded from the Bioconductor (https://
www.bioconductor.org/) in the TCGABLCA and GSE13507
dataset. The p-value was adjusted by the Benjamini Hochberg
method to control the false discovery rate (FDR). DEGs were
filtered using the adjusted p-value <0.05 and |log2(Fold change)| >
1. 1,664 DEGs from TCGABLCA and 377 DEGs from the
GSE13507 dataset were screened and then subjected to the
WGCNA package to identify the key co-expression modules.
The WGCNA was used to excavate the modules of highly
correlated genes among samples for relating modules to
external sample traits (Langfelder and Horvath, 2008). The
Pearson analysis of the DEGs was performed to construct a
matrix of similarity. According to the power value (β � 6 in
TCGA-MIBC and 14 in GEO-MIBC), which mainly affects the
independence and the average degree of connectivity (k) of the co-
expression modules, an adjacency matrix (AM) and a Topological
overlap matrix (TOM) is obtained. We used the gradient method
here and ranged the power values from 1 to 10. When the
correlation between k and p(k) reached 0.85, the optimal power
value was determined to construct a scale-free topology network.
Afterward, a hierarchical clustering dendrogram of the 1-TOM
matrix was constructed to stratify the similar gene expressions into
different gene co-expression modules. For any modules, since the
module Eigengenes (ME) offered the most appropriate
interpretation of the gene expression profile, we correlated the
ME with clinical features, which included tumor or normal status
in this study. Finally, we selected the modules displaying highly
positive or negative correlation (according to Moduletrait
relationships) as further research goals.

Interaction with the Modules of Interest and
Identification of Prognosis-Related Genes
We extracted the overlapping genes between the interest modules
from the TCGAMIBC and GEOMIBC datasets, and then, we
presented it as a Venn diagram using the VennDiagram
R-package. The TCGAMIBC clinical information was utilized
to determine the prognosis-related genes applying the univariate
Cox progression analysis. The hazard regression model was
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utilized to evaluate the prediction performance. The forest plot of
prognosis-related genes was constructed by R software.

Genetic Alteration, Molecular Mechanisms,
and Cross-Talk Between
Prognosis-Related Hub Genes
We estimated the RNA expression and protein expression level
alteration in MIBC comparing normal tissue by using unpaired
t-test analysis and immunohistochemistry (IHC), respectively.
The immunohistochemistry of prognosis-related genes was
obtained from the Human Protein Atlas (HPA) database
(https://www.proteinatlas.org/). Immunohistochemical data
from the same patient ID and antibody types were
preferentially selected for comparison. We further downloaded
the gene set of the hallmark-related cancer pathways, GO cell
components, and molecular functions from the GSEA website
(https://www.gsea-msigdb.org/gsea/index.jsp). The TCGAMIBC
gene expression profiles were subjected to the Gene Set Variation
Analysis (GSVA), a non-parametric, unsupervized method for
estimating alteration of gene set enrichment through the
samples of an expression data set (Hänzelmann et al., 2013).
The Pearson Correlation Coefficient (PCC) was calculated to
estimate the correlation between the expression of the prognosis-
related genes and the activity of gene sets. Then, the PCC
between hallmark-related cancer pathways and prognosis-
related genes was visualized by the pheatmap R-package. The
relationships (|PCC|>0.6 and p-value <0.05) between GO
(including molecular function and cell component) gene sets
activity and expression of prognosis-related genes were showed
by network diagrams constructed by the Cytoscape. Next, we
calculated the correlation among the expression of 15 prognosis-
related genes by the Hmisc R-package, and then the correlation
coefficient diagram was depicted using the corrplot R-package.
The protein-protein interaction (PPI) network between
15 prognosis-related genes was established by the STRING
website (https://string-db.org/cgi/input.pl) and was visualized
using the Cytoscape.

Consensus Clustering of
15 Prognosis-Related Genes
We collected the RNA-seq expression data of prognosis-related
hub genes from the TCGAMIBC dataset to perform unsupervized
clustering utilizing the factoextra R-package. The Euclidean
distance of different samples was calculated, and then the
ward. D2 method was applied to perform the hierarchical
clustering. Ultimately, we stratified the TCGAMIBC samples
into two clusters and visualized the expression of 15 genes in
cluster1/2 using the pheatmap R-package.

Implementation of Immune Score and
Single-Sample Gene Set Enrichment
Analysis
We calculated the immunoscore for each patient through the
estimate R-package. The fraction of 22 immune cell types for each

sample was yielded through cell type identification by estimating
relative subsets of RNA transcripts (CIBERSORT). We obtained
the gene sets of 24 immune cell types across all tumors from the
published literature (Bindea et al., 2013) and then quantified the
infiltration levels of these gene sets using the ssGSEA in GSVA
R-package. The immune-related gene signature used in this study
consisted of activated DCs (aDC), innate immunity, including
natural killer (NK) cells, CD56dim NK cells, CD56bright NK
cells, dendritic cells (DCs), plasmacytoid dendritic cells (pDC),
immature DCs (iDC), neutrophils, mast cells, eosinophils, and
macrophages, and adaptive immunity, including B cells, T cells, T
central memory cells (Tcm), T effector memory (Tem), CD8
T cells, cytotoxic cells, T follicular helper (TFH), Th1, Th2, Th17,
and Treg cells. The ssGSEA score for each immune cell type was
standardized by the following equation:

score � x −min(x)
max(x) −min(x).

Identification of Risk Characteristic Genes
We randomly divided the TCGAMIBC samples into two cohorts,
including the training cohort and validation cohort. Meanwhile,
characteristic gene signatures were established using the LASSO
regression analysis in the TCGA training cohort. The signatures
were screened by selecting the optimal penalty parameter l
correlated with the minimum 10-fold cross-validation. Then
we utilized the coefficients obtained from the LASSO
regression algorithm and gene expression value to yield risk
score, and the equation was showed as following:

Risk − score � sum(Coef pExpgenes).

Analysis of Gene Set Enrichment Analysis
To validate the correlation between the activity of hallmark
pathways and the expression of prognosis-related genes, we
separated the TCGAMIBC into two cohorts based on the
median expression value of individual prognosis-related gene.
Then we conducted the Gene Set Enrichment Analysis in the
Hallmark gene set “h.all.v6.2.symbols.gmt” of the MSigDB by
using the JAVA program. The algorithm of random sampling was
1,000 permutations. The significant enrichment pathway between
the two cohorts was determined by utilizing the false discovery
rate of <0.05 and the NES (Normalized Enrichment Score). To
explore which hallmark pathways were enriched in cluster1/2 or
high/low-risk cohorts, the GSEA was also conducted using the
same methods.

Verification of Survival Prediction
The Kaplan-Meier survival curves were plotted using survival and
survminer R-package. The log-rank test was used to estimate the
relationship between different objects and patient survival.

Statistical Analyses
For all analyses, the unpaired t-test analysis was used to compare
the differences between the two groups, and the log-rank test was
used to estimate prognosis differences. Meanwhile, the Pearson
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method was employed to calculate the correlation coefficient
between the two groups. For all analyses, the p-value < 0.05 was
regarded as a statistically significant difference.

RESULTS

Determination of the Most Relevant Module
Genes for Muscle-Invasive Bladder Cancer
We first identified 1,664 DEGs and 377 DEGs from the TCGA-
MIBC and GSE13507 datasets, respectively. Then we
performed a co-expression analysis to construct the co-
expression network using WGCNA R-package. In
TCGAMIBC and GSE13507 cohorts, a total of four modules
were identified via the average linkage hierarchical clustering.
To achieve a scale-free co-expression network, we selected the
power of β � 6 and 14 in these two cohorts, respectively
(Figures 1A,B). We determined the optimal power value
and constructed a scale-free topology network when the
correlation between k and p(k) reached or exceeded 0.85
(Figures 1C,D). To merge the highly familiar modules, we
chose a cut line of <0.25 and a minimum module size of 30
using the dynamic hybrid tree cut method (Figures 2A,B).
Next, the interest modules from TCGAMIBC dataset (Brown
module: r � −0.58, p � 6e − 39; Blue module: r � 0.5, p � 6e − 29)
and GSE13507 dataset (Turquoize module: r � 0.67, p � 3e −
17; Gray module: r � −0.69, p � 3e − 18) were found to have the

highly correlation (including positive and negative
correlation) with the tumor status (Figures 2C,D).

Identification of Overlapping Genes and
Prognosis-Related Genes
As shown in Figure 3A, we ultimately identified 1,474 and
224 co-expression genes in the interest module of TCGAMIBC
and GSE13507 datasets. A total of 106 overlapping genes were
selected for validating the genes of co-expression modules
(Figure 3A). To further validate prognosis-related genes, we
conducted the univariate Cox regression analysis using the 106
genes and the prognosis information of TCGAMIBC patients.
Then 15 genes were finally determined that are closely correlated
with the prognosis of MIBC patients (Figure 3B). Among these,
we observed some genes were risky prognosis factors (hazard
ratio >1, p-value < 0.05), including ANLN, CYP1B1, DHCR24,
EGR2, FASN, KRT14, LPPR4, and PAQR4. Other genes,
including ATOH8, CRTAC1, DUSP2, HIST1H1C,
HIST2H2AC, and LGALS4, were shown as protective factors
to MIBC patients. We further depicted the Kaplan-Meier plotter
using the GEPIA2 database (Figure 4) to investigate the
prognostic values of these 15 genes in the MIBC patients. The
results suggested that the higher expression level of ANLN,
CYP1B1, EGR2, FASN, and LPPR4 were significantly
correlated with the worse outcomes of the MIBC patients (p <
0.05). In contrast, the lower expression level of CRTAC1, DUSP2,

FIGURE1 | (A andB) Analysis of the scale-free fit index and themean connectivity for various soft-thresholding powers of TCGAMIBC andGSE13507 datasets. (C
and D)Checking the scale-free topology when β � 6 and 14. K shows the logarithm in the whole network connectivity, p(k) represents the logarithm of the corresponding
frequency distribution. K is negatively correlated with p(k). The correlation coefficient was 0.89 in both TCGAMIBC and GSE13507 datasets, which represents scale-free
topology.
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and HIST1H1Cwas significantly related to the worse outcomes of
MIBC patients. However, ATOH8, ID2, KRT14, and LGALS4
showed no significant correlation with the overall survival of
MIBC patients.

Expression Alteration and Cross-Talk of
Prognosis-Related Genes
To validation the RNA-seq expression alteration of 15 prognosis-
related genes, we integrated the TCGAMIBC tissue, TCGA
adjacent non-carcinoma tissue, and GETX datasets. We found
that ANLN, DHCR24, LGALS4, HIST1H1C, HIST2H2AC,
KRT14, and PAQR4 in MIBC were consistently up-regulated.
Conversely, ATOH8, CRTAC1, ID2, LGALS4, and LPPR4 in
MIBC showed consistently down-regulated. However, though the
expression of CYP1B1, DUSP2, EGR2, and FASN showed a
significant difference between MIBC and adjacent non-
carcinoma tissues, but represented no significant difference
between MIBC and GTEX normal tissue (Figure 5). Then we
further performed the same analysis using the GSE13507 dataset.

The results were consistent with that of using the TCGAMIBC
dataset (Supplementary Figure S1). Next, we observed the
alteration of these gene-encoding protein levels on the HPA
database (Figures 6A–E; Supplementary Figure S2). We
discovered that the protein level alterations of ANLN,
CRTAC1, FASN, KRT14, and LGALS4 were consistent with
their RNA-seq expression alteration. However, CYP1B1,
DHCR24, HIST1H1C, and HIST2H2AC showed no significant
difference, and other gene protein expression data were not
identified in the HPA database.

Cross-Talk Among the Prognosis-Related
Genes
To understand the cross-talk between the prognosis-related
genes, PCC was calculated to represent the relationship of
these genes based on their expression in the TCGAMIBC
dataset (Figure 7A). We observed that the expression of
CRTAC1 was positively correlated with that of DUSP2,
ATOH8, and ID2. ANLN was positively related to PAQR4.

FIGURE 2 | (A and B) Dendrogram of all differentially expressed genes in TCGAMIBC and GSE13507 datasets clustered based on a dissimilarity measure
(1-TOM). (C and D) The heatmaps were depicted to show the correlation between module Eigengenes and clinical status (including tumor and normal status),
correlation coefficients and p-values were showed in every module.
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DUSP2 was positively correlated to ATOH8 and ID2. However,
most of the genes showed no co-expression. Besides, we identified
the potential protein that directly interacted with the prognosis-
related genes based on the STRING interaction database
(Figure 7B). Moreover, we found that FASN interacted with
ANLN and DHCR24; HIST2H2AC interacted with HIST1H1C
and EGR2; EGR2 interacted with ID2. However, other genes,
such as PAQR4, LGALS4, LPPR4, KRT14, CRTAC1, and
CYP1B1, showed no interaction with other prognosis-related
genes-encoding protein levels.

Molecular Mechanism of
Prognosis-Related Genes
To further explore the molecular mechanisms by which
prognosis-related genes are responsible for cancers, we
calculated the correlation between the expression of prognosis-
related genes and the activity score of 50 hallmark-related cancer
pathways. We found that different genes were correlated with
varying pathways of cancer (Figure 8A; Supplementary Table
S1). The expression of CRTAC1, DUSP2, ATOH8, and
HIST2H2AC showed a significantly negative correlation with
the activity of most hallmark-cancer pathways. Interestingly, the
expression of ANLN and PAQR4 was highly correlated with the
activity of G2M checkpoint, E2F targets, mitotic spindle, Mtorc1
signaling, and MYC target V1 pathways. We conducted the same
correlation between prognosis-related genes and molecular
function (MF) and cell component (CC). The networks were
depicted to show the correlations using the Cytoscape software

(Figure 8B; PCC >0.60, PCC < -0.4, and p-value < 0.05). We
found only eight of prognosis-related genes were highly
correlated with the activity of MIBC multiple MFs and CCs
(Detail in Supplementary Table S2). Among these, we observed
that more MF and CC were highly correlated with ANLN,
suggesting that ANLN may play a pivotal role in regulating
MIBC development. To further validate the potential
regulatory mechanisms of ANLN, resulting in MIBC, we
performed gene set enrichment analysis (GSEA). On the basis
of the expression of ANLN, we stratified the data into two groups
(including high ANLN expression and low ANLN expression
cohort) and subjected the data to the GSEA program based on the
JAVA. The results showed that G2M checkpoint, E2F targets,
mitotic spindle, Mtorc1 signaling, and MYC target V1 were
correlated with high ANLN expression cohort (Supplementary
Figure S3), which were consistent with the result of Figure 8A,
suggesting that the P13K/AKT/mTOR/MYC/E2F/G2M
pathways might be main mechanisms for ANLN to regulated
the development of MIBC.

Consensus Clustering for
Prognosis-Related Genes and Distinct
Immune Cell Infiltration Level of Different
Clusters
The progression and prognosis of cancers are usually regulated
with multiple genes. After that, we conducted a consensus
clustering based on the expression of 15 prognosis-related

FIGURE 3 | Venn plot of overlapping genes and forest plot of prognosis-related genes in MIBC. (A) The intersection of the Venn plot is considered to be co-
expressed genes. (B) Forest plot shows the distribution of prognosis-related genes hazard ratios in TCGAMIBC. The red point indicates the high hazard ratio, and the
blue point indicates the low hazard ratio. p-value < 0.05 is regarded as significant and identified by the red font.
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genes (Figure 9A). A total of 402 patients with MIBC were
separated into two subtypes, namely cluster1 (n � 278) and
cluster2 (n � 119). We found the expression of CYP1B1,
LPPR4, ANLN, PAQR4, KRT14, and DHCR24 were higher in
the cluster1 than that in the cluster2. To validate the subclasses’
assignments, we further performed t-SNE to decrease the
dimension of features and found the cluster designations were
largely concordant with different-dimensional t-SNE distribution
patterns (Figure 9B). Moreover, we found that the prognosis of
MIBC patients in cluster1 was worse than that in cluster2
(Figure 9C, p-value < 0.0001). To investigate the effect of
prognosis-related genes on the tumor immune
microenvironment (TIME) of MIBC, we evaluated the
immune score, immune infiltration level, and the fraction of
22 immune cells between the cluster1 and cluster2. We found the
two clusters represented a significant difference in immune score,
purity of tumors, and stromal scores (Figures 9D–F). Moreover,
the immune infiltration level of most immune cells in cluster1 was
higher than that of cluster2 (Supplementary Figure S4A).
Besides, we observed the scale of a fraction of B cell naive,
CD4 memory T cell, NK cells activated, Macrophage M0/M1/
M2, and Neutrophils in cluster1 were significantly higher than
that of cluster1 (Supplementary Figure S4B). However, the
fraction scale of Dendritic cells resting/activated, B memory
cells, Regulatory T cells, and CD4 naive T cells in cluster1
were lower than that in cluster2. Furthermore, the proportion

of patients with higher stages and higher grades was significantly
higher in Cluster1 than that in Cluster2 (Figures 9G,H).

Construction and Immune Characteristic of
Risk Signatures
To further explore the contribution of these prognosis-related genes
to MIBC patients. We divided the 400 MIBC patients into the
TCGA training cohort (200 patients) and the validation cohort (200
patients) at a 5:5 ratio. The baseline characteristics among the
TCGA training and validation cohorts, including age, gender, T
stage, N stage, M stage, grade, TNM stage, and cluster stratified
above, were not statistically different (Supplementary Figures
S5A,B; all p > 0.05). Furthermore, the T-SNE distribution
patterns based on the expression of prognosis-related genes in
the training and the validation cohort also were not different
(Supplementary Figure S5C). To predict the clinical outcome of
prognosis-related genes in MIBC patients precisely, we performed
the least absolute shrinkage and selection operator (LASSO)
regression analysis based on the expression values of
15 prognosis-related genes in the TCGA training cohort. Eight
characteristic genes, namely ANLN, FASN, HIST1H1C, LPPR4,
CYP1B1, EGR2, CRTAC1, and LGALS4, were identified
(Supplementary Figures S6A,B). The risk scores of the MIBC
training and validation cohort were determined using the
coefficients obtained by the LASSO algorithm, and the equation

FIGURE 4 | The kaplan-Meier survival curves of patients divided by the expressions of individual prognosis-related genes in MIBC. The p-values calculated by the
log-rank test are shown.
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FIGURE 5 | The boxplots show the expression of 15 prognosis-related genes in TCGAMIBC, adjacent non-carcinoma tissues, and GTEx normal tissues, t-test was
used to calculate the significance level between two groups.

FIGURE 6 | Immunohistochemistry of the prognosis-related genes, including ANLN, CRTAC1, FASN, KRT14, and LGALS4, in MIBC and normal tissues from the
human protein atlas (HPA) database.
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FIGURE 7 | Co-expression relationship and protein-protein interaction network. (A) The correlation diagrams show the correlation among 15 prognosis-related
genes for MIBC. The positive correlations are colored by red, and negative correlations are colored by blue. The size of the point represents the p-value. (B) The PPI
network diagram shows the proteins that have potential interactions with 15 prognosis-related genes.

FIGURE 8 | The potential cancer hallmark pathways, molecular functions, and cell components associated with prognosis-related genes. (A) The heatmap shows
the positive or negative correlations between hallmark-related cancer pathways and genes. Positive correlations are shown by red; negative correlations are shown by
blue. (B) The PPI network diagram shows the cell components and molecular functions that have potentially regulation by the prognosis-related genes.
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is as: −0.064 * CRTAC10.071 * LGALS4 + 0.028 * ANLN +0.11 *
FASN + 0.22 * LPPR4 − 0.045 * HIST1H1C + 0.018 * CYP1B1 +
0.098 * EGR2. Afterward, patients were divided into high- and low-
risk cohorts based on the median risk score. The distribution of the
risk scores, OS, OS status, and expression profiles of the eight
characteristic-genes-based signatures in TCGA training and
validation cohorts is displayed (Figure 10A; Supplementary
Figure S7A). The heatmap results indicated that risky genes,
including ANLN, FASN, LPPR4, CYP1B1, and EGR2, were
highly expressed in the high-risk cohort. In contrast, the
expression levels of protective genes, including CRTAC1,
LGALS4, and HIST1H1C, were upregulated in the low-risk
cohort. Meanwhile, we found that the risk score in cluster1 with
a worse outcome is higher than cluster2 (Figure 10B;
Supplementary Figure S7B). The OS of patients in the low-risk
cohort was longer than that of the high-risk cohort (p < 0.0001,
Figure 10C; Supplementary Figure S7C). To assess the prognostic
accuracy of the eight identified risk signatures, we performed 3- and
5-years receiver operating characteristic (ROC) curve analyses by
comparing the respective AUC values. In the TCGA training

cohort, the 3- and 5-years AUC values for the eight risk
signatures were 0.705 and 0.722, respectively (Supplementary
Figure S8A). In the TCGA validation cohort, the 3- and 5-years
AUC values for the eight risk signatures were 0.708 and 0.725,
respectively (Supplementary Figure S8B). The AUC values showed
that the signatures of eight characteristic-genes had a favorable
discrimination performance for the prognosis of patients
with MIBC.

Relationships Between Risk Score, Immune
Infiltration and Clinical Information
To investigate the correlation between risk score, immune
infiltration levels, and clinical information. We integrated the
TCGAMIBC data of the training cohort and validation cohort
(Figure 11A). The expression of risky genes, such as ANLN,
FASN, CYP1B1, EGR2, and LPPR4 in high-risk-cohort, is higher
than that of low-risk-cohort. Conversely, the expression of
protective genes, such as HIST1H1C, CRTAC1, and LGALS4
in low-risk-cohort, is higher than that in high-risk-cohort. These

FIGURE 9 | Differential clinicopathological features and survival of patients in Cluster1/2 Subtypes in TCGAMIBC Cohort. (A) Heatmap and clinicopathologic
features of the two clusters (cluster1/2). (B) The t-SNE analysis supported the stratification into two MIBC clusters. (C–G) The comparison of the immune score, tumor
purity, stromal score, stage, and grade in cluster1/2. (H) Kaplan-Meier survival curves of patients in MIBC cluster1 and cluster2. The p-values calculated by the log-rank
test are shown. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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results were consistent with Figure 10A and Supplementary
Figure S7A. Meanwhile, we found the differences in terms of
immunoscore (Figure 11B; p < 0.0001), purity of tumor
(Figure 11C; p < 0.0001), stromal score (Figure 11D; p <
0.0001), and ages (Figure 11E; p < 0.01) between the high-
and low-risk cohorts was significant. Moreover, the risk score
in cluster1 was distinctly higher than that in cluster2 (Figure 7F;
p < 0.0001), and the risk score increased along with the
histological grade and stage increased (Figures 7G,H; p <
0.05). In MIBC patients with the lymphovascular-invasion, the
risk score was distinctly higher than that of no-lymphovascular-
invasion (Figure 7I; p < 0.0001). Furthermore, the infiltration
level of most immune cells in high-risk-cohort was higher than
that of low-risk-cohort (Supplementary Figure S9A). The
fraction scale of 22 immune cells in the two risk cohorts was
basically consistent with that in two clusters (Supplementary
Figure S9B). These findings revealed that the risk score was
significantly associated with cluster1/2, grade, stage, age,
lymphovascular-invasion, and immune infiltration levels in
MIBC patients.

Immune Checkpoint Alterations and
Immunoregulation Mechanisms
Programmed cell death 1 (PD-1, also known as CD279),
programmed cell death 1 ligand 1 (PD-L1, also known as

CD274), and CTIL-4, are common immune checkpoints (Sun
et al., 2018; Dermani et al., 2019; Qin et al., 2019), have been
described in bladder cancer (Bellmunt et al., 2017; Le Goux et al.,
2017; Rouanne et al., 2018). To explore the expression of PD-1,
PD-L1, and CTIL-4 in cluster1/2 and high-/low-risk-cohort, we
conducted unpaired t-test analysis (Figures 12A,B).
Interestingly, we found that the expression of PD-1, PD-L1,
and CTIL-4 in cluster1 and high-risk-cohort were higher than
that of cluster2 and low-risk-cohort (all p < 0.0001), revealing
subtype analysis and the construction of risk-cohort could be a
good stratification method to MIBC patients whether to conduct
immunotherapy. To elucidate the potential regulatory
mechanisms resulting in differences in the TIME and
immune-checkpoint in the two clusters and the two risk
cohorts, we conducted differential expression analysis
comparing cluster1 or high-risk-cohort with cluster2 or low-
risk-cohort, respectively (Supplementary Figure S10A). We
ultimately screened cluster1-related DEGs and high-risk-
related DEGs. Interestingly, we found the cluster1-related
DEGs contained almost all high-risk-related DEGs
(Supplementary Figure S10B), and the log2 fold change of
these overlapping genes between these two groups was
significantly consistent (Supplementary Figure S10C and
Table S3), suggesting that patients in cluster1 or high-risk-
cohort possess uniform the characterization of genetic
alteration. Finally, we performed GSEA based on cluster1/2

FIGURE 10 | (A)Distribution of risk score, OS, and OS status and heatmap of the eight prognostic gene signatures in the TCGA training cohort. (B) The comparison
of the risk score in cluster1/2. (C) Kaplan-Meier survival curves of MIBC patients in high-/low-risk cohorts. The p-values calculated by the log-rank test are shown.
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and high-/low-risk-cohort. The results showed that the consistent
malignant hallmark pathways of tumors, including Mitotic
spindle, mTORC1 signaling, Complement signaling, and
Apical junction pathway, were dynamically correlated with the
cluster1 and high-risk-cohort (Figures 12C,D). Hence, a strong
association could be considered that the Mitotic/mTORC1/
Complement/Apical junction signaling pathways might be
implicated in the distinct TIME of cluster1/2 and high/low-
risk-cohort.

DISCUSSION

In this study, we first screened 106 overlapping genes with
significant expression alteration in both the TCGAMIBC and
GSE13507 databases using integrated bioinformatics analysis.
Then we conducted the univariate Cox progression analysis to
identified 15 prognosis-related genes, including ANLN, CYP1B1,
DHCR24, EGR2, FASN, KRT14, LPPR4, PAQR4, ATOH8,
CRTAC1, DUSP2, HIST1H1C, HIST2H2AC, and LGALS4.
ANLN, CYP1B1, DHCR24, EGR2, FASN, KRT14, LPPR4, and
PAQR4 showed as risky factors in MIBC. However, ATOH8,
CRTAC1, DUSP2, HIST1H1C, HIST2H2AC, and LGALS4

showed as protective factors. Moreover, the expression level of
these genes could predict different prognosis of MIBC patients.
Then we calculated the correlation between the expression value
of prognosis-related genes and the activity score of 50 hallmark-
related pathways, molecular functions, and cell components.
These prognosis-related genes showed heterogeneous biological
functions or molecular mechanisms, indicated that MIBC
development is subjected to multifaceted regulation.
Interestingly, we found that ANLN showed a stronger
correlation with multiple cancer pathways, biological
functions, and cell components, suggesting that ANLN may be
a pivotal gene in MIBC development, consistent with previous
findings (Zeng et al., 2017; Wu et al., 2019). In addition, PAQR4,
HIST1H1C, and HIST2H2AC seem to play a specific role in
MIBC, but they still need to validation further, because no report
about these genes contributes to MIBC. The progression and
prognosis of cancers are usually regulated with multiple genes
(Chan et al., 2008; Shimoni, 2018). We further identified two
subtypes of MIBC, that is, cluster1 and cluster2, by conducting a
consensus clustering based on the expression of 15 prognosis-
related genes. The MIBC patients in cluster1 or 2 represented
distinct outcomes and different clinicopathological features,
immunoscore, stage, grade, and immune cell infiltration levels.

FIGURE 11 | (A) Heatmap and clinicopathologic features of high- and low-risk groups. The comparison of immune score (B), tumor purity (C), stromal score (D),
age (E) in high-/low-risk cohorts. The difference of risk score in various cluster (F), grade (G), stage (H), lymphovascular invasion (I). *p < 0.05, **p < 0.01, ***p < 0.001,
****p < 0.0001.
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We also yielded eight prognostic risk signatures from the
15 prognosis-related genes, which effectively stratified the
TCGAMIBC patients into high- and low-risk cohorts. The
high- and low-risk cohorts were also related to distinct
prognosis, clustering subtypes, immunoscore, stage, age, and
grade. These results revealed that both the consensus
clustering and the constitution of risk signatures on the basis
of the expression of 15 prognosis-related genes are feasible
stratification methods for MIBC patients. Notably, among these
risk signatures, ANLN was identified as a promising prognostic
biomarker that could be used to stratify different risks of BLCA
(Zeng et al., 2017). FASN catalyzing the terminal steps in the de
novo biogenesis of fatty acids is correlated with low survival and
high disease recurrence in patients with bladder cancer (Tao et al.,
2019). Common CYP1B1 variants acted as risk factors for bladder
cancer, which increases with occupational exposure (Salinas-
Sánchez et al., 2012). LGALS4 could predict a good prognosis
of urothelial carcinoma of the bladder and restrained the growth
and migration of urothelial carcinoma of the bladder cells (Ding
et al., 2019). These findings revealed that the dysregulation of these

four risk genes served as pivotal functions in bladder cancer
(including NMIBC and MMIBC). However, the dysregulation
of the other risk genes in MIBC remains ambiguous, which
needs to validate further. Moreover, we observed the immune
infiltration levels of most 24 immune cells in the cluster1 and high-
risk-cohort were higher than that in cluster2 and low-risk-cohort.
Interestingly, the patient prognoses in cluster1 and high-risk-
cohort with an activated immune system were worse than that
in cluster2 and high-risk-cohort. Indeed, in urothelial carcinoma,
tumors are highly infiltrated by Treg cells (Loskog et al., 2007),
which often correlates with a poor prognosis (Tsai et al., 2014).
Previous results from several in vitro and in vivo studies showed
that high infiltration of macrophages with an unfavorable M2
profile was associated with a poor outcome in patients with
NMIBC and MIBC (Ajili et al., 2013; Takeuchi et al., 2016).
High infiltration levels of Treg cells, TH2 CD4+ T cells,
MDSCs, M2 macrophages, and neutrophils are often associated
with poor prognosis (Becht et al., 2016; Fridman et al., 2017). In
addition, at a steady-state, the ability of the immune system to
maintain equilibrium between amplifying and restraining the

FIGURE 12 | The expression of immune checkpoint and gene set enrichment analysis. (A) The expression of PD1, PDL1, and CTILA4 in cluster1/2 and high-/low-
risk cohorts. (B) The GSEA showed that G2M checkpoint, mTORC1 signaling, and PI3K/AKT/mTOR signaling are differentially enriched in cluster1 and high-risk-cohort.
NES, Normalized Enrichment Score; NOM p-val, Normalized p-value; FDR q-val, False Discovery Rate q-value. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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immune response is essential to avoid potential autoimmunity and
tissue damage while generating a successful immune defense
(Schneider et al., 2019). When the immune system becomes
activated, the upregulation of inhibitory receptors is a necessary
feedback mechanism to avoid pathogenic inflammatory responses
and autoimmune disorders (Zhang and Vignali, 2016). Hence, the
activated immune system of MIBC patients in cluster1 and high-
risk-cohort generated an adverse effect on the prognosis of MIBC
patients, which may be involved in the imbalance between the
activated and suppressed immune responses. In the multifaceted
immune regulation of bladder cancer, PD-1, PD-L1, and CTLA4
are the primary immune checkpoints. In our results, the expression
of PD-1, PD-L1, and CTLA4 in cluster1 and high-risk-cohort were
higher than those in cluster2 and low-risk-cohort. Three studies
found that PD-L1 expression increased with tumor stage and grade
andwas associated with worse overall survival, both in NMIBC and
MIBC (Inman et al., 2007; Nakanishi et al., 2007; Huang et al.,
2015). In a large cohort, including patients with NMIBC or MIBC,
a high level of PD-L1 expression on tumour-infiltrating immune
cells was an independent predictor of reduced overall survival and
RFS (Wang et al., 2019). In patients with MIBC, a high level of
CD8+PD-1high T cells in urine was associated with reduced RFS
(Wong et al., 2018). Compared with anti-PD-1 (nivolumab)
treatment alone, the combination of anti-PD-1 and anti-CTLA4
(ipilimumab) treatment resulted in an ORR of 38% (vs. 25.6%), a
median tumor lesion change from baseline of −30.0% (vs. +1.9%),
and median overall survival of 15.3 months (vs. 9.9 months), at the
best dose combination (Sharma et al., 2019). These findings
indicated that immune therapy against these immune
checkpoints is an important clinical treatment strategy. Hence,
we revealed that the patients in the cluster1 and high-risk cohort
might be sensitive to the treatment of these immune checkpoints.
For these patients, anti-PD-1, anti-PD-L1, and anti-CTLA4may be
able to achieve better clinical expectations. Finally, the results of the
GSEA showed that the malignant hallmarks of tumors, including
Mitotic spindle, mTORC1 signaling, Complement signaling, and
Apical junction pathway, were dynamically correlated with the
cluster1 and high-risk-cohort. The relationships between these
hallmark-related cancer pathways and immune regulation have
previously been revealed (Wang et al., 2016; Zhao et al., 2019).
Hence, the Mitotic/mTORC1/Complement/Apical-junction
signaling pathways might be implicated in the different TIME
of MIBC cluster1/2 and high/low-risk-cohort.

In summary, we integrating WGCNA with differential gene
expression analysis identified 106 MIBC signature genes and
further identified 15 MIBC prognosis-related genes. We
systematically analyzed the genetic alterations, molecular
mechanisms, and clinical relevance of these 15 identified
genes. We found these 15 genes showed different genetic
alterations, involved in various molecular mechanisms, and
were correlated with prognosis and recurrence of clinical
cancer patients. We further did consensus clustering and
risk modeling of 15 prognosis-related genes and shown that

the prognosis, immune infiltration status, stage, and grade of
MIBC patients were significantly different in cluster1/2 and
high/low-risk-cohort. The expression of PD-1, PD-L1, and
CTLA4 was significantly up-regulated in cluster1/high-risk-
cohort than that in cluster2/low-risk-cohort. These results
revealed that a feasibility stratification methods to MIBC
patients based on these 15 prognosis-related gene
expressions and provides a possibility to screen out MIBC
patients who are sensitive to immunotherapy and help for
the future treatment strategies of these patients. However,
our researches also had limitations about the classification of
MIBC patients. Although we provided a comprehensive
bioinformatics analysis to identify potential prognosis-
related genes to MIBC patients and conduct significant
stratification, it may not be very accurate for each patient
with MIBC. Moreover, the molecular mechanisms for the
prognosis-related genes that affected the immune infiltration
levels and prognosis of MIBC patients should be further
validated through many clinical trials.
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