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Abstract
Objective
The combined spatiotemporal dynamics underlying sign language production remain largely
unknown. To investigate these dynamics compared to speech production, we used intracranial
electrocorticography during a battery of language tasks.

Methods
We report a unique case of direct cortical surface recordings obtained from a neurosurgical
patient with intact hearing who is bilingual in English and American Sign Language. We
designed a battery of cognitive tasks to capture multiple modalities of language processing and
production.

Results
We identified 2 spatially distinct cortical networks: ventral for speech and dorsal for sign
production. Sign production recruited perirolandic, parietal, and posterior temporal regions,
while speech production recruited frontal, perisylvian, and perirolandic regions. Electrical
cortical stimulation confirmed this spatial segregation, identifying mouth areas for speech
production and limb areas for sign production. The temporal dynamics revealed superior
parietal cortex activity immediately before sign production, suggesting its role in planning and
producing sign language.

Conclusions
Our findings reveal a distinct network for sign language and detail the temporal propagation
supporting sign production.
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Studying the spatiotemporal dynamics of signed and spoken
language can provide unique insights into how different cor-
tical networks are recruited, depending on the modality in
which the language is produced. Most studies on sign lan-
guage use fMRI or lesion analysis, which have revealed in-
formation on the shared and differential brain regions
involved in sign and speech production. However, these
techniques have limited temporal resolution. EEG and mag-
netoencephalography have been used in a few studies to
overcome this limitation, but the combined spatiotemporal
dynamics of sign language processing still remain largely
unknown.

There is substantial overlap in the left-lateralized perisylvian
network involved in signed and spoken language pro-
duction.1‐3 Lesion studies reveal that left hemispheric damage
severely impairs language perception and production for
signed and spoken language, whereas right hemispheric
damage does not. Left perisylvian areas are activated on fMRI
studies in both language modalities. There are also differen-
tially activated regions in sign and spoken language. Com-
prehension and production of these 2 language modalities use
different systems: sign uses a visual-motor system, and speech
uses an auditory-vocal system.

The temporal dynamics of language production from mag-
netoencephalography studies have revealed similar findings
for sign and speech. During comprehension, early sensory
processing (≈100 milliseconds) is confined to modality-
specific regions and lexical-semantic processing (≈300 milli-
seconds) activated left frontotemporal regions.4 During pro-
duction, phrase building engaged left anterior temporal and
ventromedial cortices with similar timing during sign and
speech.5

The combined spatiotemporal dynamics of sign language
production have been difficult to study. Electrocorticography
(ECoG) resolves spatiotemporal parameters to the sub-
centimeter and submillisecond scale. However, ECoG studies
of sign language are rare because the implanted participant
must be fluent in sign language. Only 1 prior study used
ECoG to study sign language.7 Crone et al.7 in 2001 studied
word production using signed vs spoken language in a 38-
year-old participant with normal hearing and speech who
acquired sign language proficiency in adulthood. Speech ac-
tivated tongue regions of the sensorimotor cortex, and sign
activated hand regions of the sensorimotor cortex. In addition,
word production during sign activated parietal regions, which
were not activated during speech. Temporally, the posterior

Glossary
ASL = American Sign Language; ECoG = electrocorticography; ECS = electrical cortical stimulation; FDR = false discovery rate.
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superior temporal gyrus was activated earliest and to the
greatest extent during auditory word repetition, while the
basal temporal occipital cortex was activated similarly during
visual naming and visual word repetition. The temporal dy-
namics reflect the different modalities of input processing
because their analysis was locked to stimulus perception.
Their analysis was not locked to production; thus, the tem-
poral dynamics during sign language production remain un-
known. In addition, their participant acquired sign language in
adulthood, so their sign language network may be different
compared to a native signer.

We had the unique opportunity to use ECoG to study the
differences between spoken and signed language in a 28-
year-old right-handed man who had normal hearing and was
bilingual in English and American Sign Language (ASL). He
is a hearing child of a deaf adult and acquired sign language
at an early age. He was implanted with left hemisphere
intracranial electrodes for epilepsy surgery. We designed a
battery of cognitive tasks to capture multiple modalities of
language processing, which mirrored the clinical paradigms
used during electrical stimulation mapping, the stimuli of
which were matched to language production. The tasks
involved visual naming, visual word repetition, auditory
word repetition, auditory naming, and auditory sentence
completion. During lulls in clinical treatment, we adminis-
tered this battery with the patient responding in spoken
English and ASL. These results use direct cortical

recordings in a hearing-intact native ASL bilingual patient
and provide a unique window into the spatiotemporal dif-
ferences during production between a spoken and a signed
language.

Methods
Patient
Our patient was a 28-year-old, right-handed, hearing-intact
man who is bilingual in both English and ASL. The patient
is a child of a deaf adult and acquired sign language at an
early age. Patient has had epilepsy since 9 years of age
secondary to perinatal left inferior parietal infarct. Neuro-
psychological testing showed that general intellectual
abilities were largely in the average range. He had impair-
ments with verbal fluency but otherwise functioned nor-
mally across cognitive domains. Wada testing showed
bilateral speech representation.

Standard protocol approvals, registrations,
and patient consents
The patient gave informed consent to participate in research,
and the New York University Institutional Review Board
approved the study.

Electrode localization
The patient was implanted, for the purposes of his clinical
care, with 124 electrodes (AdTech Medical Instrument Corp,

Figure 1 Battery of 5 tasks to investigate language processing during speech and sign production

(A) Our tasks involve 2 visual tasks of naming and
word repetition and 3 auditory tasks of word
repetition, naming, and sentence completion.
Each task has 50 stimuli, the responses of which
are matched across tasks. Visual naming, visual
word repetition, and auditory word repetition are
repeated twice. (B) Lateral view of brain re-
constructionwith subdural electrode localizations
(gray electrodes) and an example of responses
from a select electrode (black) in the superior
temporal gyrus. For the select electrode, mean
broadband high gamma activity locked to stimu-
lus presentation is shown for speech and for sign
during each of the 5 tasks (color coded by task
indicated in panel A). Shaded area denotes the
SEM across trials.
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Oak Creek, WI) composed of an electrode grid (8 × 8 con-
tact) over the left temporal parietal occipital cortex, strips
(three 1 × 8 contact, one 1 × 6 contact, and two 1 × 4 contact)
over the left frontal, temporal, and occipital regions, and depth
electrodes (four 1 × 8 contact) within the left parietal lobe
(figure 1B). Depth electrodes were not included in the anal-
ysis. Subdural electrodes had a 10-mm center-to-center in-
terelectrode spacing, with a 4-mm diameter and a 2.3-mm
diameter exposed recording contact. Surface reconstructions,
electrode localization, and Montreal Neurological Institute
coordinates were extracted by aligning a postoperative brain
MRI to the preoperative brain MRI using previously pub-
lished methods.8

Language battery
A battery of 5 language tasks was administered to the par-
ticipant with the participant responding in speech and sign
(figure 1A). The tasks involve visual naming, visual word
repetition, auditory word repetition, auditory naming, and
auditory sentence completion, with the goal of capturing
multiple modalities of language processing. The task design
mirrors the language tasks given during electrical stimulation
mapping. The stimuli consist of 50 items taken from the
revised Snodgrass and Vanderwart object pictorial set,9 and
the stimuli are matched across the 5 tasks. Our auditory
naming and sentence completion stimuli are taken from the
Hamberger sets when matched stimuli are available.10,11 Each
task contains 50 trials. There is a 500-millisecond in-
terstimulus interval between each trial. Visual naming, visual
word repetition, and auditory word repetition are repeated
twice. The trials are self-paced, and the total duration of the 5
tasks ranges between 20 and 30 minutes.

Motor control
The video was reviewed for spontaneous right-hand reaching
movements. Inclusion criteria included right-hand reaching
movements with >20-cm change in distance. Exclusion cri-
teria included any other observed movement besides the right
arm and any audible speech from the participant. The onset
was the initiation of the movement. Eighteen trials were
obtained. Examples of movements include reaching for a
utensil or picking up a mobile phone.

Electrophysiologic recording and analysis
Signals were recorded at 512 Hz with the Nicolet system.
Channels were inspected by an epileptologist (J.S.), and
channels with epileptiform activity or artifact were removed
from further analysis. The data were then rereferenced to a
common average. Audio and video were manually inspected
to mark the onset of speech and sign production (with the
onset of sign production determined as the onset of initial
motor movement). Trials in which the patient did not re-
spond or the reaction time was >3 SDs above the mean were
removed. Our analysis of the electrophysiologic signals fo-
cused on changes in broadband high gamma activity (70–150
Hz). To quantify changes in the high gamma range, the data
were bandpass filtered between 70 and 150 Hz, and then a
Hilbert transform was applied to obtain the analytic ampli-
tude. Event-related epochs were extracted. For the language
tasks, these were time-locked to either stimulus presentation
or speech or sign production, and for the motor control, this
was time-locked to initiation of motor movement. The data
were then normalized into percent change from baseline: for
the language tasks, the baseline was the 500-millisecond
prestimulus period, and for the motor control, the baseline

Figure 2 Two spatially distinct networks for speech and sign production

(A) Electrodes significantly active during speech production (blue), sign production (red), or control right reaching movements (green) and their overlap (see
legend) are plotted on a surface reconstruction of the brain. There is a spatially distinct network for sign production that does not overlap with speech
production or right-hand reaching movements. Significance was determined with a Wilcoxon signed-rank test on trial activity moving across time with a
sliding window, false discovery rate corrected for multiple comparisons. Gray electrodes did not show significant activity. (B) Electrodes with significant
differential activity between sign (red) and speech (blue) production. Using a different statistical analysis, we confirm our findings in panel A. Significant
differential activity between sign and speech production (from −0.6 second before production until the end of the trial) was determined with a Wilcoxon
signed-rank test paired to the matched stimuli. Significant electrodes are displayed and color coded according to the z value, with a higher absolute value
indicating higher significance. Gray electrodes were not significant, false discovery rate corrected for multiple comparisons.
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was the mean of the entire 56-minute period from which the
trials were obtained.

Identifying significantly active electrodes and
temporal propagation
A sliding window moving across the trial activity, aligned to
language production, was used to determine whether an elec-
trode was significantly active (figure 2A) and at what time points
this significant activity occurred (figure 5). For each sliding
window, a Wilcoxon signed-rank test was performed, using the
null hypothesis that the median trial activity (normalized to the
baseline) is equal to 0. Trials across all 5 language tasks were
pooled. A sliding window of 100-millisecond duration with a 50-
millisecond overlap was used. Significance was determined as a
value of p < 0.05, false discovery rate (FDR) corrected for mul-
tiple comparisons (over the number of timewindows). A channel
was considered significantly active if it contained at least a 500-
millisecond contiguous segment of significance, if it had at least a
mean 10% signal increase, and if the peak activity occurred >250
milliseconds before the onset of language production, because
peak activity prior reflected stimulus presentation rather than
language production. We pooled across the 5 language tasks to
obtain a higher signal-to-noise ratio. In a separate analysis, to
justify pooling across the 5 tasks, we investigated whether there
were significant differences in high gamma activity across tasks.
We looked at mean trial activity from 0.6 second before pro-
duction onset to the end of the trial and used aKruskal-Wallis test
with the null hypothesis that median responses for the 5 tasks
were equal, FDR corrected for multiple comparisons (over the
number of electrodes). We found that during sign production,
only 1 electrode in the bottom right corner of the grid (in the
occipital region) showed a significant difference in activity across
the 5 tasks, and this was due to differences in stimulus input
(visual vs auditory). For identifying significantly active right
motor responses, a similar method was used for trial activity
aligned to the onset of right-hand reaching movements. Because
the number of trials (n = 18) was smaller than for language
production, slightly different parameters were used due to a lower
signal-to-noise ratio. A sliding window of 300-millisecond dura-
tion with 75-millisecond overlap was used. Significance was de-
termined as a value of p < 0.05, FDR corrected for multiple
comparisons (over the number of time windows). A channel was
considered significantly active if it contained at least a 200-
millisecond contiguous segment of significance and if it had at
least a mean 10% signal increase. The temporal dynamics of
language production were calculated with the same methods to
determine significantly active electrodes, with a sliding window,
which determined the time periods of significant activity. The
onset of significant high gamma activity is the first time point of
the 100-millisecond window that was significantly and consecu-
tively active.

Determining the degree of differential sign and
speech production activity
To determine the differential degree to which an electrode
was active during sign vs speech production (figure 2B), we
performed a Wilcoxon signed-rank test, using the null

hypothesis that the median responses during sign and speech
were equal. Trial activity was aligned to production onset, and
we averaged from 0.6 second before production to the end of
the trial. Significance was determined as a value of p < 0.05,
FDR corrected for multiple comparisons (over the number of
electrodes). The degree of differential activity was defined
using the z value statistic and color coded from the minimum
to maximum value.

Electrical stimulation mapping
Electrical stimulation mapping was performed by the par-
ticipant’s clinical team (P.D.) using previously established
protocols at our center.12 For language testing, tasks per-
formed during stimulation include counting (to rule out
motor phenomena rather than language disruption), con-
tinuous speech (e.g., Pledge of Allegiance, reciting the
months of the year or days of the week), visual naming,
auditory naming, and auditory sentence completion. For
motor/sensory testing, each stimulus site was tested for
sensory symptoms and positive and negative motor phe-
nomena. Stimulation was delivered using bipolar contiguous
contacts with a biphasic pulse at a 50-Hz pulse rate with a
pulse width of 0.3 to 0.5 millisecond, a train duration ranging
from 3 to 5 seconds, and a goal current intensity between 10
and 15 mA. Both electrodes in the electrode pair will be
considered a hit for language disruption if the participant
reliably misses 2 different stimuli of the same task.

Data availability
Anonymized data will be shared if requested by any qualified
investigator.

Results
High gamma activity as an index of
neuronal activity
Our analysis of electrophysiological signals focused on the
broadband high gamma range (70–150 Hz). High gamma
robustly tracks single trial cortical activity13,14 and correlates
with neural population firing rates and fMRI blood oxygen
level–dependent responses,15–17 making it a suitable index to
identify functionally active areas. Our battery of 5 language
tasks (figure 1A) allowed us to measure event-related changes
in high gamma activity across 2 different input modalities
(visual verses auditory) and different task demands (naming,
repetition, and sentence completion). The responses to the 5
tasks are matched, and the tasks were repeated in spoken
English and then ASL, allowing us to identify differences in
language processing depending on the output modality. We
tracked neuronal activity from stimulus presentation to lan-
guage production (example of responses from a superior
temporal gyrus electrode is given in figure 1B).

Two spatially distinct cortical networks
involved in sign and speech production
We first investigated activation patterns during sign and
speech production to determine the shared and differential
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regions involved between speech and signed modalities.
High gamma activity was aligned to language production and
averaged across all 5 tasks. Electrodes with significant in-
creases from baseline were identified for each production
modality (using a sliding window over time; see Methods for
details). This analysis revealed 2 major spatially distinct
distributions of modality specific recruitment: a dorsal net-
work recruited differentially for sign (figure 2A, red elec-
trodes) and a ventral network recruited for speech (figure
2A, blue electrodes). Sign production recruited the peri-
rolandic, parietal, and posterior temporal regions, while
speech production recruited the frontal, perisylvian, and
perirolandic regions. To ensure that activity was specific to
sign production rather than general motor, we analyzed
spontaneously produced right-handed reaching movements
as a control. Only a subset of the sign-active electrodes in the
perirolandic regions were also active during pure motor

movements (figure 2A, yellow and black electrodes). There
was minimal overlap between sign and speech modalities,
seen in isolated perirolandic electrodes (figure 2A, purple
and black electrodes). To directly compare speech and sign
activity and to confirm our findings using a different sta-
tistical approach, we determined statistically significant
differential activity using a Wilcoxon signed-rank test (p <
0.05, FDR corrected for multiple comparisons), comparing
trial activity locked to production between speech and sign
trials, paired to the matched stimuli (figure 2B). The z value
of the Wilcoxon signed rank approximates the degree of
difference between the 2 modalities, and when it is plotted
for all electrodes with significant differential activity, we
find a similar result with a dorsal network recruited for sign
(positive z scores ranging from 2.3–9.4, figure 2B) and a
ventral network recruited for speech (negative z scores
ranging from −2.5 to −8.8, figure 2B). Example mean high

Figure 3 Mean high gamma activity during speech production, sign production, and right-hand reaching movements in
select electrodes in different regions

The brain reconstruction displays 1 electrode (black) chosen in each of the different colored regions. The high gamma traces are colored according to
corresponding region. The traces are aligned (time 0) to language production for speech and sign or to initiation of movement for the motor condition. The
activity during speech and sign represents the average across all 5 language tasks. The shaded area denotes the SEM across trials. Red line on the x-axis
indicates time period of significant high gamma activity.
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gamma traces are plotted for each cortical region (figure 3),
showing responses during speech and sign locked to pro-
duction and motor locked to initiation of right-hand
reaching movements.

Electrical cortical stimulation identifies motor
and sensory regions corresponding to sign and
speech production
Clinical electrical cortical stimulation (ECS) was performed
to map language, motor, and sensory regions for presurgical
planning. ECS results corresponded to the regions identified
with significant high gamma activity during sign production,
speech production, and control right-hand reaching move-
ments (figure 4). ECS identified mouth motor electrodes
corresponding to electrodes with significant high gamma ac-
tivity during speech production, and ECS identified right
upper limb motor electrodes corresponding to electrodes
with significant high gamma activity during sign production
and control right-hand reaching movements. Stimulation of
electrodes that showed significant high gamma activity for
both speech and sign (figure 4, purple and black electrodes)
elicited right lower lip twitching, right arm negative motor

deficit, and right thenar contraction. Stimulation of electrodes
with significant high gamma activity during control right-hand
reaching movements elicited motor contraction and sensory
symptoms of the right arm, as well as more localized deficits of
the hand and the digits. Stimulation of high-gamma-activity
sign electrodes in the perirolandic region, which were not
active during control right-hand reaching movements, elicited
thumb movement, palm stiffening, and dizziness/confusion.
Stimulation of high-gamma-activity sign electrodes in the
superior parietal and posterior temporal regions did not reveal
sensory or motor findings. Instead, stimulation of high gamma
active sign electrodes in the superior parietal electrodes eli-
cited symptoms such as a rainbow-colored moving flash of
light, objects appearing to pop out and move forward, and
disorientation and lightheadedness, or it elicited no deficit.
Stimulation of high-gamma-activity sign electrodes in the
posterior temporal region did not elicit any deficits, but some
stimulations provoked electrographic seizures. Stimulation of
an adjacent electrode pair in the occipital lobe elicited the
illusion that the examiner suddenly moved. No language
deficits were elicited, although testing was done only with
speech and not with sign.

Figure 4 ECS findings in relation to electrodes with significant high gamma activity during sign and speech production

Electrical cortical stimulation (ECS)
results are overlaid over significantly
active high gamma electrodes during
speech production (blue) and sign
(red) production and control right-
hand reaching movements (green)
and their overlap, as in figure 2A. All
electrodes displayed were stimu-
lated. Stimulation pairs are depicted
with blue pairs representing face in-
volvement, red pairs representing
right upper extremity involvement.
Language was tested only using
speech, and no speech language
deficits were elicited. Cartoon depicts
type of deficit elicited, with solid color
representing positive motor, black
cross-hatch pattern representing
negative motor, and white cross-
hatch pattern representing sensory.
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Temporal dynamics during sign and
speech production
To map the propagation of significant high gamma activity
during sign production and speech production, we de-
termined the onset of significant high gamma activity using a
Wilcoxon signed-rank test on trial activity moving across time
with a sliding window, FDR corrected for multiple compari-
sons. During sign, the superior parietal region was active first
at a median of 119 milliseconds before the onset of sign
production (figure 5). High gamma activity subsequently
propagated to the perirolandic regions, the onset of which
overlapped with the onset of sign production, and then the
dorsal frontal, inferior parietal, middle temporal, and inferior
temporal regions, the onset of which occurred after sign
production. During speech, the inferior parietal, dorsal fron-
tal, middle temporal, precentral, and postcentral regions were
active first and before the onset of speech production, while
the superior temporal and inferior parietal regions were active
after the onset of speech production.

Discussion
Our ECoG study revealed that the production of spoken and
signed language used 2 distinct networks, and ECS supported
this finding. The temporal resolution of ECoG allowed us to
study the temporal propagation during sign and speech pro-
duction. Our findings revealed that the superior parietal re-
gion is active before sign production, suggesting its role in the
planning and execution of signs.

Superior parietal activity was specific to sign language pro-
duction and did not contain right-hand motor activity or
speech language activity. This region was active first, with a
median onset of activation 119 milliseconds before sign
production. ECS of the sign-active electrodes in the superior
parietal region did not produce any motor/sensory deficits,
suggesting that they are higher-order regions involved with
sign language production. In addition, ECS did not elicit
language deficits during speech, supporting that these sign-
active electrodes are not involved during spoken language and
are unique to sign language. Sign production could not be
tested during ECS to confirm this due to clinical constraints.
Previous studies have implicated the left superior parietal
region during signing18–24 and suggested its role in the spatial
configuration and location of hands,19 control of learned
motor movements,20 or linguistic working memory during
motor rehearsal.21 In addition, the left superior parietal region
may support planning of goal-directed reaching movements25

and the bilateral superior parietal regions in visual spatial
attention.26,27 A left parietal lesion study in a deaf signer also
revealed deficits in sign morphology (reduced sign in-
ventory), syntax (simplified word order), semantics, and
distortions in sign space, but the signer had preserved non-
linguistic spatial functioning.28 Compared to the only other
published ECoG study on sign language by Crone et al.,7

higher gamma activity was also identified in the superior pa-
rietal lobe during signing compared to speech. However, the
temporal dynamics of this activation were not provided. They
also found that ECS in the superior parietal lobe interfered
with signed word production during a visual naming and

Figure 5 Combined spatiotemporal dynamics during sign and speech production

The temporal propagation of signifi-
cant high gamma active electrodes
during (A) sign production and (B)
speech production by cortical region
are shown. The brain reconstruction
indicates the significantly active high
gamma electrodes (black electrodes)
for the respective modality of lan-
guage production (same as in figure
2A). The cortical regions with signifi-
cant activity are colored. The plots
below show the temporal propaga-
tion of the onset of significant high
gamma activity, as time from lan-
guage production, for each region,
colored according to the corre-
sponding region. The solid circle is
the median onset time for each re-
gion, and the hollow circle represents
the onset time for each electrode in
the region.
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visual word repetition task. Thus, the timing of superior pa-
rietal activation was previously unknown. Our findings in-
dicate that superior parietal activity occurs before sign
production, suggesting that this region is not involved with
the monitoring of learned motor movements20 or monitoring
of proprioceptive language output,18,23 although a subsequent
role in monitoring is possible. We postulate that the left su-
perior parietal region has a specialized role in the spatial
configuration of hands during language production.

Posterior temporal activity was also specific to sign language
and did not contain right-hand motor activity or speech
language activity. It was active after sign production, a me-
dian of 440 milliseconds later. Our findings are consistent
with prior studies that also have found posterior temporal
region (V5/MT) activity during signing.29,30 This region is
likely involved with motion processing monitoring,31 and our
findings of activity onset after sign production support this.

Perirolandic activity likely represents primary motor regions
involved with sign production. High gamma activity was seen
during both sign language production and right-hand reaching
movements. ECS also identified right upper limb sensori-
motor functions in these regions. This is consistent with what
Crone et al.7 found during their study. Our ECS results did
identify overlapping sensorimotor functions in the peri-
rolandic region; however, this is consistent with what prior
studies have found during ECS.32,33

We found no significant sign-specific activity in the superior
temporal gyrus; however, speech production was identified in
this region. This is consistent with what Crone et al.7 found
during their visual naming task. They identified superior tem-
poral gyrus activity during auditory word repetition during
signing. However, the activity occurred before sign production,
and because their analysis was locked to stimulus presentation, it
represents the participant hearing the auditory stimulus.

We did not have adequate coverage of the inferior frontal
gyrus or anterior temporal regions to make any conclusions
about these areas. We suspect that there would have been
more overlap between sign and speech production in these
regions as prior fMRI studies have established.1–3 ECS of the
left inferior frontal gyrus during sign has also elicited reduced
movements and blocked signs and caused mistakes in hand
shape and location.34 We suspect that our ECS did not reveal
any speech language areas, likely due to lack of coverage in
these regions. It is also important to note that ECS identifies
critical language areas, and a limitation of this technique is that
a language region may be missed if alternative regions are able
to compensate for the disruption caused by ECS.

The main limitation in our study was our electrode coverage.
Coverage was determined by clinical needs, and although we
had extensive coverage over the left temporal-parietal region,
inferior frontal and anterior temporal coverage was limited. In
addition, we did not have coverage over the right hemisphere,

so we cannot make any conclusions about the lateralization of
our findings.

Another limitation of our study was that we failed to find sig-
nificant differences between the language tasks during signing,
specifically between visual naming and visual word repetition and
between auditory naming and auditory word repetition. Because
visual and auditory naming involves more semantic processing
than repetition, we expected to find greater high gamma activity
in the naming tasks or regions specific to semantic processing.We
suspect that these differences are located, among other regions, in
the inferior frontal and anterior temporal regions, which were not
sampled. Similarly, Crone et al.7 found high gamma activity for
both visual naming and visual word repetition in the superior
parietal regions. Overall, their study did not find significant dif-
ferences between visual naming or visual word repetition; they
also had limited inferior frontal coverage.

This study provides a unique window into the spatiotemporal
differences during production between a spoken and signed
language. It identifies a distinct network for sign production in
the perirolandic, parietal, and posterior temporal regions that
is not involved during speech production. ECoG provided
high-resolution temporal dynamics of these regions. Our
findings reveal that the superior parietal region is active before
sign onset, implicating its role in the planning and production
of sign language, potentially analogous to the role of the Broca
area in prearticulatory planning during speech production.
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