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Abstract
Thyroid hormones (THs) are key endocrine regulators of tissue development and homeostasis. They are constantly released 
into the bloodstream and help to regulate many cell functions. The principal products released by the follicular epithelial 
cells are T3 and T4. T4, which is the less active form of TH, is produced in greater amounts than T3, which is the most active 
form of TH. This mechanism highlights the importance of the peripheral regulation of TH levels that goes beyond the cen-
tral axis. Skin, muscle, liver, bone and heart are finely regulated by TH. In particular, skin is among the target organs most 
influenced by TH, which is essential for skin homeostasis. Accordingly, skin diseases are associated with an altered thyroid 
status. Alopecia, dermatitis and vitiligo are associated with thyroiditis and alopecia and eczema are frequently correlated with 
the Graves’ disease. However, only in recent decades have studies started to clarify the molecular mechanisms underlying 
the effects of TH in epidermal homeostasis. Herein, we summarize the most frequent clinical epidermal alterations linked 
to thyroid diseases and review the principal mechanisms involved in TH control of keratinocyte proliferation and functional 
differentiation. Our aim is to define the open questions in this field that are beginning to be elucidated thanks to the advent 
of mouse models of altered TH metabolism and to obtain novel insights into the physiopathological consequences of TH 
metabolism on the skin.
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The skin organ

The skin is the largest organ of the human body and a pri-
mary interface between the “inside” and the “outside” of 
the body. Consequently, it is the first line of defense against 
physical (e.g., sun rays) and biological assaults (microbes 
and allergens). The skin accounts for 16% of the total body 
weight and thanks to its continuous self-renewal activity, it 
is also a metabolically active organ that participates in the 
maintenance of homeostasis [1, 2]. For instance, by water-
proofing the most superficial cell layers, skin prevents rapid 
evaporation of water from the body [3]. It is also the largest 
sensory organ of the body. In fact, it can react to such exter-
nal stimuli as heat, cold, touch and pressure and is essential 

to maintain temperature control [3]. Skin also plays a vital 
role in vitamin D production [4, 5]. The structure of skin 
reflects the complexity of its functions. In fact, it is divided 
into two main structural compartments: the outer layer (“epi-
dermis”) and the inner layer (“dermis”) which are separated 
by a basement membrane that provides a stabilizing as well 
as a dynamic interface (Fig. 1).

The epidermis consists of four layers: the basal layer 
(stratum basale) above which are the spinous and granu-
lar layers and the outermost layer, the stratum corneum, 
which is largely responsible for the barrier function of 
the skin (Fig. 1). The predominant epidermal cells are the 
keratinocytes, which enable the epidermis to constantly 
self-replenish; indeed, the entire epidermis is replaced 
every 4 weeks [2, 4]. The bottom layer of the epidermis 
contains a row of undifferentiated “basal keratinocytes” 
that are responsible for continuous renewal of the epider-
mis, but only 15% of them are involved in this process, 
while the remaining cells are in a quiescent state. Dam-
age to the skin triggers proliferation of quiescent cells 
[6]. While proliferation is restricted to the basal layer, 
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upon differentiation basal keratinocytes move outwards 
through the suprabasal layers towards the surface of the 
skin and undergo terminal differentiation. The final prod-
uct of keratinocyte differentiation is the stratum corneum, 
which is responsible for the barrier function of the skin 
against the outside environment [7, 8]. Mammalian skin 
is composed of pilosebaceous glands that contain a hair 
follicle (HF) embedded in the dermis; at the bottom of the 
follicle, there is the hair bulb, which is made from prolif-
erating matrix cells and the dermal papilla (DP), which 
consists of specialized mesenchymal cells surrounded by 
the hair matrix cells. Epidermal stem cells reside in a spe-
cific region of the HF, named bulge; the epidermal stem 
cells ensure the continual turnover of the epidermis during 
skin homeostasis and regeneration. The balance between 
proliferation and differentiation is essential for the main-
tenance of the homeostasis of the skin [9].

Keratins are the main structural proteins synthesized by 
keratinocytes and are sequentially expressed in the layers of 
the epidermis [10]. The cytoskeleton of the basal keratino-
cytes is formed by filaments of keratin 5 and 14 (K5 and 
K14) [11]. Keratin gene expression changes during keratino-
cyte differentiation. In fact, under physiological conditions, 
in the spinous layer, K5 and K14 are replaced by K1 and 
K10 where they remain until cells are shed at the cornified 
layer (Fig. 1) [12]. In conditions of sustained hyperprolifera-
tion, such as psoriasis, inflammation or cancer, K1 and K10 
are replaced by K6, K16 and K17 in the suprabasal layers 
of the epidermis [13]. Behind the epidermis and membrane 
basement, the dermis provides both nutritional and structural 

support to the epidermis. The dermis is of mesenchymal 
origin and the main component of the dermal matrix is the 
connective tissue that includes collagen IV, fibronectin and 
laminin. The dermis contains fibroblasts that are required 
for the synthesis and renewal of the extracellular matrix as 
well as macrophages that eliminate foreign material [14].

Thyroid hormone action and metabolism

The concentration of TH in the bloodstream is regulated 
by the hypothalamic–pituitary–thyroid (HPT) axis [15]. 
Hypothalamic thyroid-releasing hormone (TRH) stimulates 
the release of thyroid-stimulating hormone (TSH) by the 
anterior pituitary gland. TSH stimulation in the thyroid is 
accompanied by the production of thyroxine (T4), which 
has a very low affinity for TH nuclear receptors and triiodo-
thyronine (T3), which is the most active form of TH [16]. 
The biological action of TH is finely regulated by different 
mechanisms that mediate: TH transport across the cellular 
membrane, the intracellular conversion of T4 into T3 or their 
inactivation and the interaction of active hormone T3 with 
nuclear thyroid hormone receptors (TRs) and their bind-
ing to DNA. Taken together, these mechanisms culminate 
in the transcriptional regulation of several TH target genes 
[16–18]. Notably, in addition to the classical genome mecha-
nisms of TH action, that are mediated by nuclear TRs, TH 
signaling occurs also by interacting with cellular proteins, 
such as binding with a membrane integrin αvβ3, mecha-
nisms known as non-genomic actions of TH. In target cells, 

Fig. 1  Anatomy of the skin and thyroid hormone signal. a The struc-
ture of the skin reflects the complexity of its functions. It is char-
acterized by two main components, the epidermis and the dermis, 
which are separated by a basement membrane. The outermost level, 
the epidermis, is a stratified squamous epithelium, that consists of a 
specific constellation of cells known as “keratinocytes”, which func-
tion to synthesize keratin. The epidermis is composed of several cell 
layers (from inside to outside): basal layer (BL), spinous layer (SL), 

granular layer (GL), stratum lucidum (SL) and stratum corneum (SC). 
b The TH signal is regulated in the skin by the transport of T3 and 
T4 across the plasma membrane and the enzymatic activation or inac-
tivation catalyzed by D2 and D3. Finally, the binding of T3 to TRs 
regulates the expression of responsive genes in the keratinocytes K5, 
K6, K14, K15 and K16, which confirms that TH is a key endocrine 
regulator that affects keratinocyte proliferation and differentiation
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the concentration of TH is controlled by three iodothyronine 
deiodinase enzymes (D1, D2 and D3) that belong to the 
selenocysteine-containing enzyme family and share a highly 
conserved active site containing the selenocysteine amino 
acid as the key residue within their catalytic center [19] 
(Fig. 1). These enzymes metabolize TH through a mono-
deiodination reaction that induces the removal of one iodine 
atom at the phenolic ring (“activation pathway”) or at the 
tyrosyl ring (“inactivation pathway”) of T4 and T3 [16]. In 
particular, D1 and D2 catalyze the conversion of T4–T3 by 
the removal of an iodine residue from the outer (phenolic) 
ring of thyroxine [20], while D3 is the physiological termi-
nator of TH activity that catalyzes the inactivation of T3 by 
deiodination of the inner (tyrosyl) ring of T4 to generate 
inactive metabolites as T2 or rT3 [21]. All three deiodinases 
are integral membrane proteins, but D1 and D3 are located 
in the plasma membrane, while D2 is found in the endoplas-
mic reticulum [16].

Thyroid hormone signaling in target cells results from 
interaction with TRs and T3–TRs complexes enhance or 
inhibit the expression of target genes by binding specific TH 
response elements (TREs) within chromatin [22]. The two 
isoforms of TH receptors, Thra and Thrb, are encoded by 
the THRA and THRB genes, respectively [21, 23]. Finally, 
intracellular TH action requires transport of iodothyronines 
across the cell membrane, a process that does not occur by 
passive diffusion but requires specific TH transporters [17]. 
Among the transporters that mediate TH influx and efflux, 
three have a high specificity for iodothyronines, namely 
OATP1C1, MCT8 and MCT10 [17].

Effects of thyroid hormones on skin physiology

Skin is a well-established target of TH action and TH is 
involved in fetal epidermal differentiation, barrier formation, 
hair growth, wound healing, keratinocyte proliferation and 
keratin gene expression (24) [25]. During embryonic devel-
opment, THs play a role in establishing the barrier function 
of the epidermis by increasing the activity of enzymes of the 
cholesterol sulfate cycle [26] and by affecting the develop-
ment of lamellar granules [26]. Surprisingly, the expression 
of fully functional proteins typical of the HPT axis and in 
particular of the TSH and TRH receptors has been found in 
human skin and in HFs [27]. Receptors for TSH and TRH 
in the skin induce the expression of skin-specific genes [28] 
and thus regulate epidermal physiology, adding a mecha-
nistic explanation of the correlation between the altered TH 
status and the most common dermatology diseases [29].

The action of TH on skin is mediated by TRs. Two TR 
isoforms have been identified in skin tissue: TRα and TRβ, 
which act as both positive and negative regulators of tran-
scription on various gene promoters (Fig. 1) [30]. TRs are 
expressed in epidermal and dermal cells, they have also been 

identified in skin appendages [31, 32] and both receptors 
can regulate, either positively or negatively, the expression 
of specific keratins in cultured cells [33, 34]. Studies of 
new born and adult human epidermal keratinocyte culture 
showed the conversion of T4–T3 or rT3, which suggests that 
deiodinases are expressed in skin [35, 36]. Subsequently, D2 
was found to be expressed in human skin in vivo, in epider-
mal and dermal cell cultures, whereas D1 is not expressed 
in skin [32, 37]. D3 is not expressed at significant levels in 
adult peripheral tissues, while it is expressed at meaning-
ful levels in epidermis and its expression is finely regulated 
during epidermal development [38–40]. It was recently dem-
onstrated that, during mouse embryogenesis, D3 appears at 
E15.5 in the epidermal layers and is highly expressed at 
E17.5 [40]. After birth, D3 is barely detectable in the epi-
dermal layers in early post-natal life (P2), it then starts to 
increase, reaches a peak at P10 and decreases thereafter [40].

Various TH target genes have been identified in skin 
including the keratins K5, K14, K6, K16, K15 and K17, 
which confirms that TH is a key endocrine regulator of kera-
tin expression and that it affects keratinocyte proliferation 
and differentiation (Fig. 1) [33, 37, 41]. Thyroid hormone 
treatment of human skin fibroblast cultures revealed various 
TH-responsive genes, including a member of the RAS onco-
gene family (RAB3B), collagen (COLVIA3-COLVIIIA1), 
the hypoxia-inducible factor (HIF)-1a, a calcineurin inhibi-
tor ZAKI 4a and members of the aldo–keto reductase (AKR) 
family [42]. Moreover, TH treatment induces down-regula-
tion of alcohol dehydrogenase 1B (ADH1B) and of FGF7, 
which is a member of the fibroblast growth factor family 
that controls keratinocyte differentiation and survival [43].

During amphibian metamorphosis, skin is transformed 
from a bilayered non-keratinized epidermis with a thin der-
mis into a stratified keratinized epithelium [34]. Thyroid 
hormone is relevant for skin transformation and correlates 
with the switch of embryonic keratins to adult keratins [34]. 
Thyroid hormone also promotes cell proliferation of dermal 
fibroblasts, which is responsible for inhibition of hyaluronate 
synthesis resulting from down-regulation of HAS2 mediated 
by TH [31, 41, 44].

Thyroid hormone and skin diseases

The epidermal pathology most frequently associated 
with TH alterations is systemic hyperhidrosis that affects 
patients with Graves’ syndrome, whereas chronic autoim-
mune thyroiditis, toxic multinodular goiter, toxic adenoma 
and exogenous TH treatment are less frequently associated 
with skin disorders [45]. The skin of hyperthyroid patients 
is dry and thinner than the skin of euthyroid subjects, as 
well as patients frequently experience flushing of the face, 
erythema of the palms and hyperhidrosis of the palms and 
soles (Tables 1 and 2) [46]. The skin in hypothyroid subjects, 
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caused by Hashimoto’s thyroiditis or congenital hypothy-
roidism in pediatric population, appears thicker, colder 
and has classical myxoedema respect a euthyroid subjects 
(Tables 1 and 2).

Most cutaneous diseases, for example vitiligo, eczema 
and dermatitis, are characterized by an altered immune 
status. This feature applies also to thyroid diseases such as 
chronic autoimmune thyroiditis thereby suggesting a possi-
ble interaction between these two diseases. Dermatitis her-
petiformis is a rare chronic, autoimmune disease that mani-
fests with popular vesicular rush and is associated with 
a variety of autoimmune diseases including Hashimoto’s 
thyroiditis [47]. In a recent study, the prevalence of IgG 
class for thyroglobulin and thyroperoxidase was found to 

be 48% in 115 patients with dermatitis herpetiformis versus 
16% in 107 unselected controls [48]. IgA class for thyroid 
antibodies were found in 29% of dermatitis herpetiformis 
patients [48]. In another study, overt thyroid disease was 
diagnosed in six (5%) of the dermatitis herpetiformis group 
and a further six patients had elevated TSH levels [48]. In 
addition, a study of 50 subjects suggested an association 
between thyrotoxicosis and dermatitis herpetiformis, on the 
basis of uncontrolled case reports [49]. All the afore-men-
tioned studies confirm the close association between epi-
dermal diseases and the presence of thyroid autoantibodies 
and chronic autoimmune thyroiditis. Moreover, vitiligo, a 
cutaneous autoimmune disease of pigmentation, is closely 
associated with Hashimoto disease particularly in women 

Table 1  Effects of altered thyroid hormone levels on pathophysiology of the skin

Table 2  Correlation of skin disorders with chronic autoimmune thyroiditis
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with a comorbidity of up to 34% [50]. It has also been 
seen that in the whole sample of patients with thyroid dis-
eases, the incidence of eczema was higher than in the con-
trol patients, mainly due to the high incidence of eczema 
among patients with primary thyrotoxicosis [51]. However, 
the mechanism underlying the association between these 
two diseases remains unknown. The most widely accepted 
hypothesis explaining the wide variety of cases in which 
skin diseases are associated with chronic autoimmune thy-
roiditis is the autoimmune hypothesis, which argues that 
thyroid antibodies as thyroglobulin (TgAb) and thyroper-
oxidase (TPOAb), are among the serum autoantibodies 
that react with and destroy melanocytes [48]. A fascinating 
hypothesis by Li et al., [52] proposes that, autoantibodies 
such as TgAb and TPOAb can induce a sustained oxidative 
stress, which in turn can result in enhanced apoptosis and 
senescence of melanocytes [52]. Such interesting hypoth-
esis needs further molecular investigation.

Thyroid hormone plays an essential role in the develop-
ment and maintenance of hair follicles [40], which suggests 
that loss of hairs may be a symptom of altered thyroid status. 
Alopecia is characterized by the loss of hair in patches, total 
loss of scalp hair (alopecia totalis) or total loss of body hair 
(alopecia universalis). The etiopathogenesis of hair loss is 
unclear, although there is evidence that autoimmunity and 
endocrine dysfunction may be involved [53]. Although an 
association between chronic autoimmune thyroiditis and 
alopecia has not been demonstrated, it is notable that the 
prevalence of thyroid disease in alopecia patients varies from 
8 to 28% [54]. In one study, Kasumagić-Halilović found a 
significant association between alopecia and thyroid autoim-
munity, as well as significantly higher antithyroid autoanti-
bodies in alopecia patients (25.7%) than in healthy subjects 
(3.3%) [55].

All the studies described herein indicate a close link 
between altered thyroid state and skin diseases, however, 
the mechanism underlying this comorbidity remain unclear. 
Therefore, it is in the interests of the scientific community to 
unravel the mechanism underlying the action of TH and its 
alteration in epidermal homeostasis for better understand-
ing the health of patients and improving their therapy and 
psychological status.

Mouse models of impaired thyroid status 
in epithelial homeostasis

As noted above, the clinical evidence that hyper- and hypo-
thyroid patients have epidermal defects such as hyperkera-
tosis, myxedema and sometimes alopecia, opened new 
questions about the link between thyroid hormones and 
skin homeostasis [32, 34, 56, 57]. Various mouse models 
of modulation of TH signaling have provided insights the 

molecular mechanism by which thyroid status influences 
skin morphology and function (see below).

TR mutant mice

Mouse models of thyroid hormone receptor (TR) knock out 
have been used to understand the role of these receptors 
in the skin. Most studies about the correlation between TR 
mutant mice and skin disorders have been performed by the 
group of Professor Aranda in Spain. They found that loss 
of TRα1 and TRβ reduces keratinocyte proliferation in the 
interfollicular epidermis [58]. They also found that double 
TRα1−/−β−/− mice have an attenuated skin hyperplasia after 
12-O-tetradecanolyphorbol-13-acetate (TPA) treatment [58]. 
In addition, defective proliferation in TRα1−/−β−/− mice 
was associated with reduction of cyclin D1 expression and 
up-regulation of the cyclin-dependent kinase inhibitors 
p19 and p27. They also observed that these animals had 
increased p65/NF-B and STAT3 phosphorylation and, as 
a consequence, augmented expression of chemokines and 
proinflammatory cytokines, which demonstrates that TH and 
their receptors are important mediators of skin proliferation 
and that TRs act as endogenous inhibitors of skin inflam-
mation [58].

In a subsequent study, Garcia-Serra et al. evaluated the 
role of TRs in the hair follicle cycle and in skin repair and 
found that TRα1−/−β−/− mice display impaired hair cycling 
associated to a decrease in follicular hair cell proliferation 
[59] and a wound-healing defect, with retarded re-epi-
thelialization and wound gaping associated to impaired 
keratinocyte proliferation [59]. The skin-phenotype of 
TRα1−/−β−/− mice was not associated with the reduction in 
the number of bulge stem cells, responsible for hair cycling 
and contribute to the regeneration of the new epidermis after 
wounding [6]. Rather, bulge stem cell activation was reduced 
in the TRα1−/−β−/− mice and was associated with aberrant 
activation of Smad signaling and reduced nuclear accumula-
tion of β-catenin, which is crucial for stem cell proliferation 
and mobilization [60].

It was also demonstrated TRα and TRβ depletion in 
mice affects the expression of several miRNAs which play 
a crucial role in epidermal proliferation, hair growth, wound 
healing and stem-cell functions [61]. In detail, the double 
TRα1−/−β−/− mice were characterized by a reduction of 
expression levels of miR-21, miR-31, miR-34 and miR-203, 
with altered expression of their established targets mRNAs 
[61]. The functional consequence of the reduction of the 
expression levels of these miRNAs is suggested by the find-
ing that many of their mRNA targets are crucial regula-
tors of skin homeostasis, thus reinforcing the concept that 
TRα1−/−β−/− mice model are useful to clarify the complex 
mechanism between the TH action and miRNAs in the main-
tenance of the skin homeostasis.
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Deiodinase mutant mice

The role of the deiodinases in the regulation of skin homeo-
stasis and pathophysiology has mainly been investigated 
using conditional, epidermal-specific mice models of D2 and 
D3 expression (38, 62–64). To investigate the role of D3 in 
keratinocyte growth and differentiation, we generated an ani-
mal model for epidermal D3 loss of function. To deplete D3 
in the epidermis, the  Dio3fl/fl mouse [65] was crossed with 
the transgenic mouse with the keratin 14-specific expression 
of a CRE recombinase, the sD3KO mouse [40]. Unlike the 
global D3KO mouse, in which developmental loss of D3 in 
the skin results in impaired clearance of TH thereby leading 
to elevated levels of TH action that reduce neonatal viabil-
ity, growth retardation and central hypothyroidism [66], 
epidermal-specific D3 depletion after birth does not alter 
systemic THs or TSH levels [40]. However, skin physiology 
is altered in sD3KO mice, which highlights the importance 
of local regulation of TH signaling in the adult epidermis. 
Indeed, epidermal D3 depletion reduced skin thickness, 
the expression of the proliferative keratins K6 and K5 and 
conversely accelerated keratinocytes differentiation [40]. 
Moreover, sD3KO mice have a delay in skin regeneration 
after wound-healing damage and D3 depletion also affect 
hair cycle, promoting a premature catagen–telogen transition 
[40]. The sD3KO mouse also confirmed that TH is a key reg-
ulator of the mouse hair follicle cycle. Indeed, enhanced TH 
signaling results in a premature catagen–telogen transition, 
accompanied by an altered evolution of the hair follicle [40].

Epidermal specific depletion of D3 also resulted in 
enhanced tumor formation. It was recently found that D2 and 
D3 play a time-dependent role during skin cancer formation 
and progression [64]. In fact, D2 and D3 are dynamically 
regulated during skin tumorigenesis [64], specifically D3 is 
a marker of the initial stages of tumorigenesis of squamous 
cell carcinomas; conversely D2 expression is associated with 
cancer progression. Thanks to the mouse model of epithelial 
deiodinases-depletion, the above-mentioned sD3KO mice 
and  K14CreERT+/−, D2 fl/fl (sD2KO) [67] enabled to assess 
the effective role of TH signaling in epithelial tumorigenesis. 
Notably, low-TH tumors (sD2KO) are fast growing tumors 
that have low metastatic propensity; conversely, high-TH 
tumors (sD3KO) grow slowly but metastasize rapidly [64]. 
These findings confirmed the concept that D3 is essential for 
the early stages of tumorigenesis [38, 63] and demonstrated 
that an enhanced TH signal is associated with high meta-
static risk. Finally, the functional link between TH activation 
by D2 and keratinocyte carcinomas was recently confirmed 
by the finding that D2 is regulated by the transcription factor 
NANOG in basal cell carcinomas and squamous cell car-
cinomas and that D2 and NANOG expression are closely 
associated during the progression of keratinocyte carcino-
mas [68].

A comparison between TRKO mouse models and sD2KO 
and sD3KO mouse models reveals an apparent paradox in 
the role played by TH signaling in epidermal homeostasis. 
Indeed, while TR depletion in keratinocytes or in mouse 
epidermis reduces cell growth and inhibits epidermal 

Fig. 2  Schematic description of mouse models of TH signal altera-
tion in the skin. TRKO mice show defective proliferation of keratino-
cytes in both physiological and pathological conditions. sD3KO mice 
show reduced proliferation and enhanced differentiation of keratino-

cytes and enhanced tumor invasiveness. Conversely, sD2KO mice 
display fasting growing Squamous Cell Carcinoma (SCC) tumors 
with low metastatic propensity
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differentiation, thereby suggesting that TH attenuation is 
associated with enhanced proliferation (Fig. 2), sD3KO 
results in reduced cell proliferation and enhanced differ-
entiation, with the opposite occurring in the sD2KO mice, 
which suggests that lowering TH action results in enhanced 
keratinocyte cell growth. A possible explanation of the 
divergent phenotypes of the TR- and deiodinase-KO mice 
is that, in TRKO mice, the global loss of TRs can affect 
epidermal homeostasis starting from embryonic develop-
ment, thereby reducing the TH signal in a time window in 
which the TH is essential for the development of several 
target tissues, included the epidermis. Conversely, the time-
specific deiodinase depletion in the sD2KO and sD3KO 
mice can give insights into the specific role of TH signaling 
in the adult. Alternatively, the epidermal–dermal cross-talk 
may affect skin homeostasis. Also in this regard, while the 
TRKO mice are TR depleted in both the dermal and epider-
mal region, the sD2KO and sD3KO mice carry the loss of 
deiodinase expression only in the epidermal layer.

What we have learned so far from the analysis of the 
sD2KO and sD3KO mice models is that deregulation of TH 
signaling drastically influences the proportion of the basal 
versus suprabasal layers of the epidermis. In the case of the 
sD3KO mouse, this process results in a thinner epidermis 
with a higher proportion of differentiated keratinocytes and 
a reduced number of precursor cells, which could explain 
the skin of hyperthyroid patients, which is dry and thin [45]. 
The enhanced susceptibility to the inflammatory insults in 
both TRKO and sD3KO mice reinforces the possibility that a 
more pronounced tissue inflammatory response can be elic-
ited when TH metabolism is unbalanced. This is in agree-
ment with the association of thyroid diseases with eczema 
and inflammatory dermatitis [51]. Finally, since both the 
models of loss of TRs and loss of D3 indicate that local 
unbalanced levels of TH are associated with alteration of 
hair follicle cycle, leads to the speculation that TH is a key 
regulator of the precise cyclic progression of the hair fol-
licle phases and suggest a mechanistic explanation of the 
association between chronic autoimmune pathologies and 
alopecia (54).

Conclusions

Among their many side effects on different tissues and 
organs pathologies, thyroid diseases affect skin. Accord-
ingly, decades of research led to the accumulation of mul-
tiple evidences of the influence of TH signal on epidermal 
development and homeostasis. However, given the complex-
ity of array of epidermal manifestations in patients with TH 
disorders, much remains to be unraveled.

In the past 2 decades, in vivo analysis of mouse models of 
TH deregulation has contributed clarifying some aspects of 

the molecular mechanisms regulated by TH in keratinocytes. 
Although promising results have been obtained indicating 
how the modulation of TH signal can affect keratinocyte 
proliferation/differentiation balance and therefore influence 
pathophysiological mechanisms such as wound healing and 
hair follicle cycle, the final picture emerging from the avail-
able studies is still incomplete for a variety of reasons. For 
instance, little is known about the role of TH in epidermal 
development, barrier formation or epithelial-dermal cross-
talk, or about the ability of TH signal alterations to influ-
ence the inflammatory response in the skin, which in turn 
can deeply affect the pathogenesis of skin disorders. Thus, 
there is a need to evaluate the role of altered TH signaling at 
precise stages of epidermal development, both in embryos 
and in TR- and deiodinase knock out models. Moreover, 
transcriptomic and proteomic analyses are needed to inves-
tigate the entire TH-dependent transcriptome in the skin. 
Unraveling how TH and its regulating molecules cooperate 
to regulate epidermal biology in health and disease may lead 
to the development of TH agonists or antagonists to treat 
various skin disorders.
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