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a b s t r a c t

LC–MS/MS is a major analytical platform for metabolomics, which has become a recent hotspot in the
research fields of life and environmental sciences. By contrast, structure elucidation of small molecules
based on LC–MS/MS data remains a major challenge in the chemical and biological interpretation of
untargeted metabolomics datasets. In recent years, several strategies for structure elucidation using
LC–MS/MS data from complex biological samples have been proposed, these strategies can be simply cat-
egorized into two types, one based on structure annotation of mass spectra and for the other on retention
time prediction. These strategies have helped many scientists conduct research in metabolite-related
fields and are indispensable for the development of future tools. Here, we summarized the characteristics
of the current tools and strategies for structure elucidation of small molecules based on LC–MS/MS data,
and further discussed the directions and perspectives to improve the power of the tools or strategies for
structure elucidation.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

The metabolome, first introduced in 1998, refers to the comple-
ment of small molecules in biological samples [1]. Small molecules
have been studied extensively, as many of them have special bio-
logical significance for cell biology, physiology and medicine [2].
For plants, small molecules can act as defense compounds (glucosi-
nolate in Brassicaceae, gossypol in cotton, etc.), and plant develop-
mental and growth regulators [3]. In addition, small molecules can
also function as signaling molecules, immune modulators, endoge-
nous toxins, and environmental sensors [4]. As the chemicals and
physical properties of small molecules are very diverse, the detec-
tion and identification of small molecules accordingly becomes a
major bottleneck for metabolomics [5–7].

Liquid chromatography–tandem mass spectrometry (LC–MS/
MS) is one of the major analytical platforms used in the small
molecule identification process [8]. Liquid chromatography sepa-
rates mixtures with multiple components can be mainly divided
into three parts: reversed-phase liquid chromatography (RPLC),
hydrophilic interaction liquid chromatography (HILIC) and ion
chromatography (IC) [9]. Tandem mass spectrometry provides
mass spectral information that can be used for identifying sepa-
rated components [10]. The mass spectrometry can be classified
into in-time (ion traps, FTICR) and in-space (quadrupoles, TOFs)
mass analyzers based on the principle of different platforms [11].
The mass spectrometry for LC–MS/MS commonly produces weak
or absent in-source fragment ions (MS1) with electrospray ioniza-
tion, compared to the mass spectrometry for GC–MS/MS using
electron ionization [12]. The precursor ions are selected to gener-
ate MS/MS spectra in collision-induced dissociation (CID) or higher
energy collisional dissociation (HCD) modes which can produce
complementary fragments for further detection and structure
annotation [10,13]. Compared to nuclear magnetic resonance
(NMR) and gas chromatography–tandem mass spectrometry
(GC–MS/MS), LC–MS/MS can produce more data and requires rela-
tively simple extraction steps, which makes it more popular for
exploring the metabolites in complex biological samples, espe-
cially for metabolomics [3,14]. For example, many features, defined
as unique ions with MS1 and retention time information [15], can
be routinely detected in biological samples, and follow-up studies
were conducted to uncover the regulatory mechanism of some
identified metabolites [16–24]. Regrettably, most features reported
in these studies remains unknown due to the vast diversity of
metabolites in biological samples, the lack of corresponding spec-
tra in MS/MS spectral libraries, the disunity of collision energy
with different platform, the existence of noise signal, the complex-
ity of LC conditions optimization and the lack of large and diverse
RT training sets [8,14]. For the past twenty years, many tools and
methods have been developed for annotating the features from
LC–MS/MS analysis [10,25]. These tools all involved in the metabo-
lite identification are based on the information of mass spectra and
retention time from LC–MS/MS [10,14,25]. In this review, we will
discuss the characteristics of the various tools and strategies for
metabolite identification based on LC–MS/MS data, and analyzes
the ways to further improve the power of the tools or strategies
for structure elucidation.
2. Acquisition and curation of LC–MS/MS data from complex
biological samples

The features, with information of chromatographic peak (reten-
tion time) and mass spectral peak (m/z), can be detected by multi-
ple software packages or frameworks such as MetAlign [26],
OpenMS [27], MZmine [28], XCMS [29] and CAMERA [30]. In a bio-
logical sample, over ten thousand features can be detected, while
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there are a large number of artifactual peaks, chemical contami-
nants, and signal redundancies, which hamper the identification
of ‘‘true” metabolites [31–35]. Those peaks are mainly arising from
background, isotopes, adducts, homodimers, heterodimers and in
source fragments [31–33,36], which can be identified based on
retention time grouping, correlations between features, features
clustering by retention time and calculating pairwise correlations,
chromatographic peak-shape similarity, relative adduct frequency,
isotope detection and specifying common adducts and neutral loss
events [30,32,36–48]. The filtered features can be then identified
via MS/MS spectra [36,38].

LC–MS/MS data from complex biological samples is produced
by liquid chromatography coupled with tandem mass spectrome-
try in targeted/untargeted MS based-metabolomics [10]. Targeted
metabolomics involves multiplexed analysis of a set of defined
metabolites using multiple reaction monitoring (MRM) and is lim-
ited with metabolites coverage compared to untargeted metabolo-
mics. In untargeted metabolomics, data-independent acquisition
(DIA) and data-dependent acquisition (DDA) are two approaches
to acquire MS/MS spectra [49]. In DDA acquisition workflows, the
precursor ions exceed a predefined threshold of intensity or other
predefined criteria are selected from a full scan analysis for further
fragments obtaining [50]. DDA generally produces relatively good
quality tandem mass spectra, which are friendly to the subsequent
structure elucidation [50]. In DIA acquisition workflows, precursor
ion and fragments information are obtained from alternating scans
acquired at either low or high collision energy in the collision
chamber [51]. For conventional DIA, including All-Ion Fragmenta-
tion (AIF), MSALL and MSE approaches, it is much difficulty to
deduce the physical relationship between the precursor ions and
their fragments for the wide scan range and the diversity of
metabolites in biological samples [49,51]. To enhance selectivity,
SWATH (sequential window acquisition of all theoretical
fragment-ion spectra) narrows the precursor ion selection range
to 20–50 Da consecutive isolation windows and gives a higher
quality spectra [52]. SWATH can obtain a similar quantitative
result with MRM, while deconvolution algorithms or tools are also
indispensably to deduce the assignment of precursors to the corre-
sponding fragment ions and improve the MS2 spectral quality, such
as MS-Dial, Progenesis QI (Waters Co., Manchester, UK) and Mas-
terView (AB Sciex, USA) [53,54].
3. Strategies for structure annotation of mass spectra

Strategies for structure annotation of mass spectra can mainly
classified into three categories which are separately based on
authentic standard compounds, public/commercial reference spec-
tral libraries and an in-silico approach. The strategy based on
authentic standard compounds is the earliest developed road to
illustrate the molecular structures of mass spectra, and is sufficient
for ‘Level 10 annotations (confident 2D structure annotations) in
metabolomics. However, a certain amount of pure chemical stan-
dards is essential for this strategy and most metabolites are not
commercially available, which make it often difficult and time-
consuming in many instances [55,56]. Structure annotation of
mass spectra relies on the searches of public/commercial reference
spectral libraries can result in ‘Level 20 annotations (probable
structures) in metabolomics. This strategy could provide more
information for mass spectra, while the number and reliability
are extremely reliant on the reference spectral libraries, which
are still limited compared with the number of potential metabo-
lites in complex biological samples [25,56]. The third strategy uti-
lizes quantum chemistry, heuristic-based methods, chemical
reaction-based methods, machine learning to predict the in-silico
mass spectra of a molecular library, or annotate the substructures



Z. Tian, F. Liu, D. Li et al. Computational and Structural Biotechnology Journal 20 (2022) 5085–5097
of query mass spectra and only requires a molecular structure
library, rather than reference spectral libraries. This strategy can
provide a large number of annotations, however, the accuracy of
the identification is relatively low to ‘Level 30 annotations (tenta-
tive structure candidates or putatively characterized compound
classes), or even equal to ‘Level 40 annotations (formula deter-
mined) [8,25,56].

3.1. Structure elucidation based on authentic standard compounds

Authentic standard compounds can be used for targeted meta-
bolomics, which focuses on several metabolites or a specific cate-
gory of metabolites. As a comparison of retention times with
references limits the range of candidates, a low-resolution LC–
MS/MS analyzer is sufficient for targeted metabolomics. In addi-
tion, the metabolites in untargeted metabolomics can also be iden-
tified with unique 2D structures based on authentic standard
compounds [57,58]. The key step of this strategy is to compare
the query mass spectra and retention time to that of purified
authentic standards, which can be obtained through purchases
from chemical companies or isolation from complex biological
samples or via enzyme-based synthesis from other purified
metabolites by enzymes [25].

Purchasing authentic standard compounds is the most conve-
nient way to conduct targeted metabolomics based on LC–MS/
MS, while this strategy limits targeted metabolomics to common
metabolites. For example, some amino acids, catecholamines,
lipids and steroids were detected in urine samples in a targeted
manner [59]. In addition to common metabolites, some species-
characteristic metabolites were also identified and detected by this
strategy. As an example, glucosinolates are distinctively present in
nearly all members of the plant order Capparales, and are well
studied as a model for research on secondary metabolism. The
qualitative and quantitative analysis of glucosinolates is relatively
easier than that of some other secondary metabolites [60]. In
recent years following the development of synthesis and separa-
tion technology, some vendors can provide thousands of standards
for researchers, such as IROA Technologies LLC (https://www.iroat-
ech.com/), Sigma–Aldrich (https://www.sigmaaldrich.cn/), and
Agilent (https://www.agilent.com.cn/).

3.2. Structure elucidation based on public/commercial reference
spectral libraries

The query mass spectra can be additionally identified by search-
ing the public/commercial reference spectral libraries, which are
built with authentic reference standards by institutions and com-
panies around the world. Thanks to the great progress that mass
spectrometry technology and chemical synthesis/isolation tech-
niques have made in the past two decades, many mass spectral
databases have been established and developed to extend millions
of reference mass spectral data for diverse instruments and differ-
ent collision energies, such as MassBank of North America (MoNA)
(https://mona.fiehnlab.ucdavis.edu/), the Golm Metabolome data-
base (https://gmd.mpimp-golm.mpg.de/), MassBank (https://
massbank.eu/MassBank/), METLIN (https://metlin.scripps.edu/),
mzCloud (https://www.mzcloud.org/), GNPS (https://gnps.ucsd.
edu/), NIST 20 (https://www.nist.gov/) andWiley Science Solutions
(https://sciencesolutions.wiley.com/) [61]. In addition, some spe-
cial spectral libraries were established for particular researches,
such as ReSpect (https://spectra.psc.riken.jp/) for phytochemicals-
related researches, HMDB (https://hmdb.ca/) for the human
metabolomics.

MassBank is the first public repository of mass spectra of small
chemical compounds for life sciences, and the mass spectra it
houses are from different instruments and multiple contributors
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[62]. With the efforts that global chemists and computer scientists
have made, many more sharing platforms have been established
for research from various fields and have greatly promoted the
development of metabolomics. MoNA is a centralized repository
with 695,425 spectra, including 145,316 MS/MS spectra, with the
spectra contained is mainly being contributed by MassBank,
ReSpect, HMDB, GNPS, LipidBlast, Vaniya/Fiehn Natural Products
Library and RIKEN PlaSMA. In addition to the free public spectral
libraries, several commercial spectral libraries were established
with well curated spectra and enriched contents. HMDB is a com-
prehensive database on small molecules from Homo sapiens and
contains 64,923 experimental MS/MS spectra of 4,064 metabolites
and 1,440,324 in-silico MS/MS spectra of 217,920 metabolites [63].
GNPS is a web-based mass spectrometry ecosystem, which also
collect the MS/MS spectra from public spectral libraries, including
Massbank, ReSpect, HMDB, CASMI [64]. METLIN is the largest
library of mass spectra among all of the public and commercial
spectral libraries, and hosts over 850,000 molecular standards with
over 4,000,000 curated high-resolution tandem mass spectra [65].
NIST 20 is another commercial spectral library contributed by
many researchers currently containing 1,320,389 spectra of
185,608 precursor ions from 30,999 chemical compounds. Among
all of the spectra in the library, both High-Resolution, Accurate-
Mass (HRAM) MS/MS (1,026,712 spectra for 27,840 chemical com-
pounds) and Low-Resolution MS/MS (215,649 spectra for 28,559
chemical compounds) are represented. In addition to the small
molecule, 90,244 spectra of 6,803 precursor ions from 1,904 pep-
tides were also included in this library. mzCloud is specialized with
high quality spectral trees of MSn spectra, which are generated
with various collision energies. As each tree represents a molecule
in this library, 19,515 molecules are contained with 2,310,148 pos-
itive mass spectra, and 7,875 molecules are contained with
850,580 negative mass spectra.

In addition to the size and quality of spectral libraries, the algo-
rithms of the search systems employed affect the outcomes of the
structure annotation of querying mass spectra against public/com-
mercial reference spectral libraries. In contrast to EI-based spectra
(produced by GC–MS), ESI-based spectra (produced by LC–MS/MS)
tend to be less reproducible, especially for the cross-instrument
comparisons, which raise higher requirements for the search sys-
tem [66–68]. In this regard, the traditional mass spectral library
search algorithms were firstly utilized for EI-based spectra, such
as dot-product, Euclidean distance and probability-based matching
(PBM) system. For dot-product and Euclidean distance, each mass
spectrum can be considered as a point in a multidimensional
hyperspace, with the axis presented by the mass (m/z) and the
position of the point presented by the intensities of those masses
[69]. Dot-product, as the name implies, calculates the dot product
of two vectors, of which one is the vector from the coordinate ori-
gin to the point of a query mass spectrum and the other one is a
library of mass spectrum. By analogy, Euclidean distance is the
algorithm that calculates the Euclidean distance between the two
points of the query mass spectrum and a library mass spectrum.
Comparing the two algorithms mentioned above, the PBM system
is relatively complex and cannot be described as an analytic func-
tion. However, the PBM system can to some extent avoid mismatch
results when the metabolite with the query spectrum is not in the
reference library [70]. Among those algorithms, dot-product
derived algorithm has gained widespread use for ESI-based spectra
[71,72]. To overcome the great differences of ESI-based spectra
from a range of instruments, some sophisticated matching algo-
rithms different from the routine algorithms were created [73–
75]. In an independent approach, X-Rank is based on statistical
relations between mass over charge values, ordered by intensities,
rather than taking into account absolute or relative intensities,
which makes it more effective in supporting cross platform identi-
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Fig. 1. The strategies for metabolite identification based on in-silico approach. (A) From top to bottom workflow represent, in order, the first strategy indicated by the red
arrows (generation of in-silico spectral libraries), the second strategy indicated by the orange arrows (substructure annotation for ESI-based spectra), the third strategy
indicated by the blue arrows (network-based strategies in metabolite identification for spectrum), (B) The workflow of the fourth strategy indicated by the yellow arrows
(metabolite identification for mass spectra with generative methods). (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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fication [75]. Recently, spectral entropy similarity has been devel-
oped in addition to the previous approaches, and has been proven
to outperform all classic algorithms by adapting concepts from
information theory [76].

3.3. Structure elucidation based on an in-silico approach

The range of metabolites in complex biological samples is
daunting, with hundreds of thousands of metabolites representing
the lower end of estimates, and this number is continually growing
[2,77–79]. PubChem (https://pubchem.ncbi.nlm.nih.gov/) [80] and
ChemSpider (https://www.chemspider.com/) [81] are the world’s
two largest collections of freely accessible chemical information.
While the number of compounds contained in PubChem and
ChemSpider has reached 111 million and 114 million, respectively,
the number of metabolites with MS data collected in the reference
library is considerably more limited, with the METLIN database,
which is the largest experimental spectral library, covers a mere
850,000 metabolites, which represents less than 1 % of the com-
pounds found in PubChem or ChemSpider [65]. To overcome this
difficulty, in-silico qualitative tools have been developed in the last
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decade [82–87]. Early tools were mainly developed by commercial
companies, such as Mass Frontier by Thermo Fisher Scientific.
Afterwards, many open-source mass spectrometry identification
software programs appeared, and most of those tools could be
divided into four categories (Fig. 1).

3.3.1. Generation of in-silico spectral or fragmental libraries
The earliest strategy for structure elucidation using MS/MS data

based on an in-silico approach is to predict mass spectra or frag-
ments from structures of chemical species subjected to a fragmen-
tation process. Generally, a SMILES string or other molecular string
is utilized for representing the structure of an individual chemical
[88–91]. The fragmentation process can be distinguished as quan-
tum chemistry, heuristic-based methods, and machine learning
[8,82].

Fragmentation methods based on quantum chemistry (QC)
were first established for structure annotation of EI-based spectra
[92–94]. Then, a quantum mechanical and molecular mechanical
combined approach was built for the structure annotation of ESI-
based spectra of large polypeptides [95]. Similarly, QCMS2 is
another approach that combines QC with a heuristic approach,

https://pubchem.ncbi.nlm.nih.gov/
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and can also simulate and understand the mass spectra of peptides
[96]. QC-FPT takes the dominant fragment peaks and 3D candidate
structures from a particular experiment and attempts to model the
collision-induced dissociation [97]. In contrast to the QC-FPT,
ChemFrag supports fragment ion annotations of an entire spec-
trum, rather than predicting the dominant mass spectrum [98].
Although fragmentation methods based on quantum chemistry
have been developed for nearly twenty years, a large amount of
computational power is required to implement this strategy, espe-
cially for large molecules, compared with tools based on other
strategies, such as machine learning approaches and heuristic-
based approaches [82].

Heuristic-based methods generate in-silico fragments relying on
a collection of general heuristic rules of fragmentation. For this
strategy, tools were developed for structure elucidation based on
the match scores between in-silico fragments and experimental
peaks. Among those tools, Mass Frontier (HighChem Ltd., Brati-
slava, Slovakia) was one of the earliest developed tools and
involves cleaving the bond in the structure based on reactions
described in the literature. In addition, MetFrag first generates all
possible fragments of the candidate structures using simple
bond-breaking rules and combinatorial fragmentation, and then
the fragmentation trees were traversed by breadth-first search
(BFS) [99]. Compared to MetFrag, MIDAS traversed the fragmenta-
tion trees by depth-first search (DFS), which was more memory-
efficient than BFS [100]. MAGMA performed the fragmentation of
a structure or a substructure by removing each heavy atom
sequentially (i.e. non-hydrogen atoms), and can be used for struc-
ture annotation of MSn data [101,102]. As hydrogens always rear-
range during bond cleavage in low-energy CID, MS-FINDER
applied nine hydrogen rearrangement (HR) rules to generate in-
silico fragments [103]. DEREPLICATOR + produced in-silico frag-
ments by disconnecting bridges and 2-cuts at NAC, OAC and
CAC bonds, and could identify many variants within spectral net-
works [104]. It was recently demonstrated that DEREPLICATOR +
improves the structure elucidation of general metabolites and nat-
ural products above that of the previous developed DEREPLICATOR,
which was a Heuristic-based algorithm that generated fragments
for peptidic natural products [104,105]. Heuristic-based methods
are also utilized for structure elucidation for a group of substances.
For example, the two heuristic-based tools, LipidBlast and Lipid-
Match, are popular tools for lipid identification [106,107]. The in-
silico spectra of LipidBlast contains 212,516 spectra covering
119,200 compounds from 26 lipid compound classes, were calcu-
lated with this strategy [108]. In addition, heuristic-based methods
can be worth ‘‘adjusting” the relative abundances of fragment ions
within in-silico generated tandem mass spectra to facilitate
metabolite identification [109]. Thus, heuristic-based methods
are considered to be very helpful strategies for the structure anno-
tation of fragment ions in the field of biochemistry.

The advent of machine learning has expedited the structure
annotation of experimental mass spectra. ISIS is one of the earliest
tools based on machine learning to find accurate bond cleavage
rates for collision-induced dissociation in an ESI-based spectrum,
and targets the identification of lipids [110]. CFM-ID, arguably
the most popular machine learning approach based on the Markov
module, was published to identify multiple collision energy spectra
[111]. The results showed that CFM-ID obtained substantially bet-
ter rankings for the correct candidate than existing methods (Met-
Frag and FingerID) on tripeptide and other metabolite data, when
querying PubChem [80] or KEGG [112] for candidate structures
of similar mass [111]. A new version of CFM-ID (version 4.0) has
been published recently, and it has been proven to be significantly
more accurate than previous versions [113]. With the advance of
artificial neural networks (ANNs), deep learning has been utilized
for the structure annotation of a considerable amount of experi-
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mental mass spectra, such as NEIMS for EI-based spectra [114].
By contrast, there has not been any deep learning method for
directly predicting ESI-based spectra of a given molecular. How-
ever, given the rapid development of public ESI-based spectral
libraries, it should be possible to develop such tools in the future.

3.3.2. Molecular fingerprints prediction for ESI-based spectra
Predicting molecular fingerprints for ESI-based spectra is

another strategy for metabolite identification based on in-silico
methods. Commonly, the molecular fingerprint can be represented
by a vector, in which each number represents the possibility for the
presence of the molecular property. The predicted fingerprint of
the unknown compound can be compared against the fingerprint
of each candidate molecular structure to produce a similarity score,
and then candidate structures are sorted according to the similar-
ity scores. In the case of a molecular fingerprint, the prediction of
the substructures or fingerprints for each query spectrum is the
key step. For example, FingerID is the first molecular identification
tool that predicts the molecular fingerprints for each query spec-
trum with a support vector machine (SVM) model trained by a
large set of tandem mass spectra in MassBank [115]. In addition,
CSI:FingerID performs molecular fingerprint prediction using mul-
tiple kernel learning with fragmentation trees inputted [116–118].
Instead of fragmentation trees, SIMPLE formulates a sparse interac-
tion model for metabolite peaks to predict fingerprints and is
lighter and more readily interpretable than CSI:FingerID [119].
The IOKRreverse model maps molecular structures into the MS/
MS feature space and then solves a pre-image problem to find
the molecule with the most similar fingerprint [120,121]. By con-
trast, ADAPTIVE is an IOKR-derivative tool that learns a model to
generate fingerprints for metabolites [122]. As a result, all of these
mentioned fingerprints are specific to both data and the task of
metabolite identification and are therefore nonredundant [122].
In addition to the above mentioned SVM-based methods, SF-
Matching achieved similar performance to CSI:FingerID with a ran-
dom forest model used for fingerprint prediction [123]. Compared
to common machine learning, deep learning is another strategy for
predicting the fingerprints of query mass spectra. MetFID applied
an artificial neural network with two hidden layers to predict a
composite vector comprising of 528 binary entries [124]. McSearch
applied core structure-based search (CSS) algorithm based on
hypothetical neutral loss values to predict the core substructure
of the query MS [125].

3.3.3. Network-based strategies in structure elucidation for spectrum
Network-based strategies could be not only used for predicting

the functional activity or category of metabolites directly from
spectral features [126,127], but also for metabolite identification
per se [128,129]. iMet was the first metabolite identification tool
based on spectral similarity and structure similarity for MS data
[130]. Regarding this method, neighbor metabolites (with similar
MS/MS spectra) share structural similarities, so the unknown
metabolites could be identified according to the identification of
the neighbor metabolites. This strategy can be easily integrated
with other methods to improve the accuracy of metabolite identi-
fication. As an example, NAP integrated MetFrag into network-
based strategy, which improved the ranking of the correct spectra
from a mean ranking position of 14.7 to a mean ranking position of
4.7 [131]. This network-based strategy embraces the construction
of two kinds of networks: one is a network usually based on spec-
tral similarity, the other is a network usually based on structural
similarity. Compared with NAP, MetDNA uses the reaction in KEGG
instead of the fingerprint similarity to represent the structure sim-
ilarity and cumulatively annotated approximately 2000 metabo-
lites from one experiment [132]. DeepMASS and MS2DeepScore
both train deep learning models to predict structural similarity
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scores for spectral pairs instead of other spectral similarity scores,
such as dot-product, and then construct a network for metabolite
identification [133,134]. MS similarity scores can also be presented
by the fingerprint similarities predicted from mass spectra. For
example, Spec2Vec is a novel spectral similarity score inspired by
Word2Vec, which is a natural language processing algorithm.
Word2Vec learned fragmental relationships within a large set of
spectral data to derive abstract spectral embeddings that can be
used to assess spectral similarities [135]. The feature information
(e.g., isotope patterns, adduct formation, chromatographic reten-
tion times, and fragmentation patterns) can also be used for aiding
the construction of metabolite networks [44,136,137].Compared to
the above-mentioned methods, NetID connected MS peaks based
on mass differences reflecting adduction, fragmentation, isotopes,
or feasible biochemical transformations, and performed the global
network optimization to produce an optimal and consistent net-
work annotation by linear programming [138].
3.3.4. Structure elucidation for mass spectra with generative methods
The above-mentioned strategies for metabolite identification

based on in-silico approach are seriously dependent on the struc-
ture libraries, and the identification results must be included in
those libraries. For the diversity of chemical modification in com-
plex biological individuals, especially for plants, there are still
many metabolites not included in public libraries. Meanwhile, it
is immensely time-consuming to predict the in-silico spectra or cal-
culate all of the fingerprints for all metabolites. The direct
approach is to translate the query high-resolution mass spectral
peak to a representation (for instance, in SMILES) of the annotated
metabolite rather than to predict the in-silico spectrum from the
structure or intermediate fingerprints from the query spectrum,
which requires another comparison process. In a similar approach
MassGenie utilizes a transformer-based deep neural network cou-
pled with VAE-Sim, a variational autoencoder (VAE)-based model,
to directly predict the structure of a molecule from the query spec-
trum [139]. VAE-Sim is a variational autoencoder that is the back-
bone of MassGenie, which is used to generate ‘true’ molecules
[140]. This strategy for direct prediction of a molecule from the
query MS has been studied recently, proving it is convincing to
provide valuable clues to expedite structure annotation of experi-
mental mass spectra. However, in some ways, the accuracy of iden-
tification could be further improved. For instance, SMILES, a
regular molecular representation, could be replaced by SELFIES
[141] and DeepSMILES [142], which are more convenient methods
for representing a valid molecule.
3.3.5. Other in-silico methods assisting the structure elucidation
Besides the above four classes of methods, some other machine

learning approaches were developed to assist the metabolite iden-
tification. MS2LDA adopted Latent Dirichlet Allocation, an algo-
rithm originally used for text mining, to extract the co-occurring
molecular fragments and neutral losses [143]. With structure
annotation for the extracted motifs by additional methods, the
compounds can be identified with candidate structures or classi-
fied. MESSAR (MEtabolite SubStructure Auto-Recommender)
extracted spectral features of spectra and generated substructures
of metabolites in the spectral library, then generated the associa-
tion rules linking spectral features (with exact masses) with speci-
fic substructures based on the concept of association rule mining
(ARM) [144]. With the association rules applied, the structure elu-
cidation or classification of metabolites can be conducted automat-
ically. It is a very complex and time-consuming process to identify
metabolites with a unique structure, while it can be a solution to
perform automatic classification of compounds into compound
classes based on machine learning methods [145,146]. In particu-
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lar, CANOPUS used a deep neural network to classify the metabo-
lites based on mass spectrometry [147].
4. Retention time prediction methods assisting structure
elucidation based on LC–MS/MS data

In addition to the MS information, chromatographic behavior,
reflecting the physicochemical properties (molecular weight,
hydrophobicity, polarity, molecular shape etc.) of metabolites,
should also provide structural information. As an example, many
isomeric compounds are indistinguishable in both MS^1 and tan-
dem MS analyses, and must be resolved chromatographically if
separate quantitation and identification is desired. Retention time
prediction commonly are not utilized for structure elucidation sep-
arately, while the results of retention time prediction can be com-
bined to screening the candidates and/or improve candidates
rankings based on mass spectra information [148,149]. Empiri-
cally, the octanol/water partition coefficients (log P values) of each
metabolite were believed to determine the chromatographic reten-
tion time, and the linear solvation energy relationships (LSERs)
equation was utilized for predicting retention data in early
researches [150,151]. Such technique, relating the variations in
one response variables (chromatographic retention time) to the
variations of several descriptors, is called Quantitative structure–
retention relationships (QSRRs) [151,152]. The chromatographic
retention time always varies considerably depending on the exper-
imental conditions such as column packing, flow rate, elution gra-
dient, and PH of the mobile phase. Afterwards, much more
complex models and larger training sets were used for the predic-
tion of LC retention time (Table 1). Among those methods, Molec-
ular descriptors (MDs) are the most common variables for LC
retention time prediction, as MDs encode structural information
and chemical information, such as the type of atoms and bonds,
number of rings, charge, and stereochemical configuration,
through mathematical and statistical approaches [153]. MDs have
been widely utilized for training common machine learning mod-
els, such as multiple linear regression (MLR), random forest (RF)
regression, support vector machine (SVM), and partial least
squares (PLS) regression. With the advance of artificial neural net-
works (ANNs), it has been proven that deep neural networks
(DNNs), convolutional neural networks (CNNs), recurrent neural
networks (RNNs) and graph neural networks (GNNs) models (neu-
ral network types of ANNs) show robust performance for RT pre-
diction in both RP and HILIC chromatography, compared to
XGBOOST, BRNN, RF and LIGHTGBM [154–159]. For the METLIN
small molecule retention time (SMRT) dataset, the artificial neural
networks (ANNs) had lower mean absolute error (MAE, MAE =
�0.5 min) than the traditional machine learning model (MAE =
�1 min) [156,160]. While the training datasets of thousand
metabolites were still not sufficient for the ANNs models, and with
more MDs and more complex models considered, a larger database
was needed to overcome the overfitting problem [154]. As the
chromatographic retention time always varies considerably
depending on the experimental conditions, it is a priority to make
community sharing of RT information possible across laboratories
and chromatographic systems [161,162]. To obtain more data-
bases, an approach directly mapping RTs between different sys-
tems was developed, and a sufficient number of common
compounds were needed in both systems for this approach [161].
In addition to directly mapping RTs, a retention order prediction
model can also be trained using retention time measurements
from different LC systems and configurations, and this can be an
effective way to learn the retention behavior of molecules from
heterogeneous retention time data [148]. In addition to the large
databases, transfer learning in combination with self-supervised



Table 1
Publications relevant to RT prediction.

Publication Year LC
type

Model type Size of training data Molecular type Variables

Hagiwara et al.
[175]

2010 RP-LC SVR and MLR 150 authentic compounds 9 MDs

Creek et al. [176] 2011 HILIC MLR 120 authentic compounds 6 MDs
D’Archivio,

Maggi and
Ruggieri
[177]

2014 RP-LC MLR and PLS regression 47 authentic compounds butyl esters of
47
acylcarnitines

73 MDs

Kouskoura,
Hadjipavlou-
Litina and
Markopoulou
[178]

2014 RP-LC PLS regression 100 authentic compounds 66 MDs

D’Archivio et al.
[179]

2014 RP-LC DNNs 24 authentic compounds s-triazines 5 MDs

Cao et al. [180] 2015 HILIC MLR and RF 93 authentic compounds 346 MDs
Aicheler et al.

[181]
2015 RP-LC SVR 201 authentic compounds lipid 11 MDs

Munro et al.
[182]

2015 RP-LC DNNs 166 authentic compounds drugs 17 MDs

Falchi et al.
[183]

2016 RP-LC Four combined (fingerprints + ordinary) KPLS
models

1383 authentic compounds molecular and
fingerprints
descriptors

Ovcacikova et al.
[184]

2016 RP-LC The second degree polynomial regression 400 authentic compounds lipid The carbon
number (CN) and
the double bonds
(DB) number

Aalizadeh et al.
[185]

2016 RP-LC MLR, DNNs, and SVM 528 and 298 compounds for positive
and negative electrospray ionization
mode respectively

6 MDs

Wolfer et al.
[186]

2016 RP-LC Combination of RF and SVR models 442 authentic compounds 97 MDs

Kubik and
Wiczling
[187]

2016 RP-LC Lasso, Stepwise and PLS regressions 115 authentic compounds drugs 50 MDs

Barron and
McEneff
[188]

2016 RP-LC DNNs 1,117 authentic compounds 16 MDs

Randazzo et al.
[189]

2016 RP-LC PLS regression 91 authentic compounds steroids 97 MDs

Taraji et al. [190] 2017 HILIC PLS regression 16 authentic compounds b-adrenergic
agonists and
related
compounds

321 MDs

Taraji et al. [191] 2017 HILIC PLS regression 98 authentic compounds pharmaceutical
compounds

321 MDs

Zhang et al.
[192]

2017 RP-LC MLR 24 authentic compounds 16-membered
ring macrolides

8 MDs

Park et al. [193] 2017 RP-LC MLR 41 authentic compounds drugs 10 MDs
Wen et al. [194] 2018 RP-LC PLS regression 148 authentic compounds 126 MDs
Wen et al. [195] 2018 RP-LC PLS regression 191 authentic compounds 128 MDs
McEachran et al.

[196]
2018 RP-LC PLS regression 97 authentic compounds 7 MDs

Hall et al. [197] 2018 RP-LC DNNs 1,955 authentic compounds 47 MDs
Bouwmeester,

Martens and
Degroeve
[198]

2019 RPLC
(33) &
HILIC
(3)

Bayesian Ridge Regression (BRR), Least Absolute
Shrinkage and Selection Operator (LASSO), DNNs,
Adaptive Boosting (AB), Gradient Boosting (GB),
RF and SVR

6,759 authentic compounds 151 MDs

Bonini et al.
[154]

2020 HILIC
& RP-
LC

XGBoost, Bayesian-regularized Neural Network
(BRNN), RF, Light Gradient-Boosting Machine
(LightGBM), DNNs

1,023 (HILIC) & 494 (RP-LC) authentic
compounds

286 MDs

Ju et al. [163] 2021 HILIC
& RP-
LC

DNNs + TL 77,898 authentic compounds (DNNs),
and 17 data sets (Transfer Learning)

1,470 MDs

Osipenko et al.
[159]

2021 HILIC
& RP-
LC

RNNs + TL 1 million molecules (pre-training)
and 269–457 authentic compounds
(transfer Learning)

SMILES

Kensert et al.
[156]

2021 HILIC
& RP-
LC

Graph Convolutional Networks (GCNs) 77,980 (SMRT), 852(RIKEN) and
1,400 (Fiehn HILIC) authentic
molecules

Graph and 25
atom and bond
features

Yang et al. [157] 2021 HILIC GNNs + TL in silico HILIC RT dataset with about
306 K molecules for GNNs, 100�200
molecules for TL

Graph, 16 kinds of
atoms and 4 kinds
of bonds

(continued on next page)
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Table 1 (continued)

Publication Year LC
type

Model type Size of training data Molecular type Variables

Yang et al. [158] 2021 RP-LC GNNs + TL 80,038 authentic molecules (SMRT)
for Graph Neural Network, and the
MoNA and PredRet datasets for
Transfer Learning

Graph

Souihi et al.
[199]

2022 HILIC
& RP-
LC

RF regression 78 authentic compounds 153 MDs

Liapikos et al.
[200]

2022 RP-LC Bayesian Ridge Regression (BRidgeR), Extreme
Gradient Boosting Regression (XGBR) and SVR

26–350 authentic compounds 70–92 MDs

Fedorova et al.
[155]

2022 RP-LC 1D CNN + TL 77,983 authentic molecules (SMRT)
for 1D CNN, 5 data sets for Transfer
Learning

SMILES

Table 2
Fusion tools for metabolite identification based on LC–MS/MS.

Name Function Availability

ChemDistiller FingerScorer + FragScorer https://bitbucket.org/iAnalytica/chemdistillerpython/src/master/
SIRIUS ‘‘Sirius”, CSI:FingerID (with COSMIC), ZODIAC and CANOPUS https://bio.informatik.uni-jena.de/software/sirius/
msms_rt_score_integration Mass spectrum and retention time prediction https://github.com/aalto-ics-kepaco/msms_rt_score_integration
MetFrag MetFrag (algorithm) + reference library search + retention

times prediction
https://msbi.ipb-halle.de/MetFragBeta/

MetDNA Structure elucidation from knowns to unknowns https://metdna.zhulab.cn/metdna/analysis
MS-DIAL MS-FINDER + LipidBlast + reference library search https://prime.psc.riken.jp/compms/msdial/main.html
GNPS mass spectrometry ecosystem for sharing of MS data and

metabolites identification
https://gnps.ucsd.edu/ProteoSAFe/static/gnps-splash.jsp

NAP spectral networks to propagate information from spectral
library matching

https://proteomics2.ucsd.edu/ProteoSAFe/?params=%7B%22workflow%
22:%22NAP_CCMS2%22%7D
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pre-training is another option to overcome the limitation of the
training data required for training ANNs models [159,163,164].
5. Fusion tools for metabolite identification based on LC–MS/MS
data

Metabolite identification based on LC–MS/MS data is a sophisti-
cated subject that involves analysis of authentic standard com-
pound LC–MS/MS data, comparison between query spectra and
reference/in-silico spectra, sub-annotating of the features, and pre-
diction of retention time of metabolites. In this regard, the devel-
opment of fusion tools, in the form of client software or web
servers, has greatly boosted the utilization of LC–MS/MS in the
metabolism of complex biological samples (Table 2). ChemDistiller
is a fusion software that combines a fingerprint prediction algo-
rithm (FingerScorer) inspired by CSI:FingerID with an in-silico frag-
mentation algorithm (FragScorer) inspired by CFM-ID and MetFrag,
and can retrieve and rank candidates from multiple target data-
bases [165]. SIRIUS is a java-based software framework integrating
a collection of tools, including ‘SIRIUS’ (the core function of SIRIUS),
CSI:FingerID (with COSMIC), ZODIAC and CANOPUS [166–168].
Besides CSI:FingerID (a fingerprint predictor) and CANOPUS (a
metabolites classifier) mentioned above, COSMIC [167] provides
a confidence score for every structure annotated by CSI:FingerID
and ZODIAC [166] performs de novo molecular formula annotation.
Additionally, MS-DIAL combines MS-FINDER, LipidBlast with refer-
ence library search engine to solve the comprehensive identifica-
tion of metabolites further in complex biological extracts
[146,169]. Strategies based on public/commercial spectral libraries
and in-silico approaches can be combined to improve the accuracy
and rate of metabolite identification. As a concept of network-
based identification, NAP and MetDNA also build their own repos-
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itories of mass spectra for the first seed identification, and in-silico
structure annotation is then propagated through the network
[131,132]. GNPS is a data repository and collection of different
web services of computational methods, including NAP and DERE-
PLICATOR+, and aims to build an open-access mass spectrometry
ecosystem for sharing of raw, processed, or annotated fragmenta-
tion mass spectrometry data (MS/MS) [64]. Combined with mass
spectrometry data, the RT can also be utilized as additional and
orthogonal information for the putative identification of small
molecules [170]. MetFrag combines compound database searching,
retention times prediction, and in-silico fragments prediction for
small molecule identification from tandem mass spectrometry
data [99,171,172]. Although, the fusion tools involving RT predic-
tion are still limited compared to those tools based on both in-
silico and experimental spectral libraries, retention time prediction
and utilizing artificial neural networks, was proven to reduce
structure isomer hit lists when used prior to in-silico spectral pre-
diction software [149]. Retention order prediction and spectrum-
based scores can also be combined for more accurate metabolite
identifications in a LC–MS/MS experiment [148]. All these studies
have thus triggered new initiatives for developing fusion tools
based on RT to promote the use of LC–MS/MS.
6. Conclusions and perspectives

Commonly, the strategy based on authentic standard com-
pounds can provide relative credible structure elucidation,
whereas the number of the structure annotations is almost too
small compared to the number of metabolites in complex biologi-
cal samples. Recently, the strategy based on public/commercial ref-
erence spectral libraries is developing rapidly, as the reference
spectral libraries can be collected from the institutions and compa-

https://bitbucket.org/iAnalytica/chemdistillerpython/src/master/
https://bio.informatik.uni-jena.de/software/sirius/
https://github.com/aalto-ics-kepaco/msms_rt_score_integration
https://msbi.ipb-halle.de/MetFragBeta/
https://metdna.zhulab.cn/metdna/analysis
https://prime.psc.riken.jp/compms/msdial/main.html
https://gnps.ucsd.edu/ProteoSAFe/static/gnps-splash.jsp
https://proteomics2.ucsd.edu/ProteoSAFe/?params=%257B%2522workflow%2522%3a%2522NAP_CCMS2%2522%257D
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nies around the world in a simple way. The in-silico approaches can
produce numerous complement structure annotations for the
results of the above strategies, whereas the accuracy of the anno-
tation based on in-silico approaches is quite lower than that of
strategies based on authentic standard compounds or public/com-
mercial reference spectral libraries. Although many tools for struc-
ture elucidation based on LC–MS/MS data have been developed in
recent years, most of them have been shown to lack a degree of
reliability that needs to be evaluated by a third-party organization.
In particular, the Critical Assessment of Small Molecule Identifica-
tion (CASMI) is an open contest on the identification of small mole-
cules from mass spectrometry data and has been held five times
since 2012 (https://casmi-contest.org/) [83,173]. With top or top
n candidates used for evaluating the approaches, the individual
in-silico approaches were proved to produce structure elucidation
with low accuracy (17–25 %), while the combination of the strategy
based on public/commercial reference spectral libraries and in-
silico approaches can correctly identified up-to 87–93 % [83]. It is
believed that the prediction models with different strategies com-
bined are more suitable for real-world applications, at least, more
training MS data and fragment rules need to be achieved to opti-
mize the prediction models of in-silicomethods, especially for deep
learning models. In addition, no third-party organization appeared
heretofore to host an open contest on the RT prediction. Though
the critical assessment for RT prediction models from different
researches is usually difficult, as the chromatography conditions
are much diverse across different platforms, the prediction models
can be optimized by larger and more diverse training datasets.
With the continuing and developing collection of RT datasets, we
believe that complex deep learning models, like transfer learning,
could accurately predict RT across different platforms.

In addition to the algorithms for structure elucidation of
metabolites based on LC–MS/MS data, the construction and preser-
vation of public data are also crucial to metabolomics. Although a
large number of reference spectral databases have been built, most
of the databases are still insufficient to train a complex model,
especially for deep learning models. With the rapid development
of public MS libraries, like GNPS and MassBank, we are convinced
that a much larger, comprehensive and user-friendly library will be
established for the researchers in the world. Such a resource,
alongside faithful adherence to recently published standards for
metabolomics reporting [174], allow us to be confident that the
large coverage gap between annotated and non-annotated
metabolites will ultimately be closed.
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