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ABSTRACT
Deep-ultraviolet (DUV) nonlinear optical (NLO) crystals that can extend the output range of coherent
light below 200 nm are pivotal materials for solid-state lasers. To date, KBe2BO3F2 (KBBF) is the only
usable crystal that can generate DUV coherent light by direct second harmonic generation (SHG), but the
layered growth habit and toxic ingredients limit its application. Herein, we report a new
fluoroborophosphate, (NH4)3B11PO19F3 (ABPF), containing four different functional units: [BO3],
[BO4], [BO3F] and [PO4]. ABPF exhibits a KBBF-like structure while eliminating the limitations of KBBF
crystal. The unique [B5PO10F]∞ layers enhance ABPF’s performance; for example, it has a large SHG
response (1.2×KDP) and a sufficient birefringence (0.088 at 1064 nm) that enables the shortest
phase-matching wavelength to reach the DUV region. Meanwhile, the introduction of strong B-O-P
covalent bonds decreases the layered growth habit.These findings will enrich the structural chemistry of
fluoroborophosphate and contribute to the discovery of more excellent DUVNLO crystals.
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INTRODUCTION
Deep-ultraviolet (DUV) nonlinear optical (NLO)
materials can expand the frequency range of all-
solid-state lasers through cascaded secondharmonic
generation (SHG), which has important applica-
tions in lithography, semiconductor manufacturing
and many other fields [1,2]. There are at least three
basic requirements for DUVNLOmaterials: a large
NLO coefficient (dij > 0.39 pm V−1) to improve
laser conversion efficiency; a short cutoff edge in
the DUV region (λcutoff ≤ 200 nm); and suitable
birefringence (�n: 0.05–0.10) to meet the phase-
matching (PM) condition in the DUV region [3,4].
These mutually constraining indicators (dij, λcutoff
and �n) are mainly determined by the electronic
structures and microscopic properties (hyperpolar-
izability, highest occupied molecular orbital-lowest
unoccupied molecular orbital (HOMO-LUMO)
gap and polarizability anisotropy) of the anionic
groups and their arrangements [5–7]. Unfortu-
nately, a single anionic group can barely balance
all three conditions due to the intrinsic limitations.

In general, non-π -conjugated units, such as [BO4],
[PO4] and [SO4], possess a large HOMO-LUMO
gap that is beneficial toDUV transparency, however,
their small polarizability anisotropy leads to small
birefringence that cannot achieve the desired DUV
PM property [8–10]. π -conjugated groups, [BO3],
[CO3], [NO3], etc., have anticipated large optical
anisotropy but the terminal oxygen atoms with dan-
gling bonds harm the DUV transparency [11–15].
Based on these, several functional units with differ-
ent utilities could be combined through somedesign
strategies, such as chemical-substitution-oriented
design, to obtain new structures that can fulfill ex-
pectations [16–19]. The well-known NLO material
KBe2BO3F2 (KBBF), for example, can generate a
DUV coherent light through direct SHG due to its
unique two-dimensional (2D) [Be2BO3F2]∞ layers
composed of [BO3] and [BeO3F] units. However,
its layered growth habit, resulting from large inter-
layer spacing (6.25 Å), and the high toxicity of raw
materials are not desirable [11].

Traditionally, the exploration of UV NLO
crystals is mainly focused on borate and phosphate

C©TheAuthor(s) 2022. Published byOxfordUniversity Press on behalf of China Science Publishing&Media Ltd.This is anOpen Access article distributed under the terms of the Creative
Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original
work is properly cited.

https://doi.org/10.1093/nsr/nwac110
https://orcid.org/0000-0002-1331-0185
mailto:ffzhang@ms.xjb.ac.cn
mailto:slpan@ms.xjb.ac.cn
https://creativecommons.org/licenses/by/4.0/


Natl Sci Rev, 2022, Vol. 9, nwac110

systems, and typical crystals include LiB3O5 (LBO),
β-BaB2O4 (BBO) and KH2PO4 (KDP) [20–23].
Borophosphate, as a mixed-anionic system, is also
a source of NLO crystals, and BPO4 (BPO) and
MBPO5 (M = Sr, Ba) have been reported as NLO
crystals with excellent properties [8,24]. Recently,
we proposed a ‘fluorination strategy’ by substituting
fluorine for oxygen atoms in borates to regulate
the structure of NLO crystals, so as to achieve
the balance of the three parameters mentioned
above (i.e. dij, λcutoff and �n) [5,6,25]. Also, this
strategy was further extended to the phosphate
system. Consequently, [BOxF4-x] (x = 1, 2 and
3) and [POxF4-x] (x = 2, 3) units with superior
microscopic properties were employed in NLO
materials design, which led to the discovery of
the promising NLO crystals: AB4O6F (A = NH4,
Na, Rb, Cs), MB5O7F3 (M = Mg, Ca, Sr, Pb),
(NH4)2PO3F, NaNH4PO3F·H2O, etc. [26–34].
However, fluoroborophosphate, as a system with
even more functional anionic groups, has been left
behind. To date, only 14 cases of fluoroborophos-
phates (organic–inorganic hybrids and mineral
compounds are not included in the statistical data
here) have been reported and deposited in the
international inorganic crystal structure database
(ICSD) [35–43]. As shown in Supplementary
Table 1, non-π -conjugated units, including [BO4],
[BO3F], [BO2F2], [PO4] and [PO2F2], construct
the backbone of fluoroborophosphates. These
compounds have large band gaps in the range
of 4.34–6.45 eV, indicating their feasibility for
applications in the UV or DUV region. Among
them, five compounds are acentric and exhibit a
moderate SHG response of 0.3–1.1 times that of
benchmark KDP. Their birefringence (≤0.044) is
not large enough to satisfy the DUV PM condition.

In this work, we attempt to introduce π -
conjugated [BO3] units into the fluoroborophos-
phate system to enhance the birefringence, thus
regulating thePMwavelength forDUVapplications.
A new fluoroborophosphate, (NH4)3B11PO19F3
(ABPF), with four kinds of structural units—[BO3],
[BO3F], [PO4] and [BO4]—was successfully de-
signed and synthesized. Fascinatingly, ABPF
exhibits a new type of KBBF-like structure with
unique [B5PO10F]∞ layers connected by shared
oxygen atoms forming the final 3D framework. It
inherits the excellent properties of KBBF, such as
a wide transparency range, a large SHG response
and a suitable birefringence to satisfy the DUV PM
condition. Beyond these, ABPF has a non-layered
growth habit and is chemically benign. These prop-
erties make ABPF a promising DUV NLO crystal.
In addition, the contributions of multiple anionic
groups to the linear and NLO properties of ABPF

were confirmed by the first-principles calculations.
Our results highlight the synergistic effect of mul-
tiple anionic groups on the design of DUV NLO
materials and open up newpossibilities for exploring
DUVNLOmaterials in fluoroborophosphates.

RESULTS AND DISCUSSION
Polycrystalline samples of ABPF were synthesized
via thehigh-temperature solutionmethod in a closed
system, and the photograph of ABPF crystals is
shown in Supplementary Fig. 1. Crystallographic
data are contained in CCDC 2153289 in crystal-
lographic information file format. The purity of
the phase was checked by powder X-ray diffrac-
tion (XRD; see Supplementary Fig. 2). The results
of thermogravimetric analysis-differential scanning
calorimetry (TG-DSC) curves and powder XRD
patterns show that ABPF begins to decompose af-
ter 180◦C, and BPO4 was found in decomposition
products (seeSupplementaryFigs 2 and3).Thecon-
stituent elements and the anionunits are further con-
firmed by elemental analysis and infrared (IR) spec-
troscopy (see Supplementary Figs 4 and 5).

ABPF crystallizes in the trigonal space group R3
(see Supplementary Table 2), and the basic struc-
ture is shown in Fig. 1. Five crystallographically in-
dependent boron atoms exhibit three types of co-
ordination environments, i.e. [BO3] triangle, [BO4]
and [BO3F] tetrahedra, while one crystallograph-
ically independent phosphorus atom exhibits the
coordination environment of [PO4] tetrahedron.
The bond lengths, bond angles and bond valences
are all in the reasonable range (see Supplemen-
tary Tables 3–8). The fundamental building block
(FBB) is unique [B5PO14F], which is composed
of the [B3O6F] ring and three branches: [PO4]
tetrahedron, [BO4] tetrahedron and [BO3] triangle
(Fig. 1a). Three FBBs are closed to form a large 18-
membered ring (MR), and further polymerized to
unprecedented 2D [B5PO10F]∞ layers extending in
theab-plane (Fig. 1b).Amazingly, similar layerswith
18-MRs were also found in NH4B4O6F (ABF), and
play important roles in its excellent NLO properties
[26] (see Supplementary Fig. 6). Different from the
2D[B4O6F]∞ layers in the structure ofABF, the lay-
ers in ABPF are further connected by shared oxy-
gen atoms of [BO4] and [PO4] tetrahedra, stacking
along the c-direction to form a 3D framework. Also,
the interlayer spacing of ABPF is 3.97 Å, less than
that of KBBF (6.25 Å), and NH4

+ cations are filled
in the interlayer (Fig. 1c and d). Viewed along the
a-axis, the [Be2BO3F2]∞ layers of KBBF are sub-
stituted by the [B5PO10F]∞ layers for non-toxicity
and K+ cations are substituted by NH4

+ cations
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Figure 1. Crystal structures. (a) [B5PO14F] fundamental building block. (b) Two-
dimensional [B5PO10F]∞ layers with 18-membered rings in the ab-plane. (c) Layer struc-
ture of KBe2BO3F2. (d) Crystal structure of (NH4)3B11PO19F3. Spacing of adjacent layers
that pass through [BO3] units is 3.97 Å.

for structural regulation, which results in the 3D
framework of ABPF showing a KBBF-like structure.
To the best of our knowledge, this is the first 3D
KBBF-like structure with [PO4] and [BO4] tetrahe-
dra bridging between layers. Compared with KBBF,
the introduction of the strongB-O-P covalent bonds
results in the reduction of interlayer spacing, which
makes the interlayer interaction of ABPF signifi-
cantly higher than that of KBBF, thus decreasing the
layered growth habit.

The interference pattern of polarized light
indicates that ABPF is a uniaxial crystal (Fig. 2a).
The transmittance spectrum demonstrates that its
UV cutoff edge is 183 nm (the corresponding band
gap is 6.78 eV), indicating that ABPF has a wide
DUV transparency window (Fig. 2b). Based on
the charge-transfer model and Mulliken analysis
[44,45], the bond valence of O atoms is in the range
of 1.7–2.0 e (see Supplementary Fig. 7), which
confirms that the introduction of non-π -conjugated
[BO4] and [BO3F] units are beneficial to the partial
elimination of the dangling bond, thus obtaining
a DUV transparency. So, the short UV cutoff
edge of ABPF is mainly attributed to the large
HOMO-LUMO gaps of its microscopic anionic
groups [5,6], [BO4], [BO3F] and [PO4] units, the
elimination of the dangling bonds of [BO3] units,
and the avoidance of unwanted d-d or f-f electron
transitions by the selection of an A-site cation.

Moreover, the SHG capabilities of ABPF were
measured by the Kurtz-Perry method [46] under
incident laser 1064 and 532 nm, respectively. Two
standardNLO crystals, KDP and BBO, were used as
the references. The output SHG response of ABPF
is 1.2×KDP at 1064 nm and 0.2× BBO at 532 nm
in the 200–250 μm particle size range, respectively
(Fig. 2c and d).

To further explore the structure–property rela-
tionship of ABPF, electronic structures and optical
proprietieswere calculatedby thefirst-principles cal-
culations based ondensity functional theory (DFT).
The direct band gap of ABPF under a general-
ized gradient approximation (GGA) framework is
5.96 eV (see Supplementary Fig. 8), which is slightly
smaller than the experimental value of 6.78 eV due
to the discontinuity of exchange-correlation energy
functional. To keep the band gap consistent with
the realistic condition, a scissors operation (0.82 eV)
was utilized when performing the optical proper-
ties calculations. From the partial densities of states
(PDOS), the top of valence bands (VBs) and the
bottom of conduction bands (CBs) are essentially
dominated by O-2p and B-2p states, respectively
(Fig. 3a). According to theKleinman approximation
of point group3, there are four non-zeroNLOcoeffi-
cients forABPF.The calculated values are d11 = 1.19
pm V−1, d22 = −0.91 pm V−1, d31 = 0.08 pm V−1

and d33 = 0.06 pm V−1, of which d11, d22 and d31
are in the effective NLO coefficient (deff) expres-
sions [47,48]. The largest tensor, d11, was analyzed
by the SHG-density method to understand the con-
tribution of NLO-active electron states and units. It
shows that the virtual electron (VE) process is dom-
inant in the SHG process, and the contributions of
occupied states are mainly determined by the non-
bondingO-2p and F-2p, while unoccupied states are
mainly determined by the orbitals of B-2p, N-2p, O-
2p and F-2p (Fig. 3c and d). In fact, the orbitals
of non-centrosymmetric sublattices near the top of
valence bands from [BO3] are mainly responsible
for the SHG effect [49]. Meanwhile, the contribu-
tion origins of the SHG response were analyzed by
the real-space atom-cuttingmethod [48], and the re-
sult indicates that [BO3] units contribute most to
the SHG response, while other units contribute rel-
atively little (see Supplementary Table 9).

Suitable birefringence (�n) and mild disper-
sion are essential for realizing the PM conditions
that foster a practical DUV laser output. The bire-
fringence and PM wavelength were calculated by
first-principles calculations based on DFT. To the
best of our knowledge, ABPF has the largest bire-
fringence of 0.088 at 1064 nm among all fluo-
roborophosphates reported so far (Table S1). And
the calculation result of the bonding electrondensity

Page 3 of 6



Natl Sci Rev, 2022, Vol. 9, nwac110

Tr
an

sm
itta

nc
e (

%
)

80

60

40

20

Wavelength (nm)
300 600 900 1200 1500

80

60

40

20 200 300 400 500
183

SH
G 

int
en

sit
y (

a.u
.)

Particle size (μm)
50 100 150 200 250

KDP
ABPF

SH
G 

int
en

sit
y (

a.u
.)

Particle size (μm)
50 100 150 200 250

BBO
ABPF

(a) (b)

(c) (d)

Figure 2. Experimental results. (a) Interference pattern of polarized light. (b) Transmit-
tance spectra. Powder second harmonic generation (SHG)measurements at (c) 1064 nm
and (d) 532 nm with benchmark KH2PO4 (KDP) and β-BaB2O4 (BBO) used as references.
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Figure 3. Calculation results. (a) Partial density of states (PDOS) of (NH4)3B11PO19F3.
(b) Calculated type I phase-matching (PM) SHG limit. SHG density maps of the (c) oc-
cupied and (d) unoccupied orbitals in the virtual electron process of d11.

differences (�ρ), based on the response electron
distribution anisotropy (REDA) [50], shows that
[BO3] units contribute 96% to the birefringence,
confirming that the introduction of π -conjugated
coplanar [BO3] units contributes greatly to the
enhancement of birefringence (see Supplementary

Fig. 9). As a result, the excellent comprehensive per-
formance of ABPF, i.e. wide DUV transmittance,
large SHG response and sufficient birefringence, is
mainly derived from the uniqueKBBF-like structure
composed of π -conjugated [BO3] units and non-
π -conjugated [BO4], [PO4], [BO3F] units, which
suggests the effectiveness of the multiple-anionic-
groups design strategy. Moreover, the shortest PM
wavelength of ABPF is 190 nm according to the
calculation results of the refractive index dispersion
curves (Fig. 3b), which suggests that ABPF has po-
tential applications in the DUV field.

CONCLUSION
In conclusion, a new type of KBBF-like compound,
ABPF, with four different units, has been suc-
cessfully obtained, and the synergistic effect of π -
conjugatedunits andnon-π -conjugatedunitsmeans
it exhibits excellent optical properties, namely, the
highest NLO coefficients, the largest birefringence
and the shortest PM SHG limit among all fluo-
roborophosphates. Owing to a beryllium-free, no-
layered growth habit, and excellent optical proper-
ties, ABPF has a promising future as DUV NLO
crystal. Moreover, we propose that the introduc-
tion of strong covalent bonds between layers can en-
hance the interlayer interaction force while simul-
taneously maintaining the large optical anisotropy
of layered structures. More importantly, the emer-
gence of ABPF once again proves the advancement
of the ‘fluorination strategy’ in the DUV NLO field.
These findings will facilitate the discovery of more
DUV NLO materials with optimal and practical
performance.

METHODS
Synthesis
Crystals were obtained via the high-temperature so-
lutionmethod in a closed system.NH4PF6 (95%,Al-
addin), NH4HCO3 (AR, Aladdin) and B2O3 (98%,
Kelong). All chemicals above were usedwithout fur-
ther purification. A mixture of NH4PF6 (0.502 g,
3.077 mmol), NH4HCO3 (0.608 g, 7.692 mmol)
and B2O3 (1.285 g, 18.462 mmol) was loaded into
a quartz tube (the inner diameter is 35 mm, and the
length is 175mm), and the tubewas flame sealed un-
der 10−3 Pa.The tube was heated to 400◦C for 24 h,
held at this temperature for 96 h, cooled to 300◦C
for 150 h and cooled to room temperature with a
rate of 2◦C h−1. Colorless crystals can be observed
at the bottom of the tube, covered with a thin layer
of amorphous sticky substance. After mechanical
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stripping, ABPF crystals can be obtained with the
yield of∼80% based on the B element.

Characterizations
Powder XRD data were collected using a Bruker
D2 PHASER diffractometer at room temperature.
The single-crystal XRD data were collected using
a Bruker D8 Venture diffractometer and the crys-
tal structure was solved using Olex2. The interfer-
ence pattern of polarized light was measured using
a polarizing microscope (ZEISS Axioscope 5). TG-
DSC were measured on a simultaneous NETZSCH
STA 449 F3 thermal analyzer instrument under a
flowing N2 atmosphere. The sample was placed in a
Pt crucible and heated from 40 to 800◦C at a rate
of 5◦C min−1. Elemental analysis was analyzed on
the single crystal surface by a field emission scan-
ning electron microscope (SEM, SUPRA 55VP)
equipped with an energy dispersive X-ray spectro-
scope (EDX, BRUKER x-flash-sdd-5010). IR spec-
troscopy was measured by Shimadzu IR Affinity-1
Fourier transform infrared spectrometer. The trans-
mittance measurement of a transparent crystal was
measured by Shimadzu SolidSpec-3700DUV spec-
trophotometer under a flowing N2 atmosphere.
Powder SHG intensity was measured via the Kurtz-
Perry method using a Q-switched Nd: YVO4 solid-
state laser (Cnilaser, DPS-1064-Q) at 1064 nm and
532 nm, for visible and UV SHG, respectively. Poly-
crystalline samples were ground and sieved into
the following particle size ranges: 38–55, 55–88,
88–105, 105–150, 150–200 and 200–250 μm. The
samples were loaded into a 1-mm-thick aluminum
holder with an 8-mm-diameter hole. The sieved
KDP and β-BBO samples were used as references.

SUPPLEMENTARY DATA
Supplementary data are available atNSR online.
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