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ABSTRACT: A new metabolomics database and query algorithm for the
analysis of 13C−1H HSQC spectra is introduced, which unifies NMR
spectroscopic information on 555 metabolites from both the Biological Magnetic
Resonance Data Bank (BMRB) and Human Metabolome Database (HMDB).
The new database, termed Complex Mixture Analysis by NMR (COLMAR)
13C−1H HSQC database, can be queried via an interactive, easy to use web
interface at http://spin.ccic.ohio-state.edu/index.php/hsqc/index. Our new
HSQC database separately treats slowly exchanging isomers that belong to the
same metabolite, which permits improved query in cases where lowly populated
isomers are below the HSQC detection limit. The performance of our new
database and query web server compares favorably with the one of existing web
servers, especially for spectra of samples of high complexity, including metabolite
mixtures from the model organisms Drosophila melanogaster and Escherichia coli.
For such samples, our web server has on average a 37% higher accuracy (true positive rate) and a 82% lower false positive rate,
which makes it a useful tool for the rapid and accurate identification of metabolites from 13C−1H HSQC spectra at natural
abundance. This information can be combined and validated with NMR data from 2D TOCSY-type spectra that provide
connectivity information not present in HSQC spectra.

■ INTRODUCTION

The rapid and reliable identification of tens to hundreds of
different metabolites in a single biological sample is a principal
task of any metabolomics investigation.1 Nuclear Magnetic
Resonance (NMR) spectroscopy has become one of the
standard tools to study metabolic complex mixtures without
requiring extensive extraction, purification, and physical
separation procedures.2 The high-resolution information
provided by NMR is key for the identification and
quantification of metabolites.3 One-dimensional (1D) 1H
NMR spectroscopy is the most commonly used NMR
technique in metabolomics studies, which can involve the
analysis of hundreds of samples in high-throughput mode
requiring only a few minutes per sample, for example, with the
help of automatic sample changers. However, 1D 1H NMR
spectra of complex metabolic mixtures often display strong
peak overlaps that can severely hamper unambiguous
metabolite identification. These issues can be addressed via
the use of two-dimensional (2D) NMR techniques by
spreading out cross-peaks of resonances along the indirect
dimension that overlap in a 1D NMR spectrum, which
considerably reduces the likelihood of peak overlap. A popular
2D NMR experiment for this task is the 13C−1H HSQC

experiment4 as it provides excellent spectral resolution along
the indirect 13C dimension allowing separation of many of the
peaks that overlap in the 1D 1H NMR spectrum. In the recent
past, several different metabolite identification5−9 and quanti-
fication10−13 strategies have been proposed for the analysis of
HSQC spectra.
Metabolomics studies based on 2D 13C−1H HSQC spectra

generally follow these steps. First, a manual or automated peak
picking is performed, which provides a list of all cross-peaks of
all detectable compounds in the sample. The peak list is then
queried against HSQC databases, typically in batch mode,
which returns a list of potential mixture components.14,15 The
advantage of this strategy is that it is fast and has the potential
for high-throughput, since it does not require the identification
of sets of NMR signals that belong to the same metabolite in
the mixture prior to querying. However, the approach is prone
to false positive identifications particularly for metabolites with
chemical shift values that lie mostly in the crowded regions of
the HSQC spectrum, which are typically around 3.2−4.5 ppm
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in the 1H dimension and 62−82 ppm in the 13C dimension, or
for the metabolites having very similar structures and chemical
shifts such as saccharides and mono-, di-, and triphosphorylated
nucleotides (e.g., AMP, ADP, ATP). Identification of these
compounds can be achieved by combining HSQC data with
TOCSY-based16 connectivity information, which allows the
identification of the subsets of HSQC peaks that belong to each
metabolite. The HSQC peaks of each metabolite can be directly
queried against a HSQC database. Moreover, the combination
of HSQC and TOCSY spectra yields information about
chemical bonds and the possibility for de novo elucidation of
the backbone topology and eventually the structure of
metabolites, which is particularly valuable for unknown
metabolites that are not catalogued in any of the existing
NMR databases.17

Identification of metabolites from 2D 13C−1H HSQC is a
very active area of research.5−9 The performance of 2D 13C−1H
HSQC databases is still far from optimum with true positive
identification rates of the best performing databases around
45−65% as compared to manual identification and false
discovery rates at 0−18%,6 which suggests significant room
for improvement. The major 2D 13C−1H HSQC metabolomics
databases, each with its own query algorithm, are the BMRB
(Biological Magnetic Resonance Data Bank),5 HMDB (Human
Metabolome Database),8 MMCD (Madison Metabolomics
Consortium Database),6 PRIMe (Platform for RIKEN
Metabolomics) database,9 and the Metabominer database.7

All of these databases were compiled by recording the 2D
13C−1H HSQC spectra of solutions of isolated (pure)
compounds and they all perform cross-peak by cross-peak
matching of the database spectra to the experimental 2D
13C−1H HSQC spectrum to identify metabolites. These
databases differ from each other in terms of metabolite content
and the underlying querying algorithm. A common feature of
all these databases is that the HSQC spectrum of each isolated
compound has been measured at high concentration and all
HSQC cross-peaks of a metabolite are treated together. For

example, cross-peaks stemming from different, slowly inter-
converting isomers are not assigned to individual isomers.
In our own efforts to construct increasingly accurate NMR

metabolomics databases,18,19 we found that higher and more
accurate metabolite identification rates from HSQC spectra is
possible by improving both the data structure of the database
and the querying algorithm. On the data structure side, we
observed that ∼10% of all metabolites in these databases
consist of more than one isomeric state. For the majority of
these metabolites, the populations of the different isomers are
quite different. For instance, the metabolite pyruvate, which is
important in energy metabolism, has two isomeric states with
84% and 16% relative abundance, glucose exists in two isomeric
states with 63% and 37% relative abundance, coenzyme A exists
in two isomeric states, and ribose exists in four different
isomeric states. These metabolites along with six other
metabolites and their relative isomer populations are shown
in Figure 1. The chemical shifts of these isomers can be found
in Supporting Information Table S-1. Since in real-world
metabolic samples, metabolite concentrations are often much
lower, in a 2D 13C−1H HSQC spectrum one often only detects
the isomer(s) with the highest population. As a consequence,
this creates a mismatch when HSQC peak lists are queried
against conventional HSQC databases: if an HSQC database
has two isomers of a metabolite stored as a single entry and if
only one of the isomers is experimentally detected, while the
other isomer is below the detection limit, only 50% of the
expected cross-peaks are detected, which creates a 50%
mismatch. Since most of the HSQC query programs use
mismatch as a key criterion for identification, a 50% mismatch
might result in no identification or misidentification of the
target metabolite. This problem can be addressed by sorting the
molecules and their cross-peaks into their slowly exchanging
isomers for separate queries. For this purpose, we present a
HSQC database where we systematically assign each HSQC
peak to its specific isomeric state. This allows the accurate
identification of metabolites regardless whether all or only some
of the isomers can be observed in the HSQC spectrum of the

Figure 1. Relative isomer populations of ten representative metabolites. The isomer populations are calculated by integrating 1D NMR spectra of the
metabolites taken from the BMRB and HMDB databases. The 1D NMR spectra were recorded in H2O/D2O at pH 7.0−7.4 at 298 K.
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mixture. In this way, the database allows improved
identification of metabolites existing in multiple isomeric states
by providing an optimal match for each compound. On these
principles, we constructed a unified database from entries of
two of the largest public databases, namely the BMRB and the
HMDB. Combining these with our improved query algorithm,
we reach a higher correct identification rate (37% increase in
true positives) with fewer false identifications (false positives)
than the best performing existing HSQC databases. We name
this new database and query tool COLMAR (Complex Mixture
Analysis by NMR) 13C−1H HSQC database.

■ RESULTS AND DISCUSSION

1. Generation of the COLMAR 13C−1H HSQC Database
and Query. The new HSQC database contains (presently)
555 compounds derived primarily from the BMRB5 and
HMDB8 metabolomics databases. A complete list of database
compounds with their number of isomeric states is provided on

our web server. With 52 of these compounds existing in
multiple isomeric states, an estimated 10% of all metabolites
cannot be accurately matched by conventional HSQC data-
bases when one or more of their isomeric states falls below the
detection limit.
In the new HSQC database, the assignment of the 13C−1H

HSQC peaks of all metabolites is performed by using the NMR
spectra of isolated compounds in the BMRB, the HMDB, and
the literature. Next, the cross-peaks of the HSQC spectrum are
sorted into the different isomeric states allowing separate
querying of each isomeric state. Only NMR data of compounds
dissolved in H2O/D2O at pH 7.0 or 7.4 were included in the
new database.
The querying algorithm used for the matching of compounds

was developed by testing the query criteria used by each
different existing HSQC database. For each database
compound, or isomer, the average of 1H and 13C chemical
shift differences (1st and 2nd output parameters) are computed

Figure 2. Illustration of the challenge to detect all isomeric states of a metabolite in 2D 13C−1H HSQC spectra. (A) In the sugar mixture, a highly
populated isomer of galactono-1,4-lactone is detected (peaks inside of yellow boxes), whereas the lowly populated isomer is below the limit of
detection and hence cannot be observed (cyan boxes). (B) In Drosophila melanogaster metabolite extract, two highly populated fructose isomers are
observed (peaks inside of red and green boxes), whereas the lowest populated isomer is not observed (blue boxes). (C) For two different Drosophila
melanogaster metabolite extracts, in the first sample only a highly populated isomer of pyruvate (inside of orange box) is observed, (D) whereas in the
second sample in addition to the highly populated isomer, a lowly populated isomer of pyruvate (purple box) is also detected.
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to the closest cross-peaks of the mixture. If the database cross-
peak is within a given frequency cutoff, it is considered a
“matched peak”. The “matching ratio” is then defined as the
ratio of the matched peaks to the total number of peaks (3rd
output parameter). For example, if a certain metabolite has 5
cross-peaks in the database and 4 of them have corresponding
“matched” peaks in the HSQC spectrum of the mixture, the
matching ratio for this metabolite is 0.8. While these 3
parameters have been already part of many HSQC databases,
they are often not sufficiently selective to reliably discriminate
between true and false identifications (see false positive rates of
various databases in the results section). In addition, some
HSQC databases use a “database uniqueness value”, which
reflects how unique a matched peak is in the database.7,9 This
parameter is not as selective as the first 3 parameters and the
combination of the 4 parameters still produces many false
positives (see also Metabominer false positive rates in the
results section).
To address these short-comings, we introduce an additional

parameter, which we term the ‘assignment uniqueness value’. It
gives the number of cross-peaks in the HSQC spectrum of the
mixture that are uniquely assigned to metabolite A. For
instance, a uniqueness value of 3 means that 3 of the HSQC
peaks of the mixture are only assigned to metabolite A. Three
unique matches out of 4 total matches for metabolite A is
considered a good hit. We find that the combination of this
novel parameter with the other parameters significantly reduces
the number of false positives.
We set the default cutoff parameters for the average 1H and

13C chemical shift differences at 0.03 and 0.3 ppm, respectively.
For a matching ratio of 1.0, the cutoff for the assignment
uniqueness value is set to 1 (i.e., at least one of the cross-peaks
must be unique). For a matching ratio below 1.0 but higher
than 0.6, the cutoff for the assignment uniqueness value is set to
3. An exception is made for metabolites with a total number of
3 or 4 cross-peaks for which the cutoff for the assignment
uniqueness is set to 2. If none of the database entries satisfies
the above criteria, the query returns “no match”.
2. Application to Model Mixture and Model Organ-

isms. The difficulty to detect all isomeric states of a metabolite
exists both in model mixtures and biological cell extracts. In the
13C−1H HSQC spectrum (Supporting Information Figure S-1)
of a fully 13C-labeled sugar mixture consisting of glucose,
galactose, ribose, fructose, and galactono-1,4-lactone, we
observed two isomers each of glucose and galactose, four
isomers of ribose, three isomers of fructose, and one isomer of
galactono-1,4-lactone. Although the HSQC spectrum of
isolated galactono-1,4-lactone shows two isomeric states (see
HSQC taken from BMRB in Supporting Information Figure S-
2A), one of the isomers was below the detection limit in the
mixture spectrum as shown in Figure 2A, where the cross-peak
locations of the highly populated and lowly populated isomeric
states of galactono-1,4-lactone are indicated by yellow and cyan
boxes, respectively. Other problems with differentially popu-
lated isomeric states have been observed in HSQC spectra of
fruit fly (Drosophila melanogaster). In Figure 2B, in a metabolite
extract of wild-type fruit fly, one can see two isomers of
fructose, which are the two highest populated isomers, but not
the third isomer (Figure 2B). The cross-peaks of all three
fructose isomers are indicated by colored boxes in Figure 2B,
where the blue boxes belong to the missing isomer and the red
and green boxes belong to the detectable isomers with higher
populations. All three isomers of fructose can be seen in the

HSQC spectrum of isolated fructose taken from the BMRB
database (Supporting Information Figure S-2B). When only
one or two isomers of fructose are detected, the query of these
peaks against a database peaks containing fructose without
discriminating between the different isomers will lead to an
ambiguity because of cross-peak mismatch. Another example
from Drosophila is shown in Figure 2C, D where HSQC spectra
of two different metabolic extracts show different pyruvate
concentrations (Figure 2C, D). The second isomer of pyruvate
is seen only in the second sample, but not in the first one,
whereas both isomers of pyruvate can be seen in the HSQC
spectrum of pyruvate taken from the BMRB database
(Supporting Information Figure S-2C).
We manually picked HSQC cross-peaks of the sugar model

mixture (Supporting Information Figure S-1), the Drosophila
melanogaster extract (Supporting Information Figure S-3), and
an Escherichia coli cell extract (Supporting Information Figure
S-4), which resulted in 88, 165, and 567 HSQC cross-peaks,
respectively. We queried these three peak lists one by one
against various HSQC databases. The results provide some
insights into how current HSQC databases perform for
metabolic mixtures of different levels of complexity. The
query results for our new database, COLMAR 13C−1H HSQC,
are shown for the sugar mixture in Supporting Information
Table S-2, for the Drosophila extract in Supporting Information
Table S-3, and for E. coli cell extract in Supporting Information
Table S-4. Our query program identified 5, 28, and 56
metabolites in these samples, respectively (whereby compounds
with multiple isomers are counted only once). For reference,
we also overlaid the 13C−1H spectra of isolated standards over
the experimental spectrum and performed manual identifica-
tion. Manual identifications identified 5, 28, and 58 metabolites
in the sugar mixture, Drosophila, and E. coli, respectively.
Therefore, our database identified more than 95% of what can
be identified manually. It should be noted that even manual
identification cannot fully assign all peaks in these spectra. We
identified 88% of all HSQC peaks in Drosophila and 58% of all
HSQC peaks in E. coli, with the remaining peaks belonging to
unknown compounds, that is, compounds not contained in the
databases.
We compared our results with the other HSQC databases

each with its own querying algorithm. HSQC query of HMDB
is excluded from our comparison, because it only allows
querying of HSQC peaks of individual metabolites. Since in
HSQC spectra of a metabolic mixture, peak assignment of
individual compounds is not known in advance, this query is
not suitable for the analysis of mixtures. All the other HSQC
databases, including ours, permit querying of both individual
compounds and of mixtures (batch mode). When we queried
our three sets of HSQC peaks (see above), the PRIMe and
BMRB databases returned an unusually large number of false
positives. For instance, when we queried the 165 peaks of
Drosophila against the PRIMe and BMRB databases with
chemical shift tolerances of 0.02 ppm for 1H and 0.2 ppm for
13C, they returned 99 and 123 metabolites, respectively. By
contrast, based on manual analysis we were able to assign 88%
of the 165 peaks to only 28 metabolites (and DSS). Therefore,
only ∼33 metabolites are expected to be detectable in this
spectrum.
The false positive identification rates of Metabominer and

MMCD database are much lower. When we queried the 88
peaks of the sugar mixture using Metabominer and MMCD,
they still returned 3 and 4 true positives, respectively
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(Supporting Information Table S-5). The fact that even for a 5-
compound sugar mixture the accuracy is less than 100%
demonstrates the intrinsic challenge for the querying of
metabolites that exist in multiple isomers.
Querying of the 165 HSQC peaks of Drosophila in

Metabominer and MMCD (Supporting Information Table S-
6) identified 14 and 21 metabolites, respectively. COLMAR
correctly identified 28 metabolites, which is a 33% (or higher)
improvement. Querying of the 567 HSQC peaks of the E. coli
mixture with Metabominer and MMCD (Supporting Informa-
tion Table S-7) identified 22 and 40 metabolites, respectively.
COLMAR identified 56 metabolites corresponding to a 40%
(or higher) improvement. Therefore, for the real-world
metabolic extracts, our new database allowed an increase of
true positive identifications by 37%.
Besides the highest true positive rate achieved by our new

database, a low false positive rate is similarly important. As
mentioned in the introduction, HSQC spectra are particularly
prone to false positives; therefore, the task is to minimize the
false positives and at the same time maximize the true positives.
Highest true positive rates were achieved by COLMAR, which
is followed by MMCD. However, MMCD also provided
alarmingly high false positives rates, 5 and 14 false positives in
Drosophila and E. coli, respectively. False positive rates in
COLMAR were much lower, 0 and 5 false positives in
Drosophila and E. coli, respectively. Therefore, COLMAR
reduced the false positive rates by 82% as compared to MMCD.
A summary of the overall true positive and false positive rates of
all databases tested is compiled in Figure 3. In addition, we use
a new category termed “ambiguous identifications” (Figure 3
and Supporting Information Table S-8), which comprises
identifications whose verification requires additional NMR
experiments such as TOCSY, HSQC-TOCSY, or HMBC,
because the cross-peaks appear mostly or exclusively in the
crowded regions of the HSQC spectrum or their chemical shifts
and structures are very similar to a handful of other compounds
(such as saccharides and nucleotide mono-, di-, and
triphosphates e.g., AMP, ADP, ATP). Therefore, additional
connectivity information can differentiate between these
molecules and resolve ambiguities.
Although, in this paper, we only used HSQC cross-peak lists

that were manually picked, the COLMAR 13C−1H HSQC
server also accepts automatically generated cross-peak lists. It is
recommended, however, that users visually inspect their peak
lists and curate them before uploading for query to avoid

problems with peaks originating from t1 noise and other
artifacts.
A specifically designed web portal at http://spin.ccic.ohio-

state.edu/index.php/hsqc/index allows querying of the 2D
13C−1H HSQC spectra of metabolic mixtures in batch mode as
well as querying of the 2D 13C−1H HSQC spectra against
individual metabolites in the COLMAR 13C−1H HSQC
database. As an example, the 165 peaks of Drosophila were
queried against the COLMAR in batch mode on the web server
(Figure 4A). The query successfully returned the list of
compounds in the sample (Figure 4B). The interactive user
interface based on a JavaScript allowed overlaying of 13C−1H
HSQC peaks of individual compounds in the database with the
experimental peaks upon clicking the “Show Me” button
(Figure 4B) of the matched compound, which allows direct
visual inspection of the presence of the matched compound in
the experimental 2D spectrum. To our knowledge, this is the
first 13C−1H HSQC metabolomics database allowing such
quick visual checks online, which is very useful to maximize
confidence of identifications. Matched compounds are always
shown in ‘Number_Metabolite Name’ format, where the
integer in front of the metabolite name is used to denote
different isomeric states of the metabolite. Metabolites with
only one isomeric state are always shown as ‘1_Metabolite-
name’, such as ‘1_Alanine’, whereas metabolites with more than
one isomeric state are shown as ‘n_Metabolite-name’, where n
= 1, 2, 3, ... are different isomers of the metabolite (e.g.,
1_Maltose and 2_Maltose).
Reliable identification of metabolites is one of the most

critical steps in metabolomics. Here, we introduced the first
HSQC metabolomics database, which allows querying of
individual states of metabolites. This allows identification of
metabolites regardless of the contribution of each isomeric state
to the acquired HSQC spectrum. Combining this more
accurate and more specific database with a more selective
querying approach provided the highest true positive and the
lowest false positive identification rate among all the databases
and their querying algorithms tested. The new database serves
as an alternative to conventional HSQC databases, which rely
on the simultaneous query of all cross-peaks of all isomers.
Ideally, the most accurate HSQC query should take into

account absolute concentrations of the compounds in the
sample with their relative isomeric populations. Such
information can be combined with the detection limit of
HSQC peaks so that the query can assess how many of the

Figure 3. Comparison of the performance of the COLMAR, MMCD and Metabominer 13C−1H HSQC databases for the query of (A) Drosophila
and (B) E. coli metabolic extracts.
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isomeric states of each compound are expected in the
experimental HSQC spectra before actually performing the
query. Such information can be used to adaptively combine
detectable isomeric states of a compound as a single entry for
querying to boost the matching accuracy. However, this
requires additional information that may not be readily
available. For these cases, our approach, which queries
individual isomeric states of compounds independently, will
provide the highest accuracy.
Currently, many researchers use multiple HSQC databases

for the querying of their data in order to maximize the number
of identified metabolites in their samples, because the
metabolites of different databases only partially overlap
requiring an additional effort by the user to go back and
forth between databases. Here, we combined database
information from the BMRB and the HMDB into a unified
database, which can be queried in an isomer-specific manner in
a single step. This facilitates the analysis of complex mixtures,
while at the same time increasing the number of correct hits.
We expect this resource to be of wide usefulness to
metabolomics researchers.

■ METHODS
Sample Preparation. The uniformly 13C-labeled carbohydrate

mixture was prepared by dissolving ribose, galactose, glucose and
fructose in D2O each with a 10 mM final concentration. The final
mixture was transferred to a 3 mm NMR tube. Galactono-1,4-lactone

appeared as a degradation product or impurity in the spectrum with a
relatively lower concentration as compared to the other four
carbohydrates in the mixture.

Two male Drosophila samples were prepared, one from 50 wild type
(w1118) flies and one from 100 wild type flies. Four to six-day old flies
were reared at 25 °C on standard cornmeal/yeast/molasses food for 5
days with 12 h light (6:00 AM to 6:00 PM) and 12 h dark cycles and
then harvested at 10:00 AM on the fifth day for metabolite extraction.
For each sample, the flies were collected and snap-frozen in liquid
nitrogen. The flies were then placed in 400 μL ice-cold 50%
acetonitrile and subjected to homogenization with Bullet Blender 24
Gold (Next Advance) for metabolite extraction. The resulting mixture
was centrifuged at 10 000g for 5 min. The supernatant was then
filtered by centrifugation at 14 000g at 4 °C for 30 min with Amicon
Ultra-0.5 mL 10 K (EMD Millipore). The resulting filtrate was
lyophilized and resuspended in 50 mM phosphate buffer at pH 7.4 in
D2O for NMR measurements.

E. coli DH5α cells were cultured at 37 °C, at 250 rpm in M9
minimum medium with glucose (natural abundance, 5g/L) added as
sole carbon source. One liter of culture at OD ∼3 was centrifuged at
5000g for 20 min at 4 °C, and the cell pellet was resuspended in 50 mL
of 50 mM phosphate buffer at pH 7.0. The cell suspension was then
subjected to centrifugation for cell pellet collection. The cell pellet was
resuspended in 10 mL of ice cold water and exposed to freeze−thaw
procedure 3 times. The sample was centrifuged at 20 000g at 4 °C for
15 min to remove the cell debris. Prechilled methanol and chloroform
were sequentially added to the supernatant under vigorous vortex at
H2O:methanol:chloroform ratios of 1:1:1 (v/v/v). The mixture was
then left at −20 °C overnight for phase separation. Next, it was
centrifuged at 4000g for 20 min at 4 °C, and the clear top hydrophilic

Figure 4. Screenshots taken from the interactive COLMAR 13C−1H HSQC web server. (A) The HSQC peak list with 165 cross-peaks of Drosophila
melanogaster metabolite extract (upper left) is queried against the database. The lower left shows the cross-peak positions (blue circles and black
crosses) in a 2D plane corresponding to the 2D HSQC spectrum. The thin blue circles correspond to HSQC cross-peaks that match a single
compound in the database, the thick blue circles correspond cross-peaks that match multiple compounds, and the black crosses correspond to cross-
peaks that do not match any compound in the database. (B) List of matching compounds returned by the query. The results served as input for
Supporting Information Table S-3.
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phase was collected and subjected to rotary evaporator processing to
have the methanol content reduced. Finally, the liquid was lyophilized.
The NMR sample was prepared by dissolving the lyophilized material
in D2O and transferred to a 5 mm NMR tube.
NMR Experiments and Processing. The 2D 13C−1H HSQC

spectrum of the carbohydrate mixture was collected with N1 = 512 and
N2 = 1024 complex points by using a cryogenically cooled probe at
800 MHz proton frequency. The spectral widths along the indirect and
the direct dimensions were 22135.197 and 9615.385 Hz, respectively.
The number of scans per t1 increment was set to 4. The transmitter
frequency offsets were 55 ppm in the 13C dimension and 4.7 ppm in
the 1H dimension. The total measurement time was 3 h.
2D 13C−1H HSQC spectra of Drosophila extracts were collected

with N1 = 512 and N2 = 1024 complex points. The spectral widths
along the indirect and the direct dimensions were 34209.9 and 8802.8
Hz, respectively. The number of scans per t1 increment was set to 16.
The transmitter frequency offsets were 85 ppm in the 13C dimension
and 4.7 ppm in the 1H dimension. The total measurement time for
each sample was 10 h. The NMR spectrum was collected using a
cryogenically cooled probe at 800 MHz proton frequency.
The 2D 13C−1H HSQC spectrum of E. coli extract was collected

with N1 = 512 and N2 = 1024 complex points. The spectral widths
along the indirect and the direct dimensions were 29934.5 and 7692.3
Hz, respectively. The number of scans per t1 increment was 64. The
transmitter frequency offsets were 85 ppm in the 13C dimension and
4.7 ppm in the 1H dimension. The total measurement time was 36 h.
The NMR spectrum was collected using a cryogenically cooled probe
at 700 MHz proton frequency. All NMR spectra were collected at 298
K, and the data were zero-filled, Fourier transformed, and phase and
baseline corrected using NMRPipe.20

■ ASSOCIATED CONTENT
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carbohydrate model mixture, drosophila sample, and E. coli cell
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