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ABSTRACT The Bacillus cereus group comprises nine species, several of which are
pathogenic. Differentiating between isolates that may cause disease and those that
do not is a matter of public health and economic importance, but it can be particu-
larly challenging due to the high genomic similarity within the group. To this end,
we have developed BTyper, a computational tool that employs a combination of (i)
virulence gene-based typing, (ii) multilocus sequence typing (MLST), (iii) panC clade
typing, and (iv) rpoB allelic typing to rapidly classify B. cereus group isolates using
nucleotide sequencing data. BTyper was applied to a set of 662 B. cereus group ge-
nome assemblies to (i) identify anthrax-associated genes in non-B. anthracis
members of the B. cereus group, and (ii) identify assemblies from B. cereus group
strains with emetic potential. With BTyper, the anthrax toxin genes cya, lef, and
pagA were detected in 8 genomes classified by the NCBI as B. cereus that clus-
tered into two distinct groups using k-medoids clustering, while either the B. an-
thracis poly-�-D-glutamate capsule biosynthesis genes capABCDE or the hyal-
uronic acid capsule hasA gene was detected in an additional 16 assemblies
classified as either B. cereus or Bacillus thuringiensis isolated from clinical, envi-
ronmental, and food sources. The emetic toxin genes cesABCD were detected in
24 assemblies belonging to panC clades III and VI that had been isolated from
food, clinical, and environmental settings. The command line version of BTyper is
available at https://github.com/lmc297/BTyper. In addition, BMiner, a companion
application for analyzing multiple BTyper output files in aggregate, can be found at
https://github.com/lmc297/BMiner.

IMPORTANCE Bacillus cereus is a foodborne pathogen that is estimated to cause
tens of thousands of illnesses each year in the United States alone. Even with mo-
lecular methods, it can be difficult to distinguish nonpathogenic B. cereus group
isolates from their pathogenic counterparts, including the human pathogen Ba-
cillus anthracis, which is responsible for anthrax, as well as the insect pathogen
B. thuringiensis. By using the variety of typing schemes employed by BTyper, us-
ers can rapidly classify, characterize, and assess the virulence potential of any
isolate using its nucleotide sequencing data.
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The Bacillus cereus group, also known as Bacillus cereus sensu lato (s.l.), consists of
nine closely related bacterial species: B. anthracis (1), B. cereus sensu stricto (s.s.), B.

cytotoxicus (2), B. mycoides (3), B. pseudomycoides (4), B. thuringiensis, B. toyonensis (5),
B. weihenstephanensis (3), and B. wiedmannii (6). The pathogenic potentials of members
of the B. cereus group vary widely; while some isolates are capable of causing anthrax
or anthrax-like disease (7), foodborne illness (8), or food spoilage issues (9–11), others
are used in industrial settings as probiotics (5, 12–14), insecticides and pest control
agents (15), agents in environmental pollutant bioremediation (15–17), plant growth
promoters (15, 18), and even as producers of bacteriocins (19, 20) or parasporins with
anticancer activities (15, 21, 22). As the industrial and agricultural applications of these
microorganisms expand, differentiating between isolates that can cause anthrax or
gastrointestinal illness and those that can be used as beneficial microbes in industrial
or agricultural settings becomes critical. Relying strictly on taxonomic classification at
the species level can lead not only to isolate misclassification, but also to an inaccurate
assessment of a given isolate’s virulence potential. There have been numerous cases in
which probiotics containing B. cereus group isolates sold for human and/or animal
consumption were found to possess strains capable of producing toxins Nhe and/or
Hbl (12, 14, 23), or the species they contained were incorrectly identified (12, 14, 24).
Additionally, B. thuringiensis, a biopesticide, can possess B. cereus s.s. toxin genes and
potentially infect humans via the food chain (25), a notable example being a foodborne
outbreak associated with salad that was potentially caused by B. thuringiensis serovar
aizawai that had been sprayed on a produce field (26).

Differentiating between pathogenic and nonpathogenic B. cereus group isolates is a
matter of public health and economic importance but can be a challenging task.
Phenotypic and biochemical methods (27), as well as many commonly used molecular
methods, such as 16S rRNA gene sequencing, may not have sufficient discriminatory
power to differentiate between members of the B. cereus group (28, 29). In addition, the
ability of a particular B. cereus group isolate to cause disease in humans is not species
dependent, and taxonomic classification can often be a poor predictor of an isolate’s
virulence potential (30); for example, genes encoding diarrheal toxins have been found
in B. cereus, B. mycoides, B. pseudomycoides, B. thuringiensis, and B. weihenstephanensis
(30–32). For these reasons, better tools are needed to classify B. cereus isolates, from
both taxonomical and food safety risk perspectives (33).

A number of genetic loci have been proposed as markers that can be used to
taxonomically classify and/or differentiate between pathogenic and nonpathogenic B.
cereus group isolates at greater resolution than phenotypic methods and 16S rRNA
gene sequencing (30). Some examples of taxonomic markers include the housekeeping
gene rpoB (6, 30, 34–38), the pantoate-beta-alanine ligase gene panC (39–43), and
multiple loci used in a 7-gene multilocus sequence typing (MLST) scheme (i.e., glp, gmk,
ilv, pta, pur, pyc, and tpi) (30, 44–49) (https://pubmlst.org/bcereus/). Each of these
methods alone provides greater resolution than its predecessors, and the methods
may be implemented in combination with each other and/or with phenotypic
methods (30, 33, 40, 49).

The presence and absence of virulence and toxin genes have also served as
indicators in a method by which B. cereus group isolates can be classified as pathogenic
or nonpathogenic (28, 30, 50). These methods are beneficial from a clinical perspective,
as genes associated with many medically relevant phenotypes are plasmid carried (51),
including anthrax toxin and capsule genes (52), and ces genes, which encode cereulide
synthetase (53). This can be contrasted with the fact that many genes that encode
phenotypic traits used to distinguish members of the B. cereus group using biochemical
and microbiological tests are contained on the chromosome (motility, hemolysis, etc.)
(51). As a result, a disease phenotype, such as the ability to cause anthrax-like symp-
toms in a particular host (52), may not be confined to a single B. cereus group species,
making species-level taxonomy a poor indicator of an isolate’s pathogenic potential.

Molecular typing methods using housekeeping and virulence genes found in mem-
bers of the B. cereus group have been essential for classifying isolates from both a
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taxonomical and a public health perspective. However, as whole-genome sequencing
(WGS) becomes cheaper, faster, and more accessible, the ability to perform molecular
typing methods in silico becomes even more attractive. With the goal of creating a
readily accessible open-source pipeline that can be easily used by B. cereus researchers
and public health officials, we have created BTyper, a computational tool to perform (i)
virulence gene detection, (ii) MLST, (iii) panC clade typing, and (iv) rpoB allelic typing
using B. cereus group nucleotide sequencing data in either FASTA, SRA, or gzipped
FASTQ format. Additionally, we applied BTyper and BMiner, a companion application
for analyzing BTyper’s output files in aggregate, to a set of 662 B. cereus group genome
assemblies, with the goal of identifying (i) anthrax-associated genes in non-anthracis
Bacillus members of the B. cereus group, and (ii) assemblies from B. cereus group strains
with emetic potential.

RESULTS
Construction and validation of BTyper using in vitro methods. BTyper was used

to perform in silico (i) virulence gene detection, (ii) MLST, (iii) panC clade typing, and (iv)
rpoB allelic typing using the default settings described in Materials and Methods. Both
assembled genomes and Illumina paired-end reads from 46 B. cereus group genomes
were used (Fig. 1). BTyper was successfully able to predict rpoB allelic types and
whole-genome phylogenetic clade using panC for all B. cereus group genomes tested
(n � 46; Table 1). For in silico MLST, it was successful at predicting the sequence type
in all but one isolate (45 out of 46; Table 1); isolate FSL M8-0091 was the only isolate
for which in silico prediction of sequence type did not match the sequence type
obtained by Sanger sequencing. For this isolate, the only allele that differed between
the two methods was the tpi allele: Sanger sequencing yielded a tpi allelic type of 20,
while BTyper’s in silico prediction was tpi allelic type 175, which was a perfect match
and differed from tpi 20 by a single nucleotide at position 284. However, SRST2 (54) also
obtained a tpi allelic type of 175, making it likely that (i) the colony selected to undergo
WGS had a different tpi allele than the colony selected to undergo Sanger sequencing,
or (ii) there was an error in either WGS or Sanger sequencing.

For virulence gene detection, the results obtained from BTyper matched the PCR
results for eight selected virulence genes in over 89% of all isolates (n � 46; Table 1).
This resulted in an overall sensitivity and specificity of 99.0% and 85.5%, respectively,
when the default parameters for assembled genomes were used, and an overall
sensitivity and specificity of 97.0% and 85.5%, respectively, when default parameters for
Illumina paired-end reads were used.

Characteristics associated with B. cereus group phylogenetic clade III are most
prevalent among genome assemblies currently available at NCBI. BTyper was used
to perform virulence gene detection, MLST, panC clade typing, and rpoB allelic typing
on 662 B. cereus group genome assemblies (157 assemblies labeled as B. anthracis, 353
assemblies as B. cereus s.s., 2 assemblies as B. cytotoxicus, 19 assemblies as B. mycoides,
2 assemblies as B. pseudomycoides, 94 assemblies as B. thuringiensis, 3 assemblies as B.
toyonensis, 21 assemblies as B. weihenstephanensis, and 11 assemblies as B. wiedmannii).
Within the 662 assemblies, 13 virulence genes were detected in more than 90% of all
genomes when the default minimum amino acid sequence identity and coverage
thresholds of 50 and 70% were used, respectively (Fig. 2). The least commonly detected
gene was cytK1 (Fig. 2), which was detected in both available B. cytotoxicus genomes
and no other WGS assemblies.

For in silico MLST, 544 assemblies were assigned to one of 213 B. cereus sequence
types (STs), the most common of which was ST1 (n � 123 isolates). This was unsur-
prising, considering that ST1 is associated with B. anthracis (55), and B. anthracis makes
up a considerable portion (23.7%) of the B. cereus group genome assemblies currently
in NCBI’s database. In silico rpoB allelic typing grouped the 662 isolates into one of 43
different, best-matching rpoB allelic types (ATs), with 185 isolates matching AT463 most
closely. AT463 has been previously associated with clade III isolates (30), the phyloge-
netic clade that encompasses B. anthracis.
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For panC-based phylogenetic clade typing, a panC locus was detected in 658 out of
662 genomes (Fig. 3). The most commonly assigned clade was clade III, a polyphyletic
clade which contains B. anthracis, as well as some strains currently misclassified in the
NCBI database as B. cereus s.s. and B. thuringiensis (30, 39, 40). Together, clade IV, which
consists of some B. cereus s.s. and B. thuringiensis strains (30, 39, 40), as well as the type
strains of these two species, and clade III accounted for more than 75% of all B. cereus
group WGS assemblies in the NCBI database (Fig. 3). Clade VII, which contains the B.
cytotoxicus (2) type strain, was the most poorly represented clade; the two available B.
cytotoxicus assemblies were placed here.

Application of BTyper to identify B. anthracis-associated genes in non-
anthracis Bacillus isolates reveals virulence gene heterogeneity within genome
assemblies from anthrax toxin-encoding isolates. When Fisher’s exact test was used
to determine if any virulence genes were significantly associated with a phylogenetic

FIG 1 BTyper command line workflow for various types of data and default typing methods. Input datum type is listed in the left
margin, while typing methods are listed at the top of the chart. Command line parameters associated with a particular typing method
are shown in parentheses. FSL, Food Safety Lab.
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clade, virulence genes typically associated with B. anthracis were found to be signifi-
cantly associated with members of clade III after a Bonferroni correction was applied
(P � 0.05; Table 2). The B. anthracis toxin genes cya (edema factor-encoding), lef (lethal
factor-encoding), and pagA (protective antigen-encoding), as well as their regulator

TABLE 1 Percentage of isolates in which BTyper correctly identified the presence/absence of eight virulence genes, MLST, rpoB AT, and
panC clade

Data set

Virulence gene (%)a
MLST ST
(%)b

rpoB AT
(%)c

panC clade
(%)dhblA hblC hblD nheA nheB nheC cytK entFM

Training (n � 22)
Assemblies 100 100 100 100 95.5 100 90.9 95.5 100 100 100
PE readse 100 90.9 100 90.9 95.5 95.5 90.9 95.5 100 100 100

Validation (n � 24)
Assemblies 91.7 100 95.8 87.5 95.8 100 100 91.7 95.8 100 100
PE reads 91.7 100 91.7 87.5 95.8 100 100 91.7 95.8 100 100

Total (n � 46)
Assemblies 95.7 100 97.8 93.5 95.7 100 95.7 93.5 97.8 100 100
PE readse 95.7 95.7 95.7 89.1 95.7 97.8 95.7 93.5 97.8 100 100

aPresence/absence of eight virulence genes from previously published WGS data (training set) or PCR (validation set).
bMultilocus sequence typing (MLST) results from previously published WGS data (training set) or Sanger sequencing (validation set).
crpoB allelic typing (AT) results from previously published WGS data (training set) or Sanger sequencing (validation set).
dpanC clade typing results from previously published WGS data.
eIllumina paired-end (PE) reads.

FIG 2 Percentage (%) of B. cereus group assemblies in which a particular virulence gene was detected. Minimum
identity and coverage thresholds of 50 and 70%, respectively, were used for virulence gene detection.
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gene atxA (56), were found only in clade III isolates (P � 0.05; Table 2). In addition, B.
anthracis polyglutamate capsule synthesis genes capABCDE (57) were more commonly
associated with clade III assemblies (P � 0.05; Table 2) and found primarily in genomes
classified in the NCBI database as B. anthracis. Meanwhile, genes associated with
diarrheal disease (8) were found to be significantly associated with clades II, IV, V, and
VI (P � 0.05; Table 2); these included the diarrheal toxin genes hblCDAB, which were
found to be significantly associated with clades II, IV, V, and VI (P � 0.05; Table 2), while
being less common in members of clade III (P � 0.05; Table 2), driven by the large
number of B. anthracis assemblies in this clade that did not possess these genes.

Principal-component analysis (PCA) based on the presence/absence of virulence
genes using BMiner revealed several assemblies labeled as B. cereus and B. thuringiensis

FIG 3 Closest-matching phylogenetic clade using the panC loci from 662 B. cereus group genome assemblies. A
panC locus could not be assigned in 4 genome assemblies, which is denoted by “NA.”

TABLE 2 Virulence genes significantly associated with 5 B. cereus group phylogenetic
clades after a Bonferroni correctiona

Clade Genes

II hblCDAB
III atxA,b capABCDE, cya,b hasA, hlyII, hlyR, lef,b pagAb

IV bceT, cytK2, hblCDAB
V bceT, hblCDABc

VI bceT, cesC, hblCDABc

aSignificant at a P value of �0.05. For exact corrected P values, see Table S7.
bIndicates a virulence gene that was detected only in its respective clade (includes clades I and VII).
cIndicates a virulence gene that was detected in all members of its respective clade.
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that clustered with B. anthracis assemblies (Fig. 4A). When k-medoids clustering was
performed with an optimum k of 31, isolates classified in the NCBI database as B.
anthracis were placed into clusters 1 through 8 (Fig. 4B). Additionally, clusters 17, 21, 22,
and 29 did not contain any assemblies labeled in NCBI as B. anthracis, but they
contained at least one assembly in which one or more of the B. anthracis-associated
virulence genes identified using Fisher’s exact test were detected (Fig. 5).

Cluster 1 (Fig. 4B), which contained the majority of isolates labeled as B. anthracis,
contained 110 isolates, 107 of which were classified in the NCBI database as B. anthracis,
and all of which belonged to panC clade III (Fig. 5). Assemblies derived from human and
veterinary clinical isolates associated with anthrax disease populated a large proportion of
the cluster, including assemblies associated with isolates from the 2001 anthrax bioterror-
ism attacks (58), European heroin users and an associated outbreak (59, 60), and a 2011
outbreak in Swedish cattle (61). Three assemblies labeled as B. cereus clustered among
them (Fig. 4B). Two of these assemblies were labeled as B. cereus strain 03BB102, an isolate
that was thought to cause fatal pneumonia in a welder in San Antonio, TX (Table 3), while
the third was labeled as B. cereus biovar anthracis strain CI, which caused fatal anthrax in a
chimpanzee in the rainforest of Taï National Park, Côte d’Ivoire (Table 3) (51). Consistent
with these findings, placement into cluster 1 was driven largely by an assembly’s possession
of all, or nearly all, anthrax-associated genes identified using Fisher’s exact test (Fig. 6); the
anthrax toxin genes cya, lef, and pagA, toxin regulator gene atxA, hyaluronic acid capsule
gene hasA, and B. anthracis polyglutamate capsule genes capABCDE were detected in
nearly all (�97%) cluster 1 assemblies (Fig. 5).

Despite the fact that all assemblies classified in NCBI as B. anthracis were assigned
to clusters 1 through 8, the only other clusters in addition to cluster 1 in which anthrax
toxin genes were detected were clusters 4 and 22. Like cluster 1, all isolates in clusters
4 and 22 belonged to panC clade III, and nearly all possessed the anthrax toxin genes
cya, lef, and pagA, regulator gene atxA, and hyaluronic acid capsule gene hasA (Fig. 5).
However, the B. anthracis polyglutamate capsule genes capABCDE were not detected in

FIG 4 Principal-component analysis (PCA) of 662 B. cereus group genome assemblies based on presence/absence of virulence genes. Virulence gene typing was
carried out using BTyper, while PCA was performed using BMiner. Principal components 1 (PC1) and 2 (PC2) are plotted on the x and y axes, respectively, while
principal component 3 (PC3) corresponds to point size. Plots are colored by isolate species, as found in NCBI (A), and assigned cluster using k-medoids (B). To
view interactive versions of these plots containing isolate names and metadata, all BTyper final results files and metadata can be downloaded from
https://github.com/lmc297/BTyper/tree/master/sample_data and viewed in BMiner.
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any of the cluster 4 or cluster 22 assemblies at the default identity and coverage
thresholds (Fig. 5). While cluster 4 (n � 18; Fig. 4B) contained only isolates classified in
the NCBI database as B. anthracis, it contained assemblies from several strains with
attenuated virulence, including several vaccine strains (62–64). Cluster 22 (n � 5; Fig.
4B), however, contained 5 anthrax-associated assemblies, all of which were classified in
the NCBI database as B. cereus (Table 3). All assemblies in cluster 22 originated from
human clinical isolates in which the isolate was classified as B. cereus, but the patient
presented anthrax-like symptoms; two assemblies were of B. cereus strain G9241, a
strain of Bacillus isolated from the sputum and blood of a patient with pneumonia,
nausea, and vomiting (65). The isolate, which had been classified as B. cereus via
biochemical tests and 16S rRNA gene sequencing, was found to possess the anthrax
toxin gene pagA but not the polyglutamate capsule genes capABCDE (65), which is
consistent with its classification using BTyper (Table 3). BTyper’s classification of the
three other assemblies in this cluster also aligned with their previously published
descriptions and included the following: (i) a B. cereus assembly associated with an
isolate from a patient in Florida possessing an anthrax-like skin lesion (66), which was
found to possess anthrax toxin genes cya, lef, and pagA and the hyaluronic acid capsule
gene hasA and belong to ST78 (66), (ii) a B. cereus isolate from a patient with a fatal case
of pneumonia in Lubbock, TX, that was also found to possess B. anthracis virulence
genes (67), and (iii) an assembly associated with a B. cereus isolate that was found to
possess anthrax toxin genes and hasA and was isolated from a patient in Galliano, LA,
who had a fatal case of pneumonia and septic shock (Table 3) (68).

While no anthrax toxin genes were detected outside clusters 1, 4, and 22, other B.
anthracis-associated genes identified using Fisher’s exact test were detected in several
other clusters and assemblies. Cluster 3 (n � 6; Fig. 4B) contained 6 B. anthracis
assemblies belonging to panC clade III in which the B. anthracis toxin regulator gene
atxA and polyglutamate capsule genes capABCDE were detected (Fig. 5). Other assem-
blies in this cluster included B. anthracis strain Smith 1013, described as “Pasteur-like”
in that it possessed plasmid pXO2 (the plasmid associated with cap genes) but not
plasmid pXO1 (the plasmid associated with B. anthracis toxin genes) (69, 70), as well as
B. anthracis strain Pasteur itself (Table 4).

FIG 5 k-medoids clusters based on presence/absence of virulence genes detected using BTyper. Size corresponds to the number of assemblies assigned to a
given cluster, while panC corresponds to panC clades found in the cluster, with an asterisk denoting one or more assemblies that could not be placed into a
panC clade. Numbers within cells correspond to the proportion of assemblies in a given cluster in which the corresponding virulence gene was detected. Green
shading corresponds to a virulence gene detected in more than 90% of all assemblies in a cluster, while red shading corresponds to a virulence gene detected
in fewer than 10% of all assemblies in a cluster. Yellow shading corresponds to B. anthracis-associated genes detected in fewer than 90% but greater than 0%
of assemblies in a cluster.
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The polyglutamate capsule genes capABCDE were also detected in assemblies
assigned to clusters 6, 21, and 29 (Table 4). Cluster 6 (n � 10; Fig. 4B) contained 10
assemblies: 1 assembly classified in NCBI as B. anthracis, 7 assemblies classified as B.
cereus, and 2 assemblies classified as B. thuringiensis. Members of this cluster belonged
to panC clades III and IV, and consistent with the detection of cap genes in this cluster,
one of the B. thuringiensis assemblies in this group had been shown to produce a
polyglutamate capsule (71). Cluster 21 (n � 3; Fig. 4B) contained 2 assemblies labeled
as B. cereus and 1 assembly labeled as B. thuringiensis. One of the B. cereus assemblies
came from B. cereus strain F65185, which was confirmed to belong to ST168 and was
isolated from a patient in New York with an open fracture wound (Table 4). Members
of this group belonged to either panC clade IV or V. Cluster 29 (n � 1; Fig. 4B) consisted
of a single B. cereus assembly belonging to panC clade III and associated with a strain
isolated from whole black pepper in the United States in 2015 (Table 4).

Additionally, cap genes were detected in a single isolate in clusters 2 and 17 (n �

26 and 13, respectively; Fig. 4B). However, B. anthracis-associated genes were not
detected in any other assemblies in this cluster, despite being composed primarily of
assemblies classified as B. anthracis (21, 4, and 1 assemblies labeled in NCBI as B.
anthracis, B. cereus, and B. thuringiensis, respectively). Consistent with a lack of virulence
genes, this cluster contained the genome of the avirulent strain B. anthracis Ames,
which is commonly used in laboratory settings and does not possess B. anthracis
plasmid pXO1 or pXO2 (72). All non-anthracis Bacillus assemblies in this group were

FIG 6 Nonmetric multidimensional scaling (NMDS) plot of Bacillus cereus group clusters that (i) possessed
at least one assembly that was classified as Bacillus anthracis in NCBI, and/or (ii) possessed at least one
assembly in which at least one B. anthracis-associated virulence gene (cya, lef, pagA, atxA, hasA, and/or
capABCDE) was detected using BTyper. NMDS was performed in BMiner using virulence gene presence/
absence data and a Jaccard dissimilarity metric. Isolates are represented by points, and convex hulls and
shading correspond to the assigned k-medoids cluster. Virulence genes are plotted in dark gray.
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isolated from either food or environmental sources, and all belonged to either panC
clade III or IV.

Application of BTyper to identify assemblies associated with emetic B. cereus
group isolates. Assemblies possessing emetic toxin genes cesABCD were grouped into
two clusters using k-medoids. Cluster 12 (n � 19; Fig. 4B) consisted of 19 assemblies
classified as B. cereus in NCBI. All belonged to panC clade III, cesABCD were detected in
all assemblies, and hblCDAB were not detected in any assemblies (Fig. 5). Included in
this cluster was strain AH187, an isolate from the United Kingdom that was responsible
for a 1972 emetic outbreak (Table 5). This isolate tested positive for emetic toxin
(cereulide) formation and nonhemolytic enterotoxin (NHE) and negative for HBL he-
molytic enterotoxin and cytotoxin K, and it belonged to MLST ST26 (Table 5) (73); these
findings were confirmed using BTyper. Other notable strains in this cluster included (i)
emetic strain B. cereus H3081.97, a B. cereus strain of sequence type 144 (ST144) which
is closely related to strain AH187, and (ii) emetic strain B. cereus NC7401 (74).

The other cluster in which all cesABCD genes were detected in all assemblies was cluster
24 (n � 5; Fig. 4B). This cluster contained 5 assemblies classified as B. cereus, all of which
belonged to panC clade VI (Table 5). Unlike cluster 12, hblCDAB genes were detected in all
assemblies in this cluster (Fig. 5). The assemblies in this cluster originated from food and
environmental isolates (Table 5). Despite their assemblies being classified in the NCBI
database as B. cereus, all 5 strains in this cluster were classified as emetic B. weihenstepha-
nensis in their respective manuscripts, and all were capable of growth at 8°C (53, 75).

DISCUSSION
Accessible whole-genome sequence analysis tools can facilitate improved tax-

onomic classification and characterization of B. cereus group isolate virulence
potential. As whole-genome sequencing becomes more widely used in the realms of
public health and food safety, the ability to classify potential pathogenic microorgan-
isms quickly and effectively becomes increasingly important. A number of bioinformat-
ics tools already exist for this purpose, including SRST2, which can be used to perform

TABLE 5 B. cereus group assemblies in which emetic toxin genes cesABCD were detected

Cluster
NCBI species
classification

panC
clade

GenBank
accession no. Strain Isolate source (reference)

12 B. cereus III GCA_000021225.1 AH187 Vomit of a person who ate cooked rice; isolate
was associated with an emetic outbreak in
1972 (73)

12 B. cereus III GCA_000161075.1 BDRD-ST26 BDRD stock strain (52)a

12 B. cereus III GCA_000171035.2 H3081.97 Food; emetic toxin-producing isolate from
1997 outbreak linked to rice, TX, USA (115)

12 B. cereus III GCA_000283675.1 NC7401 Emetic isolate (74)
12 B. cereus III GCA_000290935.2 IS075 Wild mammal (vole) (116)
12 B. cereus III GCA_000290995.1 AND1407 Black currant (53)
12 B. cereus III GCA_000291235.1 MSX-A12 Not available (107)
12 B. cereus III GCA_000399205.1 IS845/00 Bank vole, Poland (107, 117)
12 B. cereus III GCA_000399225.1 IS195 Bank vole, Poland (107, 117)
12 B. cereus III GCA_000743195.1 F1-15 Foodborne source (118)
12 B. cereus III GCA_001566375.1 MB.15 Food, Munich, Germany (119)
12 B. cereus III GCA_001566385.1 MB.18 Food, Munich, Germany (119)
12 B. cereus III GCA_001566435.1 MB.16 Food, Munich, Germany (119)
12 B. cereus III GCA_001566445.1 MB.17 Food, Munich, Germany (119)
12 B. cereus III GCA_001566455.1 MB.21 Food, Munich, Germany (119)
12 B. cereus III GCA_001566465.1 MB.8 Food, Munich, Germany (119)
12 B. cereus III GCA_001566515.1 MB.8-1 Food, Munich, Germany (119)
12 B. cereus III GCA_001566525.1 MB.20 Food, Munich, Germany (119)
12 B. cereus III GCA_001566535.1 MB.22 Food, Munich, Germany (119)
24 B. cereus VI GCA_000291155.1 MC67 Sandy loam, Møn, Denmark (75, 107, 120)
24 B. cereus VI GCA_000291315.1 CER074 Raw milk (53)
24 B. cereus VI GCA_000291335.1 CER057 Parsley (53)
24 B. cereus VI GCA_000293605.1 BtB2-4 Forest soil (53)
24 B. cereus VI GCA_000399245.1 MC118 Sandy loam, Møn, Denmark (75, 107, 120)
aBDRD, Biological Defense Research Directorate.
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MLST and detect antimicrobial resistance genes using Illumina reads (54); SeqSero,
which performs in silico serotyping using Illumina reads or nucleotide assemblies from
Salmonella enterica isolates (76); PlasmidFinder, which can be used to detect plasmids
in isolates using Illumina reads or nucleotide assemblies (77); and VirulenceFinder,
which can be used to detect virulence genes in Listeria monocytogenes, Staphylococcus
aureus, Escherichia coli, and Enterococcus (78). Recently, methods such as in silico MLST
and virulence gene detection have been combined into single computational pipelines
that can be used to characterize numerous bacterial species (79). Here, we have created
a bioinformatics tool specific to the Bacillus cereus group that combines virulence gene
detection using a curated database of B. cereus virulence factors with in silico manifes-
tations of established molecular and virulence typing methods to phylogenetically
classify and rapidly assess the virulence potential of any B. cereus group isolate.
Additionally, we have provided a companion application, BMiner, that allows users to
interact with data from hundreds of genomes at once, which we anticipate will become
increasingly valuable as more B. cereus group genomes are sequenced.

The in silico typing methods employed by BTyper and other bioinformatics tools are
valuable from a public health and food safety perspective, due to their (i) speed, as
BTyper and similar tools can be used to perform gene detection and typing tasks in
seconds using assembled genomes (76, 77); (ii) scalability, with the ability to provide
users with information about a single isolate or hundreds from the command line (54,
76); and (iii) ability to output concise and easily interpretable summaries of large
amounts of data (54), making it easy for a user to understand their results, share data
with colleagues, and make informed decisions about an isolate in question (i.e., is it
pathogenic or not). Additionally, the use of virulence gene-based typing as employed
by BTyper offers the advantage that isolates can be classified according to their
virulence potential, which means that one does not have to make any prior assump-
tions about the taxonomic classification of an isolate in question. This marks a valuable
step forward in distinguishing pathogenic B. cereus group isolates from their nonpatho-
genic counterparts; however, marked improvements could be made to BTyper and
similar tools through the integration of phenotypic data. By associating genotypic
characteristics of B. cereus group isolates with phenotypic data, such as host illness and
symptoms and growth temperature, BTyper and other tools used to genotype food-
borne pathogens may become more valuable from a risk assessment perspective.

Analysis of publicly available B. cereus group assemblies using BTyper and
BMiner identifies virulence gene-based clusters that capture phylogenetic heter-
ogeneity in isolates with similar phenotypes. Using the output of BTyper and
BMiner, virulence gene profiles of 662 B. cereus group genomes were assigned to one
of 31 clusters by employing a k-medoids approach, without making unnecessary prior
assumptions about an assembly’s taxonomic classification in the public domain. This
allowed for the identification of several well-defined clusters with clinical or taxonomic
relevance, including (i) fully virulent B. anthracis and B. anthracis-like B. cereus (cluster
1), (ii) capABCDE-negative anthrax-causing B. cereus strains (cluster 22), (iii) B. anthracis
with attenuated virulence (clusters 3 and 4), (iv) 2 emetic clusters (clusters 12 and 24),
and (v) B. cytotoxicus (cluster 31). The clustering of the emetic assemblies into 2
separate clusters reflected the observed heterogeneity among emetic strains of B.
cereus and B. weihenstephanensis: Hoton et al. (53) described two distinct clusters
formed by emetic toxin-producing B. cereus group strains, with psychrotolerant B.
weihenstephanensis strains belonging to a distinct emetic cluster (referred to in its
respective manuscript as cluster II) (53, 80). Assemblies from these strains were placed
into a single cluster (k-medoids cluster 24) consisting of B. weihenstephanensis assem-
blies belonging to panC clade VI, while members of Hoton et al.’s emetic cluster I were
placed into a second cluster (k-medoids cluster 12) containing assemblies belonging to
panC clade III. For B. cytotoxicus, the two available assemblies, both of which were the
only panC clade VII representatives, were placed into a single cluster composed of only
themselves (k-medoids cluster 31), driven largely by their possession of cytK1, as
described by Guinebretière et al. (40). For B. anthracis, strains possessing both anthrax
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virulence plasmids (pXO1 and pXO2) were assigned to cluster 1, distinguishing them
from attenuated strains in which one or neither plasmid was detected, as well as B.
cereus strains that caused anthrax-like disease (cluster 22). Despite lacking the polyglu-
tamate capsule genes capABCDE, B. cereus strains in cluster 22 were able to cause
anthrax-like symptoms using a second capsule encoded by B. cereus exopolysaccharide
genes bpsXABCDEFGH (bpsX-H) on a different plasmid, pBC218 (81). The bpsX-H operon
in its entirety was detected in 4 of the 5 anthrax-causing, capABCDE-negative B. cereus
assemblies in cluster 22 (all but strain BcFL2013) and in no other cluster. It is likely that
results like this from additional studies will be able to further resolve clade assignments
and disease phenotypes with BTyper; recently, Bazinet identified numerous genes
associated with phenotypic traits, such as anthrax and food poisoning (82). Here, we
found associations between B. cereus group virulence genes and the panC clade, and
virulence gene heterogeneity within disease phenotypes was identified. As more B.
cereus group WGS and associated metadata become available, the potential for iden-
tifying new virulence alleles or phylogenetic markers that can further identify alleles or
genes that are not only associated with a particular disease, but with specific symptoms
or a clinical outcome using BTyper, becomes promising. For example, future work will be
needed to better define specific genetic markers that can classify B. cereus group strains and
clusters that are likely to cause diarrheal illnesses. Future epidemiological studies that assess
the associations between different clusters and disease outcomes and symptoms will also
provide an opportunity to further define and refine the types of disease outcomes and
public health risks associated with different B. cereus group strains.

MATERIALS AND METHODS
Database construction. To construct a virulence gene database specific to B. cereus group isolates,

amino acid sequences from a total of 36 virulence genes (see Table S1 in the supplemental material) were
collected from the National Center for Biotechnology Information (NCBI) (https://www.ncbi.nlm.nih.gov/).
For an MLST database, the 7-gene MLST database for Bacillus cereus was downloaded from PubMLST
(https://pubmlst.org/bcereus/). For panC typing, chromosomes of 45 B. cereus group strains were
downloaded from the NCBI database (Table S2). panC genes were extracted from each strain using
nucleotide BLAST (BLASTn) (83) and the panC genes of various B. cereus group type strains, and the
online tool available at https://tools.symprevius.org/Bcereus/english.php was used to ensure that at least
one representative from each of the seven panC clades was present in the collection (40) (Table S2). For
rpoB allelic typing, the rpoB allelic type database created and curated by Cornell University’s Food Safety
Lab and Milk Quality Improvement Program (CUFSL/MQIP; Ithaca, NY) was used. While 16S rRNA gene
typing is not performed by default (see “Construction of BTyper tool,” below), 16S rRNA gene typing can be
performed using reference 16S rRNA gene sequences from nine different B. cereus group type strain genomes.
To obtain these sequences, the 16S rRNA gene sequence from a cultured B. cereus type strain was
downloaded from the Ribosomal Database Project (RDP) (84) and used in conjunction with BLASTn (83) to
extract 16S rRNA gene genes from each of nine different B. cereus group species type strain genomes (Table
S3). All database files can be downloaded from https://github.com/lmc297/BTyper.

Construction of BTyper tool. BTyper was created with the following dependencies: Python version
2.7 (https://www.python.org/), Biopython version 1.6.8 (85), BLAST version 2.4.0 (83), SPAdes version 3.9.0
(86), and SRA toolkit version 2.8.0 (87, 88). The whole-genome sequences of 22 previously characterized
B. cereus group isolates (30) were downloaded from the NCBI and used as a training set to optimize
parameters (referred to here as the “training set”; Table S4). For virulence gene detection using translated
nucleotide BLAST (tBLASTn) (83), default minimum coverage and minimum identity thresholds of 70 and
50%, were chosen, respectively, as they correlated highly with previously published PCR results (30), and
the allele with the highest corresponding bit score was reported. For MLST, rpoB allelic typing, and panC
clade typing, the highest-scoring allele in the respective database was selected using its associated
BLAST bit score, with no minimum threshold applied (Fig. 1). Virulence gene detection, MLST, rpoB allelic
typing, and panC clade typing methods were chosen to be performed by default, as these methods are
valuable for their discriminatory power (30). 16S rRNA gene typing, although not performed by default
due to its inability to discriminate between phylogenetic clades and species (34, 89, 90), was added as
an option as well, as many users may be interested in this locus. For this method, the highest-scoring 16S
rRNA gene of the nine type strain 16S rRNA genes was selected using its BLAST bit score, with no
minimum threshold applied.

PCR detection of virulence genes. To assess the accuracy of BTyper’s in silico virulence gene
detection, each of the 24 isolates in the validation set was screened for eight virulence genes (hblA, hblC,
hblD, nheA, nheB, nheC, cytK, and entFM) using PCR. Bacterial DNA used as the template in PCRs was
extracted by inoculating single colonies into 100 �l of sterile water; lysates were then heated at 95°C for
10 min in a thermocycler. For PCRs, 1 �l of dirty lysate was added to a master mix containing sterile
water, 2� GoTaq Green master mix (Promega, Madison, WI), and primers at a concentration of 0.4 �M
each (Table S5). The PCRs included an initial denaturation time of 3 min at 94°C, followed by 30 cycles
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of amplification; each cycle consisted of denaturation at 94°C for 30 s, annealing (see Table S5 for
annealing temperatures) for 30 s, and elongation for 1 min at 72°C, with a final extension at 72°C for 7
min. PCR products were electrophoresed in 1% agarose gels, followed by ethidium bromide staining to
confirm specific amplification. For isolates that did not yield a PCR amplicon for a given gene, the PCR
was repeated at least once in order to confirm the negative PCR result.

MLST. Multilocus sequence typing (MLST) was performed for all 24 isolates in the validation set using
a 7-housekeeping-gene scheme available through the PubMLST website (https://pubmlst.org/bcereus/).
The PCRs consisted of 1 �l of dirty lysate as the DNA template added to a master mix containing sterile
water, 2� GoTaq Green master mix (Promega), and primers at a final concentration of 0.4 �M each. The
PCR cycles included an initial denaturation (3 min at 94°C), followed by 20 cycles of denaturation (94°C
for 30 s), annealing for 30 s with a touchdown scheme (annealing temperatures that decrease by 0.5°C
per cycle, starting with 55°C and reaching 45°C at the last cycle), and elongation at 72°C for 45 s. The 20
cycles of touchdown PCR were followed by an additional 20 cycles using an annealing temperature of
45°C. A final extension at 72°C for 5 min was included at the end of the 40 cycles. After amplification, the
PCR products were sequenced at the Biotechnology Resource Center (BRC; Cornell University, Ithaca, NY),
and ATs and sequence types (STs; based on all 7 genes) were assigned using the PubMLST website. All
isolates were submitted to the B. cereus PubMLST database (30).

rpoB allelic typing. A 632-nucleotide (nt) internal sequence of rpoB, encoding the �-subunit of the
RNA polymerase, was used for assigning rpoB allelic types (ATs), as described previously (11). The
sequences of all rpoB ATs are available in the Food Microbe Tracker database (91).

Validation of BTyper using additional B. cereus group whole-genome sequences. The genomes
of 24 additional B. cereus group isolates were sequenced and assembled according to Miller et al.
(referred to here as the “validation set”; Table S6) (6). BTyper was used to perform virulence gene
detection, MLST, rpoB allelic typing, and panC clade typing on each draft genome using the chosen
default settings (see “Construction of BTyper tool,” above). The same analyses were performed using
the Illumina paired-end reads associated with each isolate, again using BTyper’s default settings. To
assess the accuracy of the panC clades assigned by BTyper, clade assignments provided by BTyper
were compared to the isolates’ whole-genome sequence clades provided by Kovac et al. (30) and
Miller et al. (R. A. Miller, J. Jian, S. M. Beno, L. M. Carroll, M. Wiedmann, and J. Kovac, unpublished
data) for the training and validation sets, respectively. A current version of the command line tool,
as well as the curated virulence gene and rpoB allelic type databases, can be found at https://github
.com/lmc297/BTyper. A link to a Web-based version of BTyper will also be made available at https://
github.com/lmc297/BTyper at a later time.

Construction of BMiner companion application. BMiner, a companion application for parsing,
viewing, and analyzing multiple BTyper files in aggregate, was created with the following dependencies:
R version 3.3.2 (92) and R packages shiny version 1.01 (93), ggplot2 version 2.2.1 (94), readr version 1.1.0
(95), stringr version 1.2.0 (96), vegan version 2.4-2 (97), plyr version 1.8.4 (98), dplyr version 0.5.0 (99),
cluster version 2.0.6 (100), ggrepel version 0.6.5 (101), and magrittr version 1.5 (102). BMiner is freely
available at https://github.com/lmc297/BMiner.

Application of BTyper and BMiner to whole-genome sequencing data. The latest assembly
versions for all (n � 651) B. cereus group genome assemblies available in GenBank were downloaded on
6 April 2017. Genome assemblies were assigned to one of nine taxa according to their GenBank
classification: B. anthracis (n � 157), B. cereus s.s. (n � 343), B. cytotoxicus (n � 2), B. mycoides (n � 19),
B. pseudomycoides (n � 2), B. thuringiensis (n � 93), B. toyonensis (n � 3), B. weihenstephanensis (n � 21),
and B. wiedmannii (n � 11). BTyper was used to perform virulence gene detection, MLST, rpoB allelic
typing, and panC clade typing on all 651 isolates, as well as an additional 11 isolates that were part of
the validation set but did not have assemblies in the NCBI database at the time (total number of B. cereus
group genomes, 662). All available metadata associated with each assembly’s BioSample were down-
loaded from the NCBI (103). Data mining using BTyper results from all 662 B. cereus group assemblies was
conducted using BMiner. The final results files for all 662 B. cereus group genome assemblies, as well as
the associated metadata, can be found at https://github.com/lmc297/BTyper.

Post hoc statistical analyses. Post hoc statistical analyses were conducted in R version 3.3.2 (92).
Fisher’s exact test was used to test for associations between virulence genes and panC-based phyloge-
netic clades using the fisher.test function in R’s stats package (Table S7). Phylogenetic clades I and VII
were excluded from this analysis, due to both being underrepresented among B. cereus group genomes
in the NCBI database (12 and 2 isolates, respectively), while rare and common virulence genes present
in fewer than 20 and more than n � 20 assemblies (where n corresponds to the total number of
assemblies being tested), respectively, were also excluded. A Bonferroni correction was used to correct
for multiple comparisons. To find members of the B. cereus group that clustered with B. anthracis isolates
based on their virulence gene presence-absence profiles, as well as to assess within-species virulence
heterogeneity, k-medoids clustering was performed using the clara function in R’s cluster package (100)
and a Euclidean distance metric. To find an optimum value for k, k-medoids clustering was performed for
each value of k for 2 � k � (n � 1), where n is 662, the total number of assembled genomes. A k value
of 31 was selected, as it corresponded to the largest average silhouette width.
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