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Abstract: Endoscopy is widely applied in the examination of gastric cancer. However, extensive
knowledge and experience are required, owing to the need to examine the lesion while manipulating
the endoscope. Various diagnostic support techniques have been reported for this examination. In
our previous study, segmentation of invasive areas of gastric cancer was performed directly from
endoscopic images and the detection sensitivity per case was 0.98. This method has challenges of
false positives and computational costs because segmentation was applied to all healthy images that
were captured during the examination. In this study, we propose a cascaded deep learning model
to perform categorization of endoscopic images and identification of the invasive region to solve
the above challenges. Endoscopic images are first classified as normal, showing early gastric cancer
and showing advanced gastric cancer using a convolutional neural network. Segmentation on the
extent of gastric cancer invasion is performed for the images classified as showing cancer using two
separate U-Net models. In an experiment, 1208 endoscopic images collected from healthy subjects,
533 images collected from patients with early stage gastric cancer, and 637 images from patients with
advanced gastric cancer were used for evaluation. The sensitivity and specificity of the proposed
approach in the detection of gastric cancer via image classification were 97.0% and 99.4%, respectively.
Furthermore, both detection sensitivity and specificity reached 100% in a case-based evaluation. The
extent of invasion was also identified at an acceptable level, suggesting that the proposed method
may be considered useful for the classification of endoscopic images and identification of the extent
of cancer invasion.

Keywords: gastric cancer; deep learning; convolutional neural network; segmentation; classification

1. Introduction
1.1. Background

Gastric cancer is a malignant tumor that mainly affects the gastric mucosa and is
the second-most-common cause of death among all cancers after lung cancer [1,2]. It is a
highly regional disease, with more than 50% of cases occurring in East Asia. Diagnostic
and treatment techniques for gastric cancer continue to improve and early detection has
been shown to reduce mortality rates among patients with gastric cancer.

Gastric examination is performed by endoscopy and gastrofluoroscopy using barium.
Because endoscopy has superior sensitivity in detecting early stage gastric cancer and
allows for tissue collection and treatment under observation, it has been widely adopted
for gastric cancer screening and detailed diagnosis. In endoscopic diagnosis, a physician
checks the endoscopic images while operating the endoscope and records still images at
key points when abnormalities are detected. In addition, magnification and staining are
often performed to classify diseases and diagnose the extent and depth of lesions [3].
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However, the procedure is highly complex, requiring multiple tasks to be performed
during the examination. Hence, there is some concern that lesions may be missed. Accord-
ing to the results of a survey, the probability of missing a lesion during endoscopy was
22.2% and the accuracy of diagnosis depends, to a considerable extent, on the experience
and skill of the physician. Therefore, technologies to assist examinations are strongly
desired to reduce the burden on the physician and to improve diagnostic accuracy.

In recent years, artificial intelligence technologies have made remarkable progress
and deep learning technology has shown excellent performance in the field of image
recognition [4,5]. Deep learning techniques have been proposed for various applications
involving different types of medical images [6–8]. In this study, we propose a deep-learning-
based method for the detection and identification of the depth and extent of cancer invasion
to support endoscopy.

1.2. Related Works

Various studies have been conducted on the automated detection of gastric cancer
lesions in endoscopic images, the extraction of the extent of invasion, and the evaluation
of cancer depth [9–15]. Among early works on the subject, Hirasawa et al. developed
a method for automated detection of early gastric cancer lesions and extraction of the
extent of invasion using a single-shot detector (SSD), an object detection model [10]. The
sensitivity of detection using 15,880 original endoscopic images was 92.2% and the positive
predictive value was 30.6%. Sakai et al. developed a method to detect gastric cancer by
feeding a convolutional neural network (CNN) with finely cut patches of endoscopic images
to classify areas showing gastric cancer and normal areas [11] and achieved a detection
sensitivity and specificity using 926 original images of 80.0% and 94.8%, respectively.
Shibata et al. proposed a method for detecting the presence of early gastric cancer and
extracting invasive regions using Mask R-CNN, which was designed to perform both object
detection and segmentation [12]. They achieved a sensitivity of 96.0% and a segmentation
concordance of 71% using 1741 original endoscopic images in the automated detection of
early gastric cancer. Teramoto et al. proposed a U-Net R-CNN model to detect early gastric
cancer using two CNNs to perform segmentation and classification [13]. First, they used
U-Net, a CNN model for segmentation, to detect regions of early gastric cancer. Then, the
detected regions were classified as normal or containing gastric cancer by a CNN model.
They obtained a detection sensitivity of 98% and reduced false positives by 70% compared
to their previous study on the same image database.

To evaluate the depth of gastric cancer, Zhu et al. used a CNN to classify cancer as
remaining within the mucosa or as having invaded the submucosa, the latter indicating
an advanced cancer. The evaluation resulted in a sensitivity of 76.47% and a specificity
of 95.56% using the original 993 endoscopic images [14]. Hamada et al. also proposed
a method to classify early gastric cancer as mucosal or submucosal using a CNN and
obtained a classification accuracy of 78.9% using 3508 original images [15]. Endoscopic
ultrasonography (EUS) is often used to assess the depth and internal structure of upper
gastrointestinal lesions, including gastric cancer, and diagnostic assistive technologies are
required [16,17]. Hirai et al. used an AI system to classify subepithelial lesions (SEL) using
EUS images. The results showed that the correct classification rate of the images was 86.1%
using 16,110 original images, which was much higher than that of endoscopists [17].

These techniques present independent methods to detect the presence and evaluate
the depth of gastric carcinoma. In our previous study, semantic segmentation was applied
directly to endoscopic images; however, the many healthy images collected during the
examination were subject to processing, resulting in false positives and high computational
cost. The actual detailed diagnoses were performed by first detecting abnormal areas
during the endoscopic procedure and approaching the lesion. Hence, a more automated
detection and classification scheme in line with the diagnostic flow is desirable. This cas-
caded processing has been applied to other medical images. For example, Krzysztof et al.
proposed a method for segmenting brain tumors from head MR images that uses two
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types of U-Nets to perform tumor location identification and detailed multiclass segmen-
tation [18]. Jie et al. proposed a cascaded network model for the segmentation of brain
regions in 3T head MR images in combination with 7T head MR images and obtained better
results than conventional methods [19]. In addition, Nina et al. analyzed the aortic root
using a cascade of two types of CNNs [20]. These methods do not use a single network
model to perform a single task but divide the roles among multiple networks. Similar to
these methods, a performance improvement can be expected in the detection of gastric
cancer using endoscopic images by introducing a cascade structure of two different tasks.
In this study, we propose a cascade deep learning model designed to perform automatic
detection and classification, which combines image classification and region extraction to
detect normal and gastric cancer, evaluate the depth of the lesion, and identify the extent
of invasion.

The organization of this paper is as follows: In the Methods, we propose a cascade-
based gastric cancer detection and classification method. In the Results, we evaluate the
detection characteristics by calculating the detection performance and activation maps. In
the Discussion section, the detection performance and its comparison with previous studies
are discussed. Finally, in the Conclusions, we describe the effectiveness and contribution of
this study.

2. Methods
2.1. Proposed Method

Figure 1 shows an outline of the proposed method. Still images taken during the
endoscopy procedure are fed to a CNN model trained to perform image classification and
are classified as healthy, indicating early gastric cancer, and indicating advanced gastric
cancer. Then, the images classified as showing gastric cancer are input into a CNN model
trained to perform segmentation to extract the regions of early and advanced gastric cancer
and the extent of invasion is identified.
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Figure 1. Outline of the proposed method.

2.2. Image Dataset

For this study, endoscopic images were collected from healthy subjects, patients
with early stage gastric cancer and patients with advanced gastric cancer. All images
were collected at the endoscopy center of Fujita Health University Hospital during an
examination. They comprised 1208 endoscopic images collected from 42 healthy subjects,
533 images from 93 patients with early gastric cancer, and 637 images from 50 patients with
advanced gastric cancer. Images were obtained using upper endoscopes (GIF-290Z, GIF-
HQ290, GIF-XP290N, GIF-260Z; Olympus Medical Systems, Co., Ltd., Tokyo, Japan; and
EG-L600ZW7; Fujifilm Corp., Tokyo, Japan) and standard endoscopic video systems (EVIS
LUCERA CV-260/CLV-260, EVIS LUCERA ELITE CV-290/CLV-290SL; Olympus Medical
Systems; and VP-4450HD/LL-4450; Fujifilm Corp.). The image matrix sizes ranged from
640 × 480 to 1440 × 1080 pixels; these were standard white-light images stored in JPEG
format. This study was approved by an institutional review board and patients’ informed
consent was obtained under the condition that all data were anonymized (No. HM17-226).

Here, early gastric cancer was defined as lesions that remained in the mucosal or
submucosal layer of the stomach, whereas advanced gastric cancer was defined as lesions
that reached to the intrinsic muscular layer or deeper than that layer. For healthy subjects,
we reassessed the cases diagnosed as normal by the endoscopists and characterized a case
as “healthy” when there was no specific lesion, such as a polyp, tumor, or gastritis.
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Images stored by endoscope systems may contain text information, such as patient
names, and the shape of the field of view differs depending on the model of the endoscope.
Therefore, as shown in Figure 2, a perfect circle was inscribed in the effective field of
view of the endoscope, the area outside of the circle was filled in black, and a square area
was cropped with the bounding rectangle of the circle. The circular field of view was
implemented to avoid the bias caused by different endoscope models and maintain image
uniformity when data augmentation was performed as described below. Sample images of
the dataset are shown in Figure 3.
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Figure 3. Sample images of the image dataset. (a) healthy subjects; (b) early gastric cancer; (c) advanced
gastric cancer.

2.3. Annotation of Gastric Cancer Region

For images diagnosed as gastric cancer, labeled images of gastric cancer areas were
created for the segmentation of gastric cancer areas. Using an in-house annotation tool,
labeled images with the invasion areas of gastric cancer marked were created and confirmed
by a board-certified endoscopist (T. S.).

2.4. Data Augmentation

The number of images in the three categories differed. In addition, training a network
using a small number of images taken at a certain angle of view may result in overfitting.
In endoscopic examination, images of a single lesion are taken from various positions and
distances and there is wide variation in the position and size of the lesion in the image,
with sufficient data available. On the other hand, there is not much variation in the rotation
of images due to the limitations of examination techniques. Therefore, to avoid bias and
overfitting caused by the number of images and viewing angle, data augmentation was
performed by image rotation [12]. The rate of augmentation was varied according to
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the number of original images belonging to the class. Images of healthy subjects were
augmented by a factor of 4 at a pitch of 90 degrees, images of early gastric cancer were
augmented by a factor of 9 at a pitch of 40 degrees, and images of advanced gastric cancer
were augmented by a factor of 7 at a pitch of 50 degrees.

2.5. Network Architecture for Image Classification

The proposed method involves image classification and segmentation by two CNNs,
as shown in Figure 1. First, the given images are classified as healthy, showing early gastric
cancer or showing advanced gastric cancer by a CNN model. In this study, VGG-16/19 [21],
InceptionV3 [22], ResNet-50/-101/-152 [23], and DenseNet-121/-169/-201 [24] models
were constructed and compared in terms of their classification performance.

We introduced transfer learning to the training of the CNN described above, which
involves transferring the processing ability acquired in solving one task to learning to solve
another task. If the CNN of the original diversion is a well-trained model with a huge
amount of data, so it may provide a higher capacity [25]. In this study, a CNN model
trained on the ImageNet database consisting of more than 10 million images was adapted
for classification of endoscopic images. To conduct the transfer learning, the fully connected
layers of the original CNNs were removed, 1024 and 2 units of fully connected layers were
newly connected, and the weights of the fully connected layers were adjusted by training
using endoscopic images. We used the Adam optimizer with a learning rate of 0.0001 and
50 training epochs.

2.6. Network Architecture for Image Segmentation

Images classified by the first-stage CNN were transferred to the next-stage CNN for
segmentation according to their classification results. Images classified as healthy were
judged as not including cancer areas and, thus, segmentation was not performed. Images
classified as showing early and advanced gastric cancer were fed to a dedicated CNN for
segmentation processing.

We implemented U-Net as a CNN model to perform classification, given its excellent
performance in medical image segmentation [26]. The structure of the network is shown
in Figure 4 and included five layers of encoders and decoders. The encoders extract the
features of the image. The decoders upscale the extracted feature maps and generate a
pattern similar to that of the label image given as the teaching data. Furthermore, between
the same layer of encoders and decoders, spatial information reduced by the encoder
layer is given to the decoders by a mechanism called skip connections, which transfer
information between the encoder and decoder layers.
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Figure 4. U-Net architecture for gastric cancer segmentation.

Here, the morphology shown in images of early and advanced gastric cancer differs
considerably. Therefore, two independent U-Nets were created to segment early and
advanced gastric cancer. The Adam optimizer was used for training with a learning
coefficient of 0.0001 and 50 training epochs.
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2.7. Evaluation Metrics

To confirm the effectiveness of the proposed method, we evaluated the output of the
CNN models for image classification and segmentation. First, to evaluate the performance
of the CNN for image classification in the first stage, a confusion matrix was created
based on the CNN classification results. Based on the matrix, we calculated the accuracy,
sensitivity, and specificity of the models. NHealthy, NEGC, and NAGC indicate the numbers
of images for healthy, early gastric cancer, and advanced gastric cancer, respectively, and
CHealty, CEGC, and CAGC are the numbers of images successfully classified as healthy, early
gastric cancer, and advanced gastric cancer, respectively.

AccuracyOverall = (CHealty + CEGC + CAGC)/(NHealthy + NEGC + NAGC) (1)

AccuracyHealth = CHealty/NHealthy (2)

AccuracyEGC = CEGC/NEGC (3)

AccuracyAGC = CAGC/NAGC (4)

AccuracyBalanced = (AccuracyHealth + AccuracyEGC + AccuracyAGC)/3 (5)

Sensitivity = (CEGC + CAGC)/(NEGC + NAGC) (6)

Specificity = CHealty/NHealthy (7)

The above indices were evaluated on an image-by-image basis (image-based evalua-
tion) and on a case-by-case basis (case-based evaluation). For the former, the results were
tabulated when each image was classified into the class with the largest CNN output value.
For the case-by-case evaluation, the output values of images collected from the same case
were averaged for each class and the class with the highest average value was considered
as the classification result.

As for the visualization method of CNN output, class activation mapping (CAM)
calculates what parts of an image influence the prediction based on the feature map during
inference. Among various CAM methods, Grad-CAM calculates the activation map by
calculating the gradient of the CNN feature map and can provide a stable activation map
regardless of the model [27]. In this study, we calculated activation maps for healthy cases,
early gastric cancer, and advanced gastric cancer using Grad-CAM to visualize the basis
for classification.

In the second step of the segmentation process, the Dice coefficient (Di) and Jaccard
coefficient (Ji) were used to evaluate the extent to which the invasive area output by U-Net
was correctly extracted. Di and Ji were defined by the following equation to evaluate
the degree of agreement between the label image output by U-Net and the correct label
(Ground Truth) created by the endoscopist.

Di = 2|A∩B|/(|A| + |B|) × 100 [%] (8)

Ji = |A∩B|/|A∪B| × 100 [%] (9)

where A is the ground truth prepared by the gastroenterologist and B represents the
region of gastric cancer obtained by the CNN. Cross-validation was used to evaluate the
classification and segmentation process [28]. In cross-validation, the image dataset was
divided into K subsets to avoid fragmenting the cases. The CNN was trained on K-1 subsets
and the image data belonging to the remaining one subset was defined as testing data; then,
the classification results were evaluated. In the cross-validation method, the test results
for all data were obtained by training and testing K times while changing the subset used
as the testing data. The data were divided into 5 subsets (5-fold cross-validation) and the
classification performance was evaluated.

The calculations of two CNNs were performed using software we developed in
the Python programming language with an AMD Ryzen 9 3950X processor (16 CPU
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cores, 4.7 GHz) with 128 GB of DDR4 memory. The training processes of the CNNs were
accelerated by an NVIDIA Quadro RTX 8000 GPU (48 GB memory).

3. Results
Image Classification Result

Table 1 shows the results of the comparison of the classification performance of the
CNN models for image classification, which performed in the first stage of this study.
DenseNet-121 had the highest classification performance for both image-based and case-
based classification, with a detection sensitivity and specificity of 0.970 and 0.994, respec-
tively, in the image-based evaluation. In the case-based evaluation, all of the values were
1.0. A confusion matrix of the classification results from DenseNet-121 is shown in Table 2.
Next, the correctly and incorrectly classified images are shown in Figure 5, along with the
Grad-CAM output.

Table 1. Comparison of CNN models for image classification. Values in bold indicate the results of
the CNN model with the highest performance.

(a) Image-Based Classification

AccuracyHealthy AccuracyEGC AccuracyAGC Accuracyoverall AccuracyBalanced Sensitivity Specificity

VGG16 0.964 0.919 0.922 0.943 0.935 0.951 0.964
VGG19 0.994 0.947 0.904 0.960 0.949 0.939 0.994

InceptionV3 0.988 0.921 0.906 0.951 0.938 0.938 0.988
DenseNet121 0.994 0.998 0.945 0.982 0.979 0.970 0.994
DenseNet169 0.995 0.998 0.903 0.971 0.965 0.948 0.995
DenseNet201 0.996 0.989 0.943 0.980 0.976 0.965 0.996

ResNet50 0.991 0.991 0.922 0.972 0.968 0.956 0.991
ResNet101 0.990 0.981 0.920 0.969 0.964 0.949 0.990
ResNet152 0.996 0.994 0.918 0.975 0.970 0.954 0.996

(b) Case-based classification

AccuracyHealthy AccuracyEGC AccuracyAGC Accuracyoverall AccuracyBalanced Sensitivity Specificity

VGG16 0.976 0.937 0.960 0.952 0.958 0.979 0.976
VGG19 1.000 0.947 0.940 0.957 0.962 0.972 1.000

InceptionV3 1.000 0.958 0.980 0.973 0.979 0.986 1.000
DenseNet121 1.000 1.000 1.000 1.000 1.000 1.000 1.000
DenseNet169 1.000 1.000 0.960 0.989 0.987 0.986 1.000
DenseNet201 1.000 1.000 0.980 0.995 0.993 0.993 1.000

ResNet50 1.000 0.989 1.000 0.995 0.996 1.000 1.000
ResNet101 1.000 1.000 0.980 0.995 0.993 0.993 1.000
ResNet152 1.000 1.000 0.980 0.995 0.993 0.993 1.000

Table 2. Confusion matrices of classification using DenseNet121.

(a) Image-Based Classification

Predicted

Healthy Early Gastric Cancer Advanced Gastric Cancer

Actual

Healthy 1201 0 7

Early gastric cancer 0 531 1

Advanced gastric cancer 35 0 602

(b) Case-based classification

Predicted

Healthy Early Gastric Cancer Advanced Gastric Cancer

Actual

Healthy 42 0 0

Early gastric cancer 0 95 0

Advanced gastric cancer 0 0 50
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tracted false-positive regions. The evaluation results showed that 283 false-positive re-
gions were detected in 1208 healthy images and the number of false positives per image 
(FPI) was 0.234 (283/1208). Because the proposed method performs image classification in 
the first stage, images classified as healthy need not be segmented. The false positives 
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yielding an FPI of 0.005 (6/1208). 

(a)
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Figure 5. Correctly and incorrectly classified images: (a) classification results of early gastric cancer;
(b) classification results of advanced gastric cancer; (c) classification results of healthy subjects.

The results of U-Net segmentation are shown in Figure 6 and the Dice and Jaccard
coefficients are listed in Table 3. Note that the segmentation of healthy images often
extracted false-positive regions. The evaluation results showed that 283 false-positive
regions were detected in 1208 healthy images and the number of false positives per image
(FPI) was 0.234 (283/1208). Because the proposed method performs image classification in
the first stage, images classified as healthy need not be segmented. The false positives from
the segmentation results were investigated by excluding the images correctly classified as
healthy in the first stage and false-positive regions were extracted from six images, yielding
an FPI of 0.005 (6/1208).
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Figure 6. Lesions detected and missed in the segmentation phase: (a,b) correctly detected region of
advanced gastric cancer; (c) missed region of advanced gastric cancer; (d,e) correctly detected region
of early gastric cancer; (f) missed region of early gastric cancer.
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Table 3. Evaluation results of cancer segmentation.

Di Ji

Early gastric cancer 0.555 0.427
Advanced gastric cancer 0.716 0.611

4. Discussion

In this study, we proposed a cascaded deep learning model for endoscopic images,
designed to classify the depth of normal and gastric cancer using a CNN model to perform
image classification and then performed segmentation on the extent of gastric cancer
invasion using U-Net.

In the first stage of the image classification task, nine different CNN models were
employed and their classification performances were compared. The results showed
that the performance differences among the models were not large, being within 5% for
most of the evaluation indices. Among the CNN models, DenseNet-121 achieved the
highest classification performance for all items, with a detection sensitivity of 97% and a
specificity of 99.4% for gastric cancer. A slight misclassification occurred in the image-based
evaluation. In cases of early gastric cancer, images with extensive areas of invasion were
classified as advanced gastric cancer. In healthy cases, some bubbles adhering to the gastric
mucosa and some hyperemic areas produced by endoscopy were misclassified as advanced
gastric cancer. Endoscopy involves collecting multiple images for a single patient. The
classification results of the individual images were tabulated and a decision was made for
each patient. Consequently, all cases were classified into the correct category, as shown
in Table 2. These results indicate that the CNN established in the first stage was able to
accurately classify not only normal samples and those exhibiting gastric cancer but also the
depth of the cancer.

As a result of acquiring the regions of interest for image classification by Grad-CAM,
the lesion and its surrounding area tended to be focused on for early and advanced gastric
cancer. In healthy subjects, the results showed that the entire gastric mucosa was uniformly
focused on. These results are similar to the process of diagnosis using images, which can
be considered reasonable.

In the second stage of the cascade model, the invasive extent was segmented by U-
Net for images classified as early or advanced gastric cancer and the agreement between
the invasive extent output by U-Net and the gold standard specified by the endoscopist
was evaluated using the Dice and Jaccard coefficients. The Dice coefficient was 0.555 for
early gastric cancer and 0.716 for advanced gastric cancer. This was due to the lack of
morphological changes in the images of early gastric cancer and the fact that many of
the images were taken from the side of the gastric wall rather than from the front, so the
contours of the invasive area were not completely defined. Even with this underestimation,
the extent of the invasion output, like the Grad-CAM output, provides a basis for image
classification and can provide important information during endoscopy.

To compare the detection performance of gastric cancer, Table 4 shows the perfor-
mances of previous studies and the proposed method. In our previous study [13], we
presented a method that obtained a case-based detection sensitivity of 0.989, and the num-
ber of false positives (FPI) per image was 0.011. When compared under the same conditions,
those obtained in the present work were 1.000 and 0.005, respectively.

Our previous study faced challenges about false positives and high computational
cost because semantic segmentation was applied to all healthy images collected during the
examination. The detection sensitivity and the number of false positives in the proposed
cascade model were superior to those of our previous study and the computational cost
of the segmentation process was eliminated because healthy images were cut off by the
classification CNN. Although an accurate comparison is not possible because a different
database was used, the proposed method with cascaded model had a better detection
sensitivity than those in previous studies using an SSD (sensitivity of 99.2%) [10]. The



Diagnostics 2022, 12, 1996 10 of 12

proposed method can classify images with high sensitivity and specificity and can also
provide the extent of invasion, suggesting that it may be considered a highly effective
technique for assisting in endoscopic screening of gastric cancer.

Table 4. Performance comparison of gastric cancer detection and segmentation.

Author Method Image Dataset Detection Performance Segmentation
Performance

Hirasawa et al. [10] SSD Original
15,880 images

Sensitivity = 0.922
Positive predictive value = 0.306 -

Sakai et al. [11] CNN Original
926 images

Sensitivity = 0.800
Specificity = 0.948 -

Shibata et al. [12] Mask R-CNN Original
1741 images

Sensitivity = 0.96
False positives per image = 0.105 Dice index = 0.54

Teramoto et al. [13] U-Net + CNN Original
1741 images

Sensitivity = 0.98
False positives per image = 0.011 Dice index = 0.56

Proposed method Cascade CNN Original
2378 images

Sensitivity = 1.00
False positives per image = 0.005 Dice index = 0.56

A limitation of this study is that the endoscopic images were collected at a single
facility. In the future, an evaluation of usefulness of the proposed approach should be
conducted using images from multiple facilities. Regarding the evaluation of the extraction
accuracy of the invasive area, the Dice and Jaccard coefficients were introduced. However,
a subjective evaluation of whether the clinically important invasive area was extracted is
required. Furthermore, we intend to develop endoscopy support software that incorporates
the constructed model and confirm its usefulness in practical medicine.

5. Conclusions

In this study, we proposed a cascade deep learning model to support the automated
detection and classification of gastric cancer during endoscopy by combining image clas-
sification and segmentation to detect normal samples and gastric cancer, to evaluate the
degree of depth, and to identify the extent of invasion. The evaluation results showed
that the accuracy of first-stage image classification was high and the proposed method
accurately classified normal images and gastric cancer and classified the depth of invasion.
In addition, the extent of gastric cancer invasion was correctly extracted from several
images. The number of false positives generated by the proposed method was significantly
low, indicating that the method is effective for endoscopic screening.
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