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ABSTRACT
The endoplasmic reticulum (ER)–Golgi interface is essential for directing the transport of proteins synthesized in the ER to the 
Golgi apparatus via the ER–Golgi intermediate compartment, as well as for recycling proteins back to the ER. This transport is 
facilitated by various components, including COPI and COPII coat protein complexes and the transport protein particle complex. 
Recently, the ER–Golgi transport pathway has gained attention due to emerging evidence of nonvesicular transport mechanisms 
and the regulation of trafficking through liquid–liquid phase separation. Numerous diseases have been linked to mutations in 
proteins localized at the ER–Golgi interface, highlighting the need for comprehensive analysis of these conditions. This review 
examines the disease phenotypes associated with dysfunctional ER–Golgi transport factors and explores their cellular effects, 
providing insights into potential therapeutic strategies.

1   |   Introduction

Intracellular membrane transport is essential for the move-
ment of substances between various cellular organelles. At the 
heart of this system is the endoplasmic reticulum (ER)–Golgi 
interface, which serves as the central pathway for transporting 
proteins synthesized in the ER to other organelles and locations 
within the cell [1–3].

Historically, transport from the ER to the Golgi apparatus was 
believed to rely primarily on coat protein complex II (COPII)-
coated vesicles. These vesicles form at specific regions of the ER 
known as ER exit sites and facilitate cargo transport to the Golgi 
apparatus. This mechanism was thought to be conserved from 
yeast to humans [4, 5]. However, recent studies have reported 
alternative transport modes in mammalian cells. Evidence now 
suggests that, in addition to COPII vesicles, certain materials 

may also travel from the ER to the Golgi via tubular structures, 
thereby bypassing traditional COPII vesicle-mediated transport 
[6–11].

An important structure within this transport pathway is the 
ER-Golgi intermediate compartment (ERGIC), an organelle po-
sitioned between the ER and Golgi apparatus that acts as a relay 
station for cargo [12–15]. Although ERGIC was initially thought 
to exist only in higher eukaryotes, recent studies have indicated 
the possibility of an ERGIC-like organelle in yeast [16]. This dis-
covery underscores the evolving understanding of the ER–Golgi 
transport system, with several previously accepted concepts 
now being reconsidered in light of new evidence.

Another recent area of interest is the role of liquid–liquid phase 
separation (LLPS) in membrane trafficking. It has been found 
that certain transport machinery and their interacting partners 
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can undergo LLPS, forming dynamic liquid droplets. This phase 
separation plays a critical role in regulating the spatial organiza-
tion and functional dynamics of membrane transport [17].

With these new models and mechanisms emerging for ER–Golgi 
transport, it has become essential to explore how disruptions in 
these pathways contribute to disease. In this review, we sys-
tematically summarize the cellular functions of key factors at 
the ER–Golgi interface and the diseases that arise due to their 
dysfunction. By examining these disease phenotypes in the con-
text of recent findings, we hope to provide new insights into the 
physiological and pathological roles of these factors, thereby es-
tablishing a stage for future therapeutic strategies.

2   |   Proteins at ER Exit Sites

The formation of COPII-coated vesicles is initiated by the acti-
vation of the small GTPase Sar1. In its GDP-bound state, Sar1 
remains in the cytoplasm. However, upon activation by the 
guanine nucleotide exchange factor (GEF) Sec12, Sar1 binds to 
GTP and associates with the ER membrane. GTP-bound Sar1 
then forms a prebudding complex by interacting with the Sec23/
Sec24 complex, thereby enhancing the binding of cargo proteins 
to Sec24. Recruitment of the outer coat proteins Sec13/31 to the 
Sec23/24 complex further stimulates the GTPase-activating 
protein (GAP) activity of Sec23, promoting the GTP hydrolysis 
of Sar1. Following hydrolysis, Sar1 in its GDP-bound form is 

released back into the cytoplasm, allowing the cargo to be trans-
ported from the ER to the Golgi apparatus (Figure 1) [18–21].

Sec16 serves as a scaffold by binding to multiple COPII compo-
nents that play an essential role in the formation of ER exit sites 
[22–25]. In humans, Sec16 exists as two homologs: Sec16A and 
Sec16B. Sec16A, characterized by its intrinsically disordered re-
gions, is phosphorylated by the dual-specificity kinase DYRK3, 
which regulates its liquid–liquid phase separation, thereby mod-
ulating the physical state and function of ER exit sites [26].

These factors, which are conserved from yeast, have tradition-
ally been regarded as essential for COPII vesicle formation. 
However, recent studies have uncovered additional factors 
unique to higher eukaryotes that play critical roles in this pro-
cess, suggesting an evolutionary divergence in COPII vesicle 
biogenesis.

One such factor, TANGO1, was initially identified in 
Drosophila S2 cells as essential for secretion through genome-
wide screening [27]. Studies in human cells have further 
elucidated its role as a cargo receptor for collagen at ER exit 
sites [28–31]. TANGO1 promotes Sar1 activation and effi-
cient collagen secretion by recruiting cTAGE5 and Sec12 to 
the ER exit sites [32–34]. It forms a ring-like structure at the 
ER exit sites and recruits ERGIC membranes to facilitate col-
lagen transport [11, 14, 35, 36]. TANGO1 undergoes alterna-
tive splicing, resulting in a short form, TANGO1S, and a long 

FIGURE 1    |    Model of COPII vesicle formation at the ER exit site. The ER exit site is a specialized region of the ER membrane formed by TANGO1 
and Sec16. In mammals, TANGO1 forms a complex with cTAGE5 and Sec12, which activates the small GTPase, Sar1. Activated Sar1 binds to the 
Sec23/24 complex, which then recruits the Sec13/31 complex, leading to COPII vesicle assembly. TFG localizes to the region between the ER and 
ERGIC, facilitating transport via COPII vesicles.
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form, TANGO1L. Both isoforms contribute to ER exit-site or-
ganization in conjunction with Sec16A [37, 38]. During mito-
sis, TANGO1 is phosphorylated by CK1, which modulates its 
interaction with Sec16A and facilitates ER exit site disassem-
bly [39].

TRK-fused gene (TFG), another critical component, forms 
an oncogenic fusion gene with TrkA receptor tyrosine kinase 
[40]. TFG self-assembles into octamers and localizes at the ER/
ERGIC interface, where it interacts with multiple factors to reg-
ulate the organization of the early secretory pathway and ER 
export [41–44]. Recent research suggests that the C-terminal 
region of TFG, which is rich in intrinsically disordered regions, 
undergoes liquid–liquid phase separation to form liquid drop-
lets, enhancing vesicular transport efficiency at the ER/ERGIC 
interface [8, 9].

In contrast, recent studies on vesicle-independent transport 
from the ER have highlighted that, while the precise roles of 
many factors remain unclear [6, 7], Sar1 activation continues to 
be recognized as indispensable [45].

2.1   |   Sar1

In humans, the Sar1 homolog, Sar1B, is linked to chylomicron 
retention disease (CMRD; OMIM #246700), an autosomal reces-
sive disorder characterized by impaired fat absorption, growth 
failure, and steatorrhea [46–49]. Accumulated lipid droplets 
in enterocytes of affected individuals suggest that Sar1B muta-
tions disrupt chylomicron secretion in the intestine [49]. Many 
CMRD-associated mutations are located within the GTP-
binding domain of Sar1B, indicating a loss-of-function effect 
[46]. Additionally, some Sar1B mutations significantly reduce 
protein expression [49].

Sar1B overexpression promotes ApoB-48 secretion, a chylomi-
cron component, while Sar1A overexpression decreases ApoB-
48 secretion, suggesting distinct roles of Sar1 homologs in 
chylomicron secretion [50]. Sar1A cannot compensate for Sar1B 
in restoring ApoB-48 secretion when Sar1B is suppressed [51]. 
Sar1B binds more strongly to Sec23/24 and forms gently curved 
vesicles without oligomerization, suggesting distinct cargo spec-
ificities for Sar1A and Sar1B [51].

In contrast, simultaneous suppression of both Sar1A and Sar1B 
synergistically reduced ApoB and chylomicron secretion, indi-
cating partial functional redundancy [52]. Furthermore, Sar1A 
and Sar1B participate in regulating the expression of enzymes 
involved in ApoB and cholesterol biosynthetic pathways [50]. 
Sar1 regulates lipid biosynthesis pathway enzymes and possibly 
influences lipid homeostasis through SREBP transport to the 
Golgi [53].

2.2   |   Sec23

In humans, Sec23 exists in two homologous forms, Sec23A and 
Sec23B, each associated with distinct genetic diseases. Sec23A 
mutations cause cranio–lenticulo–sutural dysplasia (CLSD; 
OMIM #607812), a condition characterized by late-closing 

fontanels, facial dysmorphisms, and skeletal abnormalities. 
The pathogenic mutations in Sec23A include a homozygous 
F382L mutation and heterozygous M702V and E599K mutations 
[54–57]. The F382 and M702 residues are located at interaction 
sites between Sec23A and Sec31 [55, 58], and these mutations 
alter the role of Sec23A in membrane recruitment and GAP ac-
tivity toward Sar1B. Specifically, the F382L mutation disrupts 
Sec31 recruitment to membranes and inhibits GAP activity, 
while the M702V mutation enhances GAP activity, leading to 
Golgi enlargement and impaired collagen secretion [58, 59]. 
These observations suggest that the altered GAP activity of 
Sec23A toward Sar1B underlies the abnormalities in collagen 
trafficking seen in CLSD. The E599K mutation, located at the 
interaction site between Sec23A and Sar1, is also thought to in-
fluence GAP activity, further implicating the Sec23A–Sar1 inter-
action in disease pathology [56].

In contrast, mutations in Sec23B are linked to congenital 
dyserythropoietic anemia type II (CDAN2; OMIM #224100), 
a disorder characterized by impaired erythrocyte maturation 
[60–64]. Zebrafish morpholino-based studies have supported 
the role of Sec23B in erythrocyte differentiation, demonstrating 
that Sec23B is essential for proper red blood cell development 
[60]. These findings emphasize the specialized roles of Sec23 ho-
mologs in different tissues, and disease associations reflect these 
functional distinctions.

Although Sec23A and Sec23B play distinct roles, they exhibit 
functional redundancy under certain conditions. For example, 
during erythrocyte maturation, Sec23A expression declines 
as Sec23B expression becomes predominant, with Sec23B 
compensating for the absence of Sec23A in this context [60]. 
Experimental evidence also suggests that the function of 
Sec23B can be partially rescued by expressing Sec23A under 
the control of the Sec23B promoter, indicating that these ho-
mologs can perform interchangeable roles when appropriately 
regulated [65–67]. In conditional knockout models target-
ing Sec23B in T cells, Sec23A can compensate for the loss of 
Sec23B, restoring T cell proliferation and secretion of cyto-
kines such as IL-2, IL-7 and IFN-γ [68]. This redundancy in-
dicates that tissue-specific transcriptional regulation, rather 
than intrinsic functional differences, is likely a primary factor 
in determining the phenotypic consequences of Sec23A and 
Sec23B mutations.

In addition to their roles in genetic diseases, Sec23 proteins have 
been implicated in cancer. A homozygous missense mutation in 
Sec23B has been linked to Cowden's syndrome, an autosomal 
dominant familial cancer syndrome [69]. Furthermore, both 
Sec23A and Sec23B are targeted by cancer-associated microR-
NAs, with expression levels of Sec23A generally reduced in tu-
mors and Sec23B expression elevated [70]. These contrasting 
expression patterns suggest that the two homologs might have 
distinct functions in oncogenesis, potentially influencing tum-
origenesis in opposite directions.

2.3   |   Sec24

The Sec24 family, which includes four paralogs (Sec24A-D), 
also plays a critical role in ER export by binding to various 
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cargos and cargo receptors to facilitate protein exit from the ER. 
Among these, mutations in Sec24D cause Cole–Carpenter syn-
drome type 2 (CLCRP2; OMIM #616294), a disorder resembling 
osteogenesis imperfecta, with clinical features including mul-
tiple fractures and facial dysmorphisms [71–74]. Cells derived 
from patients with CLCRP2 exhibit defective collagen secretion 
and an enlarged ER, implicating impaired collagen trafficking 
in disease pathology [71]. Similar phenotypes are observed in 
Sec24D-deficient zebrafish and medaka [75, 76], and the clinical 
manifestations of CLCRP2 overlap with those of CLSD, caused 
by Sec23A mutations. These findings suggest that Sec24D mu-
tations disrupt the function of the Sec23/24 complex, thereby 
contributing to CLCRP2.

2.4   |   Sec16

Sec16B interacts with Sec16A and plays a role in peroxisome 
biogenesis; however, its precise molecular functions remain 
unclear [22, 77]. Recent studies have shown that homozygous 
mutations in Sec16B cause a form of osteogenesis imperfecta, 
characterized by leg bowing, vertebral fractures, low bone 
mass, musculoskeletal pain, short stature and muscle weak-
ness [78]. In cells from affected individuals, type I collagen 
accumulates within the ER, leading to increased ER stress, 
autophagy, and apoptosis. Importantly, expression of wild-
type Sec16B can alleviate the collagen secretion defect, high-
lighting the critical role of Sec16B in collagen processing and 
ER homeostasis [78].

2.5   |   Sec31

In humans, Sec31 exists as two homologs: Sec31A and Sec31B 
[79]. Homozygous frameshift mutations in Sec31A have 
been identified through exome sequencing in patients with 
Halperin–Birk syndrome (HLBKS, OMIM #610257), a disor-
der characterized by structural brain abnormalities and devel-
opmental delays [80]. A similar disease phenotype has been 
observed in flies with suppressed Sec31A expression, under-
scoring the critical role of Sec31A in normal brain develop-
ment. Recently, heterozygous nonsense mutations in Sec31A 
have been linked to hypopituitarism and gonadal dysgenesis. 
Some patients with these mutations exhibit milder develop-
mental delays than those observed in HLBKS [81]. ER stress 
responses were detected in all affected patients, suggesting 
that Sec31 dysfunction-induced ER stress may play a role in 
neurodegeneration.

2.6   |   Sec13

Conditional knockout of Sec13 specifically in oligodendrocytes 
in mice disrupts oligodendrocyte differentiation and impairs 
myelination, underscoring the essential role of Sec13, along with 
Sec31, in normal brain development [82]. Further studies reveal 
that the Sec13/31 complex is selectively recruited to intrinsically 
disordered region-mediated condensation formed by SCOTIN/
SHISA-5, where ER-Golgi trafficking is inhibited in response 
to IFN-γ stimulation or the expression of cancer-associated 
SCOTIN mutants [83]. Additionally, during influenza infection, 

Sec13 interacts with the viral protein NS1, suggesting an import-
ant role for Sec13 in viral pathogenesis [84].

2.7   |   TFG

Mutations in TFG have been implicated in autosomal recessive 
spastic paraplegia 57 (SPG57; OMIM #615658), a clinically het-
erogeneous axonopathy characterized by gait abnormalities and 
neurological symptoms due to upper motor neuron impairment 
[85–87]. These are primarily missense mutations within the 
N-terminal Phox and Bem1 (PB1) domains and the coiled-coil 
regions of TFG. Notably, the R106C mutation in the coiled-coil 
domain results in defective TFG oligomerization and delayed 
ER exit [85, 88]. In rat neuronal cells expressing the R106C vari-
ant, impaired endosomal cargo trafficking and downregulated 
inhibitory receptor signaling were observed, highlighting the 
multifaceted roles of TFG in the nervous system and suggesting 
its importance in motor neuron maintenance [89].

Heterozygous TFG mutations cause neuropathy, hereditary 
motor and sensory, Okinawa type (HMSNO; OMIM #604484), a 
neurodegenerative disorder characterized by muscle weakness, 
atrophy, and distal sensory loss [90–92]. HMSNO is considered 
a rare form of Charcot–Marie–Tooth disease [93, 94]. In patients 
with HMSNO, the motor neurons show TDP-43 inclusion bod-
ies and Golgi fragmentation, indicative of neuronal dysfunction 
[90]. Disease-causing mutations such as P285L and G269V are 
missense variants in the PQ-rich domain that are crucial for 
TFG localization [42]. These mutations induce TFG aggregation 
in cells [93, 94]. In zebrafish models, TFG suppression impedes 
neurite outgrowth, triggers neuronal apoptosis, and reduces 
motor function, indicating that HMSNO is caused by TFG mis-
localization, resulting in loss of function and neuronal apopto-
sis [94].

2.8   |   TANGO1

A homozygous mutation in the TANGO1 gene has been identi-
fied as the causative factor of severe dentinogenesis imperfecta, 
short stature, various skeletal abnormalities, insulin-dependent 
diabetes mellitus, sensorineural hearing loss, and mild intel-
lectual disability, underscoring the essential role of TANGO1 
in physiological processes [95]. These findings highlight the 
broad influence of TANGO1 on normal development and func-
tion and emphasize the need for further investigation into its 
mechanisms.

A missense mutation within exon 8 of TANGO1L, at the amino 
acid level, disrupts splicing and produces a truncated version of 
TANGO1L. This mutation may also affect the shorter isoform, 
TANGO1S, since both TANGO1L and TANGO1S are often af-
fected in patients. However, some affected individuals retain the 
normal spliced versions of TANGO1L/S, suggesting variable ex-
pression outcomes [95].

In a separate study, a distinct mutation involving a 4-base-pair 
deletion within an exon of TANGO1L was identified in both 
the parents and offspring. This mutation significantly reduced 
TANGO1L expression, leading to embryonic lethality and 



5 of 16

near-complete bone loss [96]. Interestingly, this deletion did not 
affect TANGO1S, mirroring the phenotype observed in previ-
ously reported TANGO1L-knockout mice [97]. Collectively, 
these results suggest that TANGO1L, but not TANGO1S, is in-
dispensable for skeletal integrity and viability.

3   |   COPI Proteins

COPI vesicles facilitate retrograde transport from the Golgi to 
the ER and mediate intra-Golgi transport (Figure  2). In hu-
mans, the COPI vesicle coat is a hetero-multimeric complex 
comprising subunits, such as coatomer subunit alpha (COPA), 
beta 1 (COPB1), beta 2 (COPB2), delta (COPD), epsilon (COPE), 
gamma 1 (COPG1), gamma 2 (COPG2), zeta 1 (COPZ1) and 
zeta 2 (COPZ2). These coatomer proteins are recruited to the 
membrane through the activation of ADP-ribosylation factors 
(ARFs), a family of small GTPases. Activation of ARFs, includ-
ing ARF1, is facilitated by ARF guanine nucleotide exchange 
factors (ARF-GEFs) such as GBF1, which catalyzes the ex-
change of GDP for GTP.

3.1   |   Arf1

ADP-ribosylation factor 1 (Arf1) is predominantly localized on 
the cis-Golgi, trans-Golgi and ERGIC, where it plays a critical 
role in maintaining the Golgi structure. Activated Arf1 recruits 
COPI at the cis-Golgi and ERGIC, thereby facilitating retrograde 
transport to the ER. At the trans-Golgi, Arf1 recruits coat com-
plexes, such as AP-1 and clathrin, that are involved in differ-
ent trafficking pathways [98, 99]. Arf1 knockout mice exhibit 
embryonic lethality [100], and heterozygous missense muta-
tions within the GDP-binding site of Arf1 impair its activation, 
causing periventricular nodular heterotopia 8 (PVNH8; OMIM 
#618185), a neurological disorder characterized by abnormal 
neuronal migration, delayed psychomotor development and in-
tellectual disability [101]. Notably, a similar disorder, periven-
tricular heterotopia with microcephaly (PVNH2), arises due to 
heterozygous mutations in ARFGEF2, an ARF-GEF that local-
izes primarily to the trans-Golgi network (TGN) and activates 
Arf1 and Arf3 [102–104]. This similarity indicates the critical 
role of Arf1 function in the TGN in PVNH8 pathology. Recently, 

constitutive activation of Arf1 has also been associated with 
PVNH8, where monoallelic missense mutations led to Golgi 
enlargement and increased recruitment of adapter proteins in 
patient-derived cells, presenting with developmental delay, hy-
potonia, intellectual disability and motor stereotypies [105].

3.2   |   GBF1

Golgi-specific brefeldin A-resistance guanine nucleotide ex-
change factor 1 (GBF1) is localized at the ER exit sites, ERGIC, 
and cis-Golgi, where it activates multiple Arf proteins, includ-
ing Arf1, and recruits COPI vesicles, thus supporting retrograde 
transport to the ER [106]. Heterozygous mutations in GBF1 cause 
Charcot–Marie–Tooth disease, axonal, type 2GG (CMT2GG; 
OMIM #606483), characterized by peripheral axonal neuropa-
thy, distal sensory impairment, muscle weakness in the lower 
limbs and gait difficulties [107]. Golgi fragmentation in primary 
fibroblasts from patients with CMT2GG indicates potential traf-
ficking disruptions. Diseases caused by Arf1 mutations are more 
strongly linked to ARFGEF2, which localizes to the TGN, than 
to GBF1 mutations [101–104]. Therefore, future analyses are 
required to elucidate whether the mechanisms by which GBF1 
mutations lead to disease are associated with abnormal activa-
tion of Arf1 or the involvement of other Arf proteins.

3.3   |   COPA

Coatomer subunit alpha (COPA), a component of the COPI ves-
icle coat, is essential for retrograde transport from the Golgi to 
the ER and is recruited to the membrane upon Arf1 activation 
[108]. The WD40 domain of COPA binds to dilysine motifs on 
cargo proteins. Watkin et al. identified four heterozygous mis-
sense mutations in the WD40 domain of COPA across five fami-
lies with autoimmune interstitial lung, joint, and kidney disease 
(AILJK; OMIM #616414) [109]. These mutations impair the 
ability of COPA to bind to the dilysine motif, thereby disrupting 
retrograde transport.

Stimulator of interferon genes (STING), a key regulator of innate 
immune responses, normally resides in the ER, but relocates to 
the Golgi upon activation by cyclic dinucleotides, leading to 

FIGURE 2    |    Schematic of COPI vesicle formation. Arf1 is activated by GBF1 on the Golgi membrane, converting it to its GTP-bound state, which 
in turn recruits the COPI coatomer complex. The COPI coatomer complex comprises the following subunits: Alpha (COPA), beta 1 (COPB1), beta 
2 (COPB2), delta (COPD), epsilon (COPE), gamma 1 (COPG1), gamma 2 (COPG2), zeta 1 (COPZ1) and zeta 2 (COPZ2) that form the COPI vesicle.
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type I interferon expression [110]. Deng et al. found that STING 
was mislocalized to the Golgi apparatus in cells with sup-
pressed COPA expression or mutations associated with COPA 
syndrome. Mutant mice with this syndrome developed type I 
IFN-driven inflammation, which was not observed in STING-
deficient mice [111]. Type I IFN levels and IFN-stimulated gene 
(ISG) expression were elevated in the blood of patients with 
COPA syndrome, reflecting STING-dependent IFN production 
[112]. Thus, the inflammation observed due to COPA mutations 
may be mediated by STING activation. STING forms a complex 
with COPA and Surf4 and is transported to the ER. In patients 
with COPA syndrome, mutant COPA failed to form this complex 
[113]. Therefore, we inferred that COPA syndrome is caused by 
ectopic localization and constitutive activation of STING in the 
Golgi apparatus.

3.4   |   COPB1

COPI coat complex subunit beta 1 (COPB1) is the core compo-
nent of the COPI coatomer complex. Homozygous mutations in 
COPB1 cause Baralle–Macken syndrome (BARMACS; OMIM 
#619255), a rare genetic disorder characterized by global devel-
opmental delay, severe intellectual disability and cataracts [114]. 
Two primary mutation types have been identified in patients 
with BARMACS: a 36-amino-acid deletion resulting from exon 
8 skipping, which mimics human syndrome features in Xenopus 
models, and a F551V missense mutation that disrupts the cel-
lular localization of COPB1. Both mutations impact the β-COP 
trunk domain, essential for interaction with COPB2. Some pa-
tients with BARMACS also exhibit microcephaly, suggesting a 
potential link with COPB2 mutations, which are also associated 
with microcephaly.

3.5   |   COPB2

COPI coat complex subunit beta 2 (COPB2), another COPI co-
atomer protein, recognizes cargo dilysine motifs through its 
N-terminal WD40 propeller domain. The R254C homozygous 
mutation in COPB2 causes primary autosomal recessive micro-
cephaly 19 (MCPH19; OMIM #617800), a congenital brain mal-
formation [115]. This mutation occurs at a conserved residue 
within the WD40 domain, indicating its critical role in COPB2 
function. In heterozygous mice with the COPB2 R254C muta-
tion and a null allele, cortical dysgenesis resembling human 
MCPH19 was observed, and the animals exhibited early lethal-
ity, highlighting the essential role of COPB2 in brain develop-
ment [115].

In addition to MCPH19, COPB2 mutations also cause osteo-
porosis, childhood- or juvenile-onset, with developmental 
delay (OPDD; OMIM #619884) [116]. Six patients with OPDD 
were found to harbor various COPB2 mutations, including a 
homozygous R254C mutation (identical to that observed in 
MCPH19), two heterozygous frameshift mutations, one het-
erozygous nonsense mutation and one splicing abnormality. 
Notably, patients carrying the homozygous R254C mutation 
also presented with microcephaly, in addition to the charac-
teristic features of OPDD. Partial depletion of COPB2 in cul-
tured cells resulted in the inhibition of procollagen I transport 

from the endoplasmic reticulum (ER), providing strong ev-
idence that the ER dilation observed in fibroblasts from pa-
tients with OPDD reflects impaired collagen secretion due to 
loss of COPB2 function. This disruption in collagen secretion 
likely contributes to the reduced bone density observed in 
these patients. In support of this hypothesis, both heterozy-
gous COPB2 knockout mice and zebrafish homozygous for 
COPB2 frameshift mutations exhibited reduced collagen se-
cretion and compromised bone density [116].

In cells with suppressed COPB2 expression, disorganization of 
the Golgi apparatus and ERGIC was observed. Since the ERGIC 
serves as a critical membrane source for procollagen-containing 
transport vesicles [14], this disorganization may impair collagen 
secretion. Alternatively, COPI may play a direct role in the exit 
of procollagen from the ER, as its involvement in collagen secre-
tion has been previously demonstrated [117, 118]. Recent studies 
have further demonstrated the association of COPI with trans-
port intermediates extending from ER exit sites [6, 7].

3.6   |   COPD

COPD is part of the COPI coatomer complex and is essential 
for vesicle formation and intracellular transport. Mutations 
in COPD are linked to short stature–micrognathia syndrome 
(SSMG; OMIM #617164), characterized by rhizomelic short 
stature and micrognathia [119–122]. In COPD knockdown cel-
lular models, deficiencies in collagen secretion and increased 
ER stress have been observed, suggesting that the skeletal ab-
normalities seen in SSMG are due to impaired collagen trans-
port [119].

Moreover, osteogenesis imperfecta, commonly associated with 
defective collagen processing, is observed in conditions caused 
by COPB2 mutations, underscoring the importance of the COPI 
coatomer in bone development. Patients with SSMG often ex-
hibit microcephaly, a feature shared with conditions involving 
COPB1 and COPB2 mutations, suggesting the critical role of 
the COPI coatomer complex in both bone formation and brain 
development.

4   |   Protein Recycling via the ER–Golgi Interface

Cargo receptors cycle between the ER and Golgi, recogniz-
ing and transporting specific proteins (Figure  3). This section 
focuses on three key receptors, ERGIC-53/LMAN1, VIP36/
LMAN2, and KDELR that play essential roles in protein trans-
port. These receptors have cargo recognition domains and di-
lysine motifs that facilitate their retrograde transport from the 
Golgi to the ER via interaction with the COPI coatomer.

4.1   |   ERGIC-53/LMAN1

The ER–Golgi intermediate compartment 53 (ERGIC-53), also 
known as LMAN1, a mannose-specific lectin, plays a pivotal 
role as a cargo receptor by recognizing specific glycoprotein car-
gos and facilitating their transport from the ER. This process 
is essential for the proper functioning of the ERGIC. ERGIC-53 
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contains a C-terminal ER retrieval signal, lys–lys–phe–phe 
(KKFF), which is believed to interact with COPI coat proteins, 
enabling its cycling between the ER and ERGIC [123, 124].

Mutations in ERGIC-53 have been associated with factor V and 
factor VIII combined deficiency 1 (F5F8D1; OMIM #227300) 
[125–127]. These mutations, which include frameshift, non-
sense, and start-codon deletions [127], often result in complete 
loss of protein expression or loss of function, thereby signifi-
cantly impacting health. In patient-derived immortalized lym-
phocytes, ERGIC-53 expression was found to be extremely low 
[125]. ERGIC-53 knockout mice displayed reduced activity of 
factor V and factor VIII [128]. In cells expressing mutant forms, 
introducing mutations in the KKFF motif of ERGIC-53, which 
disrupt transport between the ER and ERGIC, inhibited the se-
cretion of factor V and factor VIII [129]. The direct binding of 
factor VIII to ERGIC-53 has been demonstrated, further con-
firming that factor V and factor VIII are cargos transported 
from the ER by ERGIC-53 [130].

Mutations in multiple coagulation factor deficiency 2 (MCFD2), 
the binding partner of ERGIC-53, have also been reported to 
cause F5F8D2 (OMIM #613625) [131–133]. MCFD2 forms a 

calcium-dependent complex with ERGIC-53 [131]. Formation 
of this complex is critical for the efficient secretion of factor V 
and factor VIII. The W67S mutation in ERGIC-53, observed in 
F5F8D patients, did not affect its expression but reduced the 
binding affinity between MCFD2 and D-mannose [134]. These 
findings suggest that the ERGIC-53 and MCFD2 complex plays a 
key role in the secretion of factor V and factor VIII.

ERGIC-53 also interacts with other proteins, such as cathep-
sin C, A1AT, Russell bodies and virus-derived glycoproteins 
[135, 136], highlighting its diverse roles in protein transport and 
its potential implications in various diseases. ERGIC-53 knock-
out mice exhibited perinatal lethality, suggesting its crucial in-
volvement in cargo transport [128].

4.2   |   VIP36/LMAN2

VIP36/LMAN2 has been identified as a cargo receptor that rec-
ognizes high-mannose glycans [137, 138]. α1-antitrypsin has 
been reported as a major cargo protein [139]. Proteomic screen-
ing following LPS stimulation revealed that the expression of 
VIP36/LMAN2 regulates macrophage phagocytosis. Future 

FIGURE 3    |    Recycling factors between the ER and Golgi. ERGIC-53 recognizes specific glycans on cargo proteins and mediates their transport 
from the ER to ERGIC. ERGIC-53 contains a C-terminal motif that interacts with the COPI coatomer complex, enabling its recycling from ERGIC 
back to the ER via COPI vesicles. The KDEL receptor, a seven-transmembrane-domain protein, recognizes KDEL motifs commonly found in ER-
resident proteins and facilitates their transport from the Golgi or ERGIC to the ER, while recycling itself between the ER and Golgi.
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studies are required to uncover additional immunological roles 
of VIP36/LMAN2 [140].

4.3   |   KDELR

KDEL receptors (KDELRs) are seven-transmembrane-domain 
proteins with three homologs in humans. They typically bind to 
the KDEL (lys–asp–glu–leu) sequence or similar motifs commonly 
found at the C-terminus of ER-resident proteins, facilitating their 
retrieval back to the ER after exiting. Cela et al. provide a compre-
hensive review of KDELRs [141]. Recent findings in plant models 
have suggested that KDELRs might act as gatekeepers in the Golgi 
apparatus, rather than playing a recycling role as thought previ-
ously [142]. Although this hypothesis is based only on observa-
tions in plant systems, it raises intriguing questions and warrants 
further investigation using other models [142, 143]. Mutations in 
KDELR2 have been identified across multiple pedigrees in pa-
tients with osteogenesis imperfecta 21 (OI21) [144, 145]. KDELR2 
recognizes KDEL via the PQ motif in its three-dimensional struc-
ture. However, mutations observed in OI21 are believed to disrupt 
this structure, impairing KDELR2 function. Fibroblasts derived 
from patients with OI21 showed reduced levels of HSP47, a colla-
gen chaperone and cargo protein of KDELR2. This reduction led to 
abnormal collagen folding and impaired secretion [144].

5   |   TRAPP Complex

The TRAPP (transport protein particle) complex is a multi-
subunit complex found in two main forms in humans, TRAPPII 
and TRAPPIII, which share a core structure but interact with 
different accessory proteins to fulfill distinct cellular functions 
(Figure 4) [146]. Each TRAPP complex consists of a core com-
plex comprising TRAPPC1, TRAPPC2, TRAPPC2L, TRAPPC3, 
TRAPPC4, TRAPPC5 and TRAPPC6. TRAPPII is formed by in-
teractions with TRAPPC9 and TRAPPC10, while TRAPPIII is 
formed by interactions with TRAPPC8, TRAPPC11, TRAPPC12 
and TRAPPC13 [147]. The TRAPP complex primarily activates 
small GTPases, specifically those of the Rab family, which play 
critical roles in vesicular trafficking. In humans, TRAPPII acts 
as a guanine nucleotide exchange factor (GEF) for Rab11, while 
TRAPPIII functions as a GEF for Rab1. Additionally, the TRAPP 
complex has been reported to interact with Rab18, Rab19, and 
Rab43; although further studies are required to completely un-
derstand these interactions [148–150].

Mutations in components of the TRAPP complex are linked to a 
variety of diseases collectively known as TRAPPopathies, which 
present a range of symptoms and phenotypes. This phenotypic 
diversity raises questions about whether different TRAPP sub-
units have unique, independent roles or whether variations in 
their expression and localization contribute to disease-specific 
manifestations [146].

5.1   |   Rab1

Rab1 is a small GTPase from the Rab family that is predominantly 
localized to the ERGIC [151]. It is activated by the TRAPPIII com-
plex and transitions into its GTP-bound state, where it interacts 

with several effectors, including p115. Rab1 has been implicated in 
multiple stages of ER–Golgi transport, ranging from vesicle bud-
ding to docking. Intriguingly, Golgi fragmentation has been ob-
served in Rab1A knockdown cells, indicating that it is essential for 
maintaining Golgi structure and integrity [152].

Haploinsufficiency of Rab1A, identified in four unrelated fam-
ilies, has been linked to hereditary spastic paraplegias (HSPs) 
[153]. These mutations, located within the GTPase domain, re-
sult in abnormal Golgi morphology and impaired dendritic de-
velopment. Considering that mutations in TRAPPIII subunits 
(discussed later) are also associated with neurocognitive disor-
ders, these findings underscore the critical roles of TRAPPIII 
and Rab1 in neuronal development.

The Rab1B isoform, which shares a high sequence similarity with 
Rab1A, plays a role in upregulating the retinoic acid-inducible 
gene I (RIG-I) pathway, a key viral RNA sensing mechanism. 
This upregulation enhances IFN-β induction, boosting antiviral 
responses. Rab1B achieves this by forming a complex with TNF 
receptor-associated factor 3 (TRAF3) downstream of RIG-I, 
thereby promoting the interaction between TRAF3 and mito-
chondrial antiviral signaling protein (MAVS) [154].

5.2   |   TRAPPC2

TRAPPC2, a core component of the TRAPP complex, asso-
ciates with either TRAPPC9 to form the TRAPPII complex 
or TRAPPC8 to form the TRAPPIII complex. Mutations in 
TRAPPC2 are associated with spondyloepiphyseal dysplasia 
tarda (SEDT) (OMIM #313400), an X-linked recessive disorder 
characterized by short stature due to impaired spinal growth and 
early-onset osteoarthritis [155–157]. Most disease-associated 
mutations lead to premature termination codons, resulting in 
the degradation of truncated peptides [158]. Among the four 

FIGURE 4    |    Composition of the TRAPPIII complex. The mammalian 
TRAPPIII complex, which plays a role in membrane transport between 
the ER and Golgi, consists of a core complex (TRAPPC1, TRAPPC2, 
TRAPPC2L, TRAPPC3, TRAPPC4, TRAPPC5 and TRAPPC6) along 
with TRAPPC8, TRAPPC11, TRAPPC12 and TRAPPC13.
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identified missense mutations, three induce protein misfolding 
and subsequent degradation [158]. The D47Y mutation, in par-
ticular, markedly reduces the binding affinity of TRAPPC2 for 
both TRAPPC8 and TRAPPC9, suggesting impaired assembly 
of TRAPPII and TRAPPIII complexes [159].

In a recent study, TRAPPC2 knockout medaka displayed phe-
notypes resembling those of human SEDT, supporting its con-
served role in vertebrate skeletal development [160]. At the 
cellular level, TRAPPC2 suppression inhibits collagen secre-
tion, implicating its role in the secretory pathway. Specifically, 
TRAPPC2 facilitates collagen export from the ER via its 
TANGO1-mediated recruitment to ER exit sites, where it en-
hances the cycling of Sar1 and contributes to the formation of 
COPII vesicles containing collagen [161].

Additionally, TRAPPC8 has been identified as an interacting 
partner of TMEM-131, a factor known to promote collagen se-
cretion, further implicating TRAPPC2 in collagen transport 
from the ER [162]. These interactions highlight the potential 
impact of TRAPPC2 mutations on collagen trafficking, suggest-
ing a molecular basis for the observed phenotypes in SEDT and 
underscoring the need for further investigation.

5.3   |   TRAPPC4

TRAPPC4, a central component of the TRAPP core complex, is 
essential for the proper assembly and function of both TRAPPII 
and TRAPPIII complexes [150]. Homozygous mutations in 
TRAPPC4 have been linked to a neurodevelopmental disorder 
with epilepsy, spasticity and brain atrophy (NEDESBA) (OMIM 
#618741) [163–165], a disorder characterized by seizures and se-
verely impaired global development. Patient-derived fibroblasts 
showed a marked reduction in TRAPPC4 expression, along 
with altered molecular weights of TRAPPII and TRAPPIII com-
plexes. Functional studies have revealed delayed transport of 
vesicular stomatitis virus G (VSV G) protein along the secretory 
pathway as well as impaired autophagy, underscoring the criti-
cal role of TRAPPC4 in maintaining the structural integrity of 
these complexes [165].

Furthermore, magnetic resonance imaging (MRI) scans of pa-
tients with NEDESBA displayed abnormalities similar to those 
observed in individuals with TRAPPC6B and TRAPPC9 vari-
ants, highlighting the importance of the TRAPPII complex in 
normal brain development [165]. These findings suggest that 
TRAPPC4 is indispensable for the structure and function of 
TRAPPII and TRAPPIII complexes, as well as for the proper ex-
ecution of key cellular processes, including vesicular transport 
and autophagy.

5.4   |   TRAPPC6B

The TRAPPC6 subunit, a part of the core TRAPP complex, ex-
ists as two homologs in humans: TRAPPC6A and TRAPPC6B. 
Mutations in TRAPPC6B have been linked to severe neurode-
velopmental disorders. In a study involving six patients from 
three unrelated families, homozygous splice-site mutations in 
TRAPPC6B were associated with a spectrum of neurological 

symptoms, including microcephaly, epilepsy and cerebral atro-
phy [166]. Recently, a larger cohort study identified 29 individu-
als with biallelic TRAPPC6B mutations in 18 unrelated families, 
further expanding the clinical spectrum. These patients exhib-
ited non-progressive microcephaly, global developmental delay, 
intellectual disability, epilepsy and severe speech impairment, 
along with movement disorders such as stereotypies, spasticity 
and dystonia [167].

The study by Almousa et al., using patient-derived fibroblasts, 
suggested that ER–Golgi transport might be impaired, imply-
ing a defect in intracellular trafficking [167]. The authors also 
proposed that TRAPPC6B was predominantly incorporated into 
the TRAPPII complex, rather than TRAPPIII. However, addi-
tional studies are needed to validate these findings and clarify 
the specific role of TRAPPC6B in these complexes.

5.5   |   TRAPPC11

TRAPPC11 interacts with the core complex components 
TRAPPC2L and TRAPPC3, as well as with TRAPPC12 and 
TRAPPC13, facilitating the assembly of the TRAPPIII complex 
[168]. TRAPPC11 knockdown causes partial disassembly of the 
TRAPP complex, leading to Golgi fragmentation and impaired 
ER-to-Golgi transport [169]. In addition to its role in vesicular 
trafficking, TRAPPC11 is involved in autophagosome formation 
and plays a critical role in lipid metabolism during macroauto-
phagy [170].

In 2013, limb girdle muscular dystrophy and myopathy with 
movement disorder and intellectual disability linked to homo-
zygous mutations in TRAPPC11 were reported in three fami-
lies comprising eight affected individuals [171]. One family 
presented with a point mutation, while the other two had dele-
tion mutations resulting from splicing defects. Patient-derived 
cells showed a significant reduction in TRAPPC11 expression, 
accompanied by Golgi fragmentation and delayed VSV G trans-
port [171].

Subsequent studies have further characterized this condition, 
now referred to as TRAPPC11-opathy, which leads to neuro-
muscular impairment and encompasses a wide array of clinical 
manifestations, including abnormalities in the central nervous 
system, ocular defects, muscle weakness, as well as liver, kid-
ney and skeletal abnormalities [172]. These findings highlight 
the critical role of TRAPPC11 in maintaining cellular and organ 
homeostasis.

5.6   |   TRAPPC12

TRAPPC12 was found to co-purify with TRAPPC8, rather than 
TRAPPC9 or TRAPPC10, indicating its specific role as a con-
stituent of the human TRAPPIII complex [173]. Depletion of 
TRAPPC12 using siRNA led to Golgi fragmentation and dis-
rupted ER-to-Golgi transport, highlighting its importance in 
maintaining Golgi integrity and facilitating vesicular trafficking 
[169]. In addition to its role in the secretory pathway, TRAPPC12 
has been implicated in autophagy and mitotic progression 
[174, 175].
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TABLE 1    |    Diseases associated with factors at the ER–Golgi interface.

Gene Disease Clinical features References

Sar1B Chylomicron retention disease (CMRD)
Anderson disease

Fat malabsorption [46–49]

Sec23A Cranio-lenticular-sutural dysplasia (CLSD) Facial dysmorphism, late-closing fontanels
Cataract

Skeletal dysplasia

[54–59]

Sec23B Congenital dyserythropoietic 
anemia type II (CDAN2)

Erythrocyte maturation defect [60–64]

Sec23B Cowden's syndrome A familial cancer syndrome [69]

Sec24D Cole–Carpenter syndrome 2 (CLCRP2) Skeletal dysplasia, low bone mass
Facial dysmorphism

[71–74]

Sec16B Osteogenesis imperfecta (OI) Skeletal dysplasia [78]

Sec31A Halperin–Birk syndrome (HLBKS) Structural brain defects, seizures
Cataract, severe developmental delay

[80]

TFG Spastic paraplegia 57 (SPG57) Axonopathies, walking difficulties [85–87]

TFG Neuropathy, Hereditary Motor and 
Sensory, Okinawa type (HMSNO)

Neurodegenerative disorder
Muscle weakness

[90–92]

TANGO1 Skeletal dysplasia
Insulin-dependent diabetes mellitus

Sensorineural hearing loss
Mild intellectual disability

[95]

Arf1 Periventricular nodular heterotopia 8 (PVNH8) Brain developmental disorder [101]

GBF1 Charcot–Marie–Tooth disease, 
axonal, type 2GG (CMT2GG)

Axonal peripheral neuropathy, 
distal sensory impairment, muscle 

weakness, walking difficulties

[107]

COPA Autoimmune interstitial lung, joint 
and kidney disease (AILJK)

Autoimmune disorder
Inflammatory arthritis

Interstitial lung disease, renal disease

[109, 111–113]

COPB1 Baralle–Macken syndrome (BARMACS) Walking difficulties, intellectual disability
Cataract, microcephaly

[114]

COPB2 Microcephaly 19, primary, autosomal 
recessive (MCPH19)

Microcephaly, spasticity
Severe developmental delay

[115]

COPB2 Osteoporosis, childhood- or juvenile-onset, 
with developmental delay (OPDD)

Osteoporosis
Developmental delay

[116]

COPD Short stature-micrognathia syndrome (SSMG) Developmental delay, preterm birth
Microcephaly

[119–122]

ERGIC-53 Factor V and Factor VIII combined 
deficiency 1 (F5F8D1)

Bleeding symptoms [125–127]

KDELR2 Osteogenesis imperfecta 21 (OI21) Skeletal dysplasia, scoliosis
Walking difficulties

[144, 145]

Rab1A Hereditary spastic paraplegias (HSPs) Lower extremity weakness
Spasticity

[153]

TRAPPC2 Spondyloepiphyseal dysplasia tarda (SEDT) Skeletal dysplasia, osteoarthritis [155–159]

TRAPPC4 Neurodevelopmental disorder with epilepsy, 
spasticity and brain atrophy (NEDESBA)

Neurological developmental disorders 
with Global developmental delay

Seizures, severe intellectual disability

[163–165]

(Continues)
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Recently, two families reported cases of individuals harboring 
distinct TRAPPC12 mutations [176, 177]. One patient carried 
a homozygous frameshift mutation, while two siblings from 
another family presented with compound heterozygous muta-
tions, one frameshift mutation and one single-nucleotide sub-
stitution. Both types of mutations resulted in a marked decrease 
in TRAPPC12 expression, suggesting that the single-nucleotide 
substitution may affect protein stability. The affected individu-
als exhibited similar clinical phenotypes, including global de-
velopmental delay, severe intellectual disabilities, microcephaly, 
hearing loss, seizures, brain atrophy and encephalopathy.

Patient-derived fibroblasts exhibited a fragmented Golgi phe-
notype, which was rescued upon expression of wild-type 
TRAPPC12, confirming that Golgi defects were directly attrib-
utable to TRAPPC12 dysfunction. Additionally, these fibroblasts 
exhibited delayed ER-to-Golgi transport and impaired mitotic 
progression [176, 177]. These findings underscore the critical 
role of TRAPPC12 in vesicular trafficking, mitosis and overall 
cellular homeostasis and highlight its potential involvement in 
severe neurodevelopmental disorders.

6   |   Conclusion

This review systematically examines and organizes diseases 
arising from mutations in proteins situated at the ER–Golgi in-
terface, categorizing them based on their localization and cellu-
lar function (Table 1). By exploring the roles of each protein and 
summarizing recent discoveries, we provide a comprehensive 
perspective on how mutations affect ER–Golgi trafficking and 
contribute to various pathologies. This review also emphasizes 
both shared and unique disease mechanisms linked to similar 
functional proteins, illustrating the complexity of genotype–
phenotype relationships.

Proteins with similar cellular roles can cause vastly different 
diseases. For instance, while mutations in various proteins in-
volved in collagen processing lead to similar bone disorders such 
as osteogenesis imperfecta, other cases demonstrate marked 
phenotypic differences despite functional redundancy. For ex-
ample, Sec23A and Sec23B proteins, which are functionally in-
terchangeable yet associated with distinct diseases, exemplify 
how transcriptional regulation, temporal expression, tissue 

specificity and posttranslational modifications can contribute to 
diverse clinical outcomes. This underscores that the phenotypic 
expression of cellular dysfunction is influenced by more than 
just the primary role of the protein.

Moreover, some ER–Golgi interface proteins have not yet been 
linked to specific diseases, suggesting the possibility of undis-
covered pathologies. It is plausible that mutations in certain es-
sential factors are incompatible with survival, thereby masking 
their pathological effects. Nevertheless, this review highlights 
the therapeutic potential of targeting proteins at the ER–Golgi 
interface. By deepening our understanding of the roles of these 
proteins in diseases, we open new avenues for the development of 
targeted drug therapies and personalized medicine approaches 
tailored to the molecular underpinnings of these conditions.
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