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Breast Cancer Multi-classification 
from Histopathological Images 
with Structured Deep Learning 
Model
Zhongyi Han1, Benzheng Wei1,2, Yuanjie Zheng3, Yilong Yin4, Kejian Li2 & Shuo Li5

Automated breast cancer multi-classification from histopathological images plays a key role in 
computer-aided breast cancer diagnosis or prognosis. Breast cancer multi-classification is to identify 
subordinate classes of breast cancer (Ductal carcinoma, Fibroadenoma, Lobular carcinoma, etc.). 
However, breast cancer multi-classification from histopathological images faces two main challenges 
from: (1) the great difficulties in breast cancer multi-classification methods contrasting with the 
classification of binary classes (benign and malignant), and (2) the subtle differences in multiple classes 
due to the broad variability of high-resolution image appearances, high coherency of cancerous 
cells, and extensive inhomogeneity of color distribution. Therefore, automated breast cancer multi-
classification from histopathological images is of great clinical significance yet has never been explored. 
Existing works in literature only focus on the binary classification but do not support further breast 
cancer quantitative assessment. In this study, we propose a breast cancer multi-classification method 
using a newly proposed deep learning model. The structured deep learning model has achieved 
remarkable performance (average 93.2% accuracy) on a large-scale dataset, which demonstrates the 
strength of our method in providing an efficient tool for breast cancer multi-classification in clinical 
settings.

Automated breast cancer multi-classification from histopathological images is significant for clinical diagnosis 
and prognosis with the launch of the precision medicine initiative1, 2. According to the World Cancer Report3 
from the World Health Organization (WHO), breast cancer is the most common cancer with high morbidity and 
mortality among women worldwide. Breast cancer patients account for 25.2%, which is ranked first place among 
women patients, and morbidity is 14.7%, which is ranked second place following lung cancer in the survey about 
cancer mortality in recent years. About half a million breast cancer patients are dead and nearly 1.7 million new 
cases arise per year. These statistics are expected to increase significantly. Furthermore, the histopathological 
image is a gold standard for identifying breast cancer compared with other medical imaging, e.g., mammography, 
magnetic resonance (MR), and computed tomography (CT). Noticeably, the decision of an optimal therapeutic 
schedule of breast cancer rests upon refined multi-classification. One main reason is that doctors who know the 
subordinate classes of breast cancer can control the metastasis of tumor cells early, and make substantial thera-
peutic schedules according to special clinical performance and prognosis result of multiple breast cancers.

Nevertheless, manual multi-classification for breast cancer histopathological images is a big challenge. There 
are three main reasons: (1) professional background and rich experience of pathologists are so difficult to inherit 
or innovate that primary-level hospitals and clinics suffer from the absence of skilled pathologists, (2) the tedious 
task is expensive and time-consuming, and (3) over fatigue of pathologists might lead to misdiagnosis. Hence, 
it is extremely urgent and important for the use of computer-aided breast cancer multi-classification, which can 
reduce the heavy workloads of pathologists and help avoid misdiagnosis4–6.
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However, automated breast cancer multi-classification still faces serious obstacles. The first obstacle is that the 
supervised feature engineering is inefficient and laborious with great computational burden. The initialization 
and processing steps of supervised feature engineering are also tedious and time-consuming. Meaningful and 
representative features lie at the heart of its success to multi-classify breast cancer. Nevertheless, feature engi-
neering is an independent domain, task-related features are mostly designed by medical specialists who use their 
knowledge for histopathological image processing7. E.g., Zhang et al.8 applied a one class kernel principal com-
ponent analysis (PCA) method based on hand-crafted features to classify benign and malignant of breast cancer 
histopathological images, the accuracy reached 92%. Recent years, general feature descriptors used for feature 
extraction have been invented, e.g., scale-invariant feature transform (SIFT)9, gray-level co-occurrence matrix 
(GLCM)10, histogram of oriented gradient (HOG)11, etc. However, feature descriptors extract merely insufficient 
features for describing histopathological images, such as low-level and unrepresentative surface features, which 
are not suitable for classifiers with discriminant analysis ability. There are several applications that use general 
feature descriptors on binary classification for histopathological images of breast cancer. Spanhol et al.12 used a 
breast cancer histopathological images dataset (BreaKHis), then provided a baseline of binary classification rec-
ognition rates by means of different feature descriptors and different traditional machine learning classifiers, the 
range of the accuracy is 80% to 85%. Based on four shape and 138 textual feature descriptors, Wang et al.13 real-
ized accurate binary classification using a support vector machine(SVM)14 classifier. The second obstacle is that 
breast cancer histopathological images have huge limitations. Eight classes histopathological images of breast can-
cer are presented in Fig. 1. These are fine-grained high-resolution images from breast tissue biopsy slides stained 
with hematoxylin and eosin (H&E). Noticeably, different classes have subtle differences and cancerous cells have 
high coherency15, 16. The differences of same class images’ resolution, contrast, and appearances are always in 
greater compared to different classes. In addition, histopathological fine-grained images have large variations 
which always result in difficulties for distinguishing breast cancers. Finally, despite such effective performance in 
the medical imaging analysis domain by deep learning7, existing related methods only studied on binary classifi-
cation for breast cancer8, 12, 13, 17, 18; however, multi-classification has more clinical values.

To provide an accurate and reliable solution for breast cancer multi-classification, we propose a compre-
hensive recognition method with a newly proposed class structure-based deep convolutional neural network 
(CSDCNN). The CSDCNN has broken through the above mentioned barriers by leveraging hierarchical feature 
representation, which plays a key role for accurate breast cancer multi-classification. The CSDCNN is a non-linear 
representation learning model that abandons feature extraction steps into feature learning, it also bypasses fea-
ture engineering that requires a hand-designed manner. The CSDCNN adopts the end-to-end training manner 
that can automatically learn semantic and discriminative hierarchical features from low-level to high-level. The 
CSDCNN is carefully designed to fully take into account the relation of feature space among intra-class and 
inter-class for overcoming the obstacles from various histopathological images. Particularly, the distance of fea-
ture space is a standard for measuring the similarities of images; however, the feature space distance of samples 
from the same class may be larger than the samples from different classes. Therefore, we formulated some feature 
space distance constraints integrated into CSDCNN for controlling the feature similarities of different classes of 
the histopathological images.

The major contributions of this work can be summarized in the following aspects:

•	 An end-to-end recognition method by a novel CSDCNN model, as shown in Fig. 2, is proposed for the 
multi-class breast cancer classification. The model has high accuracy and can reduce the heavy workloads of 
pathologists and assist in the development of optimal therapeutic schedules. Automated multi-class breast 
cancer classification has more clinical values than binary classification and would play a key role in breast 
cancer diagnosis or prognosis; however, it has never been explored in literature.

Figure 1.  Eight classes of breast cancer histopathological images from BreaKHis12 dataset. There are great 
challenging histopathological images due to the broad variability of high-resolution image appearances, high 
coherency of cancerous cells, and extensive inhomogeneity of color distribution. These histopathological images 
were all acquired at a magnification factor of 400.
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•	 An efficient distance constraint of feature space is proposed to formulate the feature space similarities of 
histopathological images by leveraging intra-class and inter-class labels of breast cancer as prior knowledge. 
Therefore, the CSDCNN has excellent feature learning capabilities that can acquire more depicting features 
under histopathological images.

Results
Materials.  To evaluate the performance of our method, two datasets that include BreaKHis12 and BreaKHis 
with augmentation of breast cancer histopathological images with ground truth are used. Firstly, our method is 
evaluated by extensive experiments on a challenging large-scale dataset - BreaKHis. Secondly, in order to evaluate 
the multi-classification performance more qualitatively, we utilize an augmentation method for oversampling 
imbalanced classes. The augmentation is done on the training set, then validation and a testing phase are used for 
the real world data in patient-wise. The details about the two datasets are as follows:

BreaKHis.  BreaKHis is a challenging large-scale dataset that includes 7909 images and eight sub-classes of 
breast cancers. The source data comes from 82 anonymous patients of Pathological Anatomy and Cytopathology 
(P&D) Lab, Brazil. BreaKHis is divided into benign and malignant tumors that consist of four magnification 
factors: 40X, 100X, 200X, and 400X. Particularly, both breast tumors, benign and malignant, can be sorted into 
different types by pathologists based on the aspect of the tumor cells under microscopes. Hence, the dataset 
currently contains four histopathological distinct types of benign breast tumors: adenosis (A), fibroadenoma (F), 
phyllodes tumor (PT), and tubular adenoma (TA); And four malignant tumors: ductal carcinoma (DC), lobular 
carcinoma (LC), mucinous carcinoma (MC), and papillary carcinoma (PC)12. Images are of three-channel RGB, 
eight-bit depth in each channel, and 700 × 460 size. Table 1 shows the histopathological image distributions of 
eight classes of breast cancer.

BreaKHis with augmentation.  In this study, BreaKHis is augmented by a data augmentation method 
to boost the multi-classification performance and resolve the imbalanced class problem. Based on the stand-
ard method in machine learning domain19, the augmentation method is only done on the training set, so the 
augmentation is only used for training, then validation and a testing phase are used for the real world data in 
patient-wise. In details, we first split the whole dataset based on patient-wise into training/validation/testing set, 
then augmented the training examples based on the ratios of imbalanced classes.

Evaluation.  Reliability and generalization.  First, to make the results to be more reliable, we split the datasets 
based on patient-wise into three groups: training set, validation set, and testing set. This results in 61 train/vali-
dation subjects and 21 test subjects. The training set accounts for 50% of the two datasets, which uses for training 
the CSDCNN model and optimizing connection parameters of different neurons. The validation set is used for 
model selection, while the testing set is used for the testing of multi-classification accuracy and model reliability. 
The patients of the three-fold are non-overlapping and all experiment results are average accuracy from five cross 

Figure 2.  Overview of the integrated workflow. The overall approach of our method is composed of 
three stages: training, validation, and testing. The goal of the training stage is to learn the sufficient feature 
representation and optimize the distance of different classes’ feature space. The validation stage aims to fine-
tune parameters and select models of each epoch. The testing stage is designed to evaluate the performance of 
the CSDCNN.
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validation. Second, to test the generalization, the comparison of the CSDCNN and other existing works are vali-
dated on the breast cancer binary classification experiments.

Recognition rates.  Assessing the multi-classification performance of machine learning algorithms in medical 
image dataset, there are two computing methods to access the results17. First, the decision is patient level. Let Np 
be the number of total patients, and Nnp be the number of cancer images of patient P. If Nrp images are correctly 
classified, patient score can be defined as

=Patient Score
N
N (1)

rp

np

Then the global patient recognition rate is

= ∑Patient cognition Rate Patient Score
N

Re
(2)p

Second, we evaluated the recognition rate at the image level, not considering the patient level. Let Nall be the 
number of cancer images of the validation or testing set. If Nr histopathological images are correctly classified, 
then the recognition rate at the image level is

=Image Recognition Rate N
N (3)

r

all

Performance.  The whole multi-classification accuracy of our method are very high with a reliable perfor-
mance, as shown in Fig. 3. The average accuracy of the patient level is 93.2%, while image level is 93.8% for all 
magnification factors. The validation set and testing set have almost the same accuracy, which represents that 
the CSDCNN model has generalization and the ability to avoid overfitting. The performance of two training 

Class Subclass

Magnification factors

Total40X 100X 200X 400X

Benign

A 114 113 111 106 444

 F 253 260 264 237 1014

 TA 109 121 108 115 453

 PT 149 150 140 130 569

Malignant

DC 864 903 896 788 3451

LC 156 170 163 137 626

MC 205 222 196 169 792

PC 145 142 135 138 560

Total 1995 2081 2013 1820 7909

Table 1.  Histopathological image distribution of BreaKHis divided by magnification and class before 
data augmentation. BreaKHis has a large amount images and various classes. The dataset provides 7,909 
histopathological images collected from 82 anonymous patients divided into benign and malignant tumors and 
eight sub-classes tumors that consist of four magnification factors: 40X, 100X, 200X, and 400X.

Figure 3.  Multi-classification performance with recognition rates of the CSDCNN among patient level (PL) 
and image level (IL). Our method takes advantage of newly network structures, fast convergence rates, and 
strong generalization capabilities. These can be demonstrated by the validation set and testing set having almost 
the same accuracy.
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strategies of CSDCNN from scratch and CSDCNN from transfer learning are shown in Fig. 4, which demon-
strates the accuracy of transfer learning is better than training from scratch.

The CSDCNN based on the data augmentation method achieves enhanced and remarkable performance via 
different comparison experiments, as shown in Table 2. In comparison with several popular CNNs, the CSDCNN 
achieves the best results. The AlexNet20 proposed by Alex Krizhevsky is the first prize of classification and detec-
tion in the ImageNet Large-Scale Visual Recognition Challenge 2012 (ILSVRC12), which achieved about 83% 
accuracy in the binary classification of breast cancer histopathological image17. LeNet21 is a traditional CNN pro-
posed by Yann LeCun. LeNet is used for the handwritten character recognition with high accuracy. In comparison 
with the two datasets, our augmentation methods improved about 3–6% accuracy in different magnification fac-
tors, which demonstrates that raw available histopathological images cannot meet the requirements of the CNNs. 
Besides, the former layers merely learn low-level features that only include simple and obvious information, such 
as colors, textures, edges. With the model going deep, our CSDCNN can learn high-level features that are rich in 
easiness discrimination information, as shown in the feature learning process of the testing block in Fig. 2.

Even in the binary classification, the CSDCNN outperforms the state-of-the-art results of existing works, as 
shown in Table 3. The accuracy of our method is about 10% and 7% higher than the best results of the prior meth-
ods in patient level and image level, respectively. In particular, the average recognition rates for patient level are 
enhanced to 97%. Meanwhile, the experimental results also show that the ability of feature learning for our model 
is better than traditional feature descriptors, such as parameter-free threshold adjacency statistics (PFTAS)22, and 
gray-level co-occurrence matrix (GLCM)10.

Experimental tools and time consumption. The CNN models are trained on Lenovo ThinkStation, Intel i7 
CPU, NVIDIA Quadro K2200 GPU, and the Caffe23 framework. The training phase took about one hour and thir-
teen minutes, and ten hours and ten thirteen minutes under the BreaKHis and BreaKHis with augmentation data-
sets, respectively. The test phase with a single mini-batch took about 0.044 s; The training of binary classification 
took about 50 minutes and 10 hours 16 minutes under the binary dataset, and the testing of a single mini-batch 
took about 0.053 s. Data augmentation algorithms were executed on Matlab 2016a.

Discussion
It is the first time that automated multi-class classification for breast cancer is investigated in histopathological 
images and the first time that we propose the CSDCNN model, which achieved reliable and accurate recognition 

Figure 4.  The comparison between CSDCNN training from transfer learning (TL) and from scratch (FC) 
among patient level (PL) and image level (IL).

Accuracy at Methods

Magnification factors

40X 100X 200X 400X

Image level

LeNet + Raw 40.1 ± 7.1 37.5 ± 6.7 40.1 ± 3.4 38.2 ± 5.9

LeNet + Aug 46.4 ± 4.5 47.34 ± 4.9 46.5 ± 5.6 45.2 ± 9.1

AlexNet + Raw 70.1 ± 7.4 68.1 ± 7.6 67.6 ± 4.8 67.3 ± 3.4

AlexNet + Aug 86.4 ± 3.1 75.8 ± 5.4 72.6 ± 4.8 84.6 ± 3.6

CSDCNN + Raw 89.4 ± 5.4 90.8 ± 2.5 88.6 ± 4.7 87.6 ± 4.1

CSDCNN + Aug 92.8 ± 2.1 93.9 ± 1.9 93.7 ± 2.2 92.9 ± 1.8

Patient level

LeNet + Raw 38.1 ± 9.3 37.5 ± 3.4 38.5 ± 4.3 37.2 ± 3.6

LeNet + Aug 48.2 ± 4.5 47.6 ± 7.5 45.5 ± 3.2 45.2 ± 8.2

AlexNet + Raw 70.4 ± 6.2 68.7 ± 5.3 66.4 ± 4.3 67.2 ± 5.6

AlexNet + Aug 74.6 ± 7.1 73.8 ± 4.5 76.4 ± 7.4 79.2 ± 7.6

CSDCNN + Raw 88.3 ± 3.4 89.8 ± 4.7 87.6 ± 6.4 87.0 ± 5.2

CSDCNN + Aug 94.1 ± 2.1 93.2 ± 1.4 94.7 ± 3.6 93.5 ± 2.7

Table 2.  Multi-classification results of comparison experiments based on the raw dataset (Raw) and augmented 
dataset (Aug).
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rates. By validating the challenging dataset, the performance in the above section confirms that our method is 
capable of learning higher level discriminating features and has the best accuracy in multi-class breast cancer 
classification. Although high-resolution breast cancer histopathological images have fine-grained appearances 
that bring about great difficulties in the multi-classification task, the discriminative power of the CSDCNN is 
better than traditional models. Furthermore, the performance of CSDCNN is very stable in multi-magnification 
image groups. The model has greater applicable value in clinical diagnosis and prognosis of breast cancer. Since 
primary-level hospitals or clinics face a desperate shortage of professional pathologists, our work would be 
extended to an automated breast cancer multi-classification system for providing scientific, objective and con-
crete indexes.

It is a great advantage that the CSDNN classifies the whole slide images (WSI). The CSDCNN preserves fully 
global information of breast cancer histopathological images and avoids the limitations of patch extraction meth-
ods. Although patch-based methods are common occurrence17, 24, 25; however, it brings up an obvious disadvan-
tage that pathologists have to make biomarkers for the cancerous region because the region of cancerization is 
only a fraction of breast cancer histopathological images. E.g., Fig. 5 are high-resolution breast cancer histopatho-
logical images, the area that is separated by the yellow boxes represent the regions of interest (RoI), which are 
always solely the cancerous region. However, while the patches are smaller than the WSI, non-cancerous patches 
will lead to deviations of the parameter learning, that is, deep models will think the non-cancerous region as a 
cancerous region when training. Hence, only the area that separated by the yellow boxes meet the needs of deep 
learning models. Under the large-scale medical image dataset, pathologists will waste much time and effort, and 
the labeling errors will increase the noise of the training sets. Therefore, we carefully use WSI as the model input, 
which will reduce the workload of pathologists and improve the efficiency of clinical diagnosis.

Multi-classification has more clinical values than binary classification because multi-classification provides 
more details about patients’ health conditions, which relieves the workloads of pathologists and also assists 
the doctors to make more optimal therapeutic schedules. Furthermore, although CNNs inspired by Kunihiko 
Fukushima26, 27, has been used for medical image analysis, e.g., image segmentation28, 29 image fusion and regis-
tration30–32, but there still exists a lot of room for improvement of medical data in comparison with the computer 
vision domain7, 33–36. Therefore, in this study, an optimal training strategy based on transfer learning from natural 
images is used to fine-tune the multi-classification model, which is a common manner for deep learning model 
used in medical imaging analysis.

Accuracy at Methods

Magnification factors

40X 100X 200X 400X

Image level
AlexNet17 85.6 ± 4.8 83.5 ± 3.9 83.1 ± 1.9 80.8 ± 3.0

CSDCNN 95.8 ± 3.1 96.9 ± 1.9 96.7 ± 2.0 94.9 ± 2.8

Patient level

PFTAS + QDA12 83.8 ± 4.1 82.1 ± 4.9 84.2 ± 4.1 82.0 ± 5.9

PFTAS + SVM12 81.6 ± 3.0 79.9 ± 5.4 85.1 ± 3.1 82.3 ± 3.8

GLCM + 1-NN12 74.7 ± 1.0 76.8 ± 2.1 83.4 ± 3.3 81.7 ± 3.3

PFTAS + RF12 81.8 ± 2.0 81.3 ± 2.8 83.5 ± 2.3 81.0 ± 3.8

AlexNet17 90.0 ± 6.7 88.4 ± 4.8 84.6 ± 4.2 86.1 ± 6.2

CSDCNN 97.1 ± 1.5 95.7 ± 2.8 96.5 ± 2.1 95.7 ± 2.2

Table 3.  Our model achieves the state-of-the-art accuracy (%) in the binary classification task. Comparison 
with mean recognition rates of the classifiers trained with different descriptors: parameter-free threshold 
adjacency statistics (PFTAS)22 and gray-level co-occurrence matrix (GLCM)10 are traditional feature 
descriptors. Quadratic discriminant analysis (QDA)38, support vector machine (SVM)14, 1-nearest neighbor (1-
NN)39 and random forests (RF)40 are traditional classifiers.

Figure 5.  High-resolution breast cancer histopathological images labeled by pathologists. In practice, the 
region of the cancerization is only a fraction of histopathological images. The area separated by the yellow boxes 
represents the region of interest labeled by pathologists, which is always solely the region of cancerization.
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Methods
The overall approach of our method is designed in a learning-based and data-driven multi-classification manner. 
The CSDCNN is achieving learning-based manner by structured formulation and prior knowledge of class struc-
ture, which can automatically learn hierarchical feature representations. The CSDCNN is achieving data-driven 
manner by the augmentation method, which reinforces the multi-classification method to obtain more reliable 
and efficient performance. Therefore, the overall method develops an end-to-end recognition framework.

The CSDCNN architecture.  The CSDCNN is carefully designed as a deep model with multiple hidden 
layers that learn inherent rules and features of multi-class breast cancer. The CSDCNN is layer-by-layer designed 
as follows:

•	 Input layer: this layer loads whole breast cancer histopathological images and produces outputs that feed to 
the first convolutional layer. The input layer is designed to resize the histopathological images as 256 × 256 
with mean subtraction. The input images are composed of three 2D arrays in the 8-bit depth of red-green-
blue channels.

•	 Convolutional layer: this layer extracts features by computing the output of neurons that connect to local 
regions of the input layer or previous layer. The set of weights which is convolved with the input is called filter 
or kernel. The size of every filter is 3 × 3, 5 × 5 or 7 × 7. Each neuron is sparsely connected to the area in the 
previous layer. The distance between the applications of filters is called stride. The hyperparameter of stride 
is set to 2 that is smaller than the filter size. The convolution kernel is applied in overlapping windows and 
initializes from a Gaussian distribution with a standard deviation of 0.01. The last convolutional layer is com-
posed of 64 filters that initialize from Gaussian distributions with a standard deviation of 0.0001. The values 
of all local weights are passed through ReLU (rectified linear activation).

•	 Pooling layer: the role of the pooling layer is to down-sample feature map by reducing similar feature points 
into one. The purposes of the pooling layers are dimension reduction, noise drop, and receptive field ampli-
fication. The outputs of pooling layers keep scale-invariance and reduce the number of parameters. Because 
the relative positions of each feature are coarse-graining, the last pooling layer uses the mean-pooling strategy 
with a 7 × 7 receptive fields and a stride of 1. The other pooling layers use the max-pooling strategy with a 
3 × 3 receptive fields and a stride of 2.

Specifically, in comparison with various off-the-shelf ” network, GoogLeNet35 is picked out as our basis net-
work. GoogLeNet is the first prize of multi-classification and detection in ILSVRC14. GoogLeNet has signifi-
cantly improved the classification performance with 22 layers deep network and novel inception modules.

Constraint formulation.  High precision multi-classifier with loss is the last and crucial step in this study. 
Softmax with loss is used as a multi-class classifier that is extended from the logistic regression algorithm in the 
task of binary classification to multi-classification.

Mathematically, the training set includes N histopathological images: =x y{ , }i i i
N

1. xi is the first i image, yi is the 
label of xi, and ∈ y k{1,2, , }i , k ≥ 2. In this study, the class k of breast cancer is eight. For a concrete xi, we use the 
hypothesis function to estimate the probability of the xi belonging to class j, the probability value is p(yi = j|xi). 
Then, the hypothesis function hθ(xi) is
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1. Besides, θ is the parameter of the softmax classifier. Finally, The loss function is defined as follows:
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The loss function in equation (5) measures the degree of classification error. During training, in order to 
converge the error to zero, the model continues to adjust network parameters. However, in fine-grained 
multi-classification, equation (5) aims to squeeze the images from the class into a corner in the feature space. 
Therefore, the intra-class variance is not preserved15. To address this limitation, we improve the loss function of 
softmax classifier by formulating a novel distance constraint for feature space15.
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Theoretically, given four different classes of breast cancer histopathological images: xi, +pi , −pi , and ni as input, 
where xi is a specific class image, +pi  is the same sub-class as xi, −pi  represent the same intra-class as xi, and ni rep-
resents the inter-class. Ideally, hierarchical relation among the four images can be described as follows:

+ < + <+ −D x p m D x p m D x n( , ) ( , ) ( , ) (7)i i i i i i1 2

Where D is the Euclidean distance of two classes in the feature space. m1 and m2 are hyperparameters, which con-
trol the margin of feature spaces. Then the loss function is composed with the hinge loss function:
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Where m1 < m2. Meanwhile, the output of CSDCNN is inserted into the softmax loss layer to compute the classi-
fication error J(x, y, θ). Finally, we can rewrite the novel loss function by combining equation (5) and equation (8)  
as follows:

λ θ λ= + − + −E J x y E x p p n m m( , , ) (1 ) ( , , , , , ) (9)t i i i i 1 2

Where λ is the weight factor controlling the trade-off between two types of losses, we control 0 < λ < 1, and the 
weight term λ is finally set to 0.5 which achieved optimal performance by cross validation. We optimize equation (9)  
by a standard stochastic gradient descent with momentum.

Workflow overview.  Our overall workflow can be understood as three top-down multi-classification stages, 
as shown in Fig. 2. We describe the steps as follows:

•	 Training stage: the goal of the training stage is to learn the sufficient feature representation and optimize the 
distance of different classes’ feature space. After importing four breast cancer histopathological images 
( + −x p p n, , ,i i i i) at the same time, the CSDCNN first learns the hierarchical feature representation during 
training and share the same parameters of weights and biases. The high-level feature maps then enter into 2 
normalizations. The outputs of the four branches are transmitted to maximize the Euclidean distance of inter-
class and minimize the distance of intra-class. Finally, the two types losses are optimized jointly by a stochas-
tic gradient descent method.

•	 Validation stage: the validation stage aims to fine-tune hyperparameters, avoid overfitting, and select the 
best model between each epoch for testing. The validation process presented the optimal multi-classification 
model of the breast cancer histopathological images, as illustrated in the validation block of Fig. 2.

•	 Testing stage: the testing stage aims to evaluate the performance of the CSDCNN. Feature learning process of 
CSDCNN is shown in the testing block of Fig. 2. After the first step of the input layer, low-level features that 
include colors, textures, shape can be learned by the former layers. Via repeated iterations of high-level layers, 
discriminative semantic features can be extracted and inserted into a trainable classifier.

Finally, We tried two training strategies. The first one is training the “CSDCNN from scratch”, that is, directly 
train CSDCNN on BreakHis dataset. Another one is based on transfer learning that initially pre-trains CSDCNN 
on imagenet37, then fine-tunes it on BreakHis. The “CSDCNN from scratch” performed worse on recognition 
rates, so we chose valuable transfer learning as the final strategy. In addition, the base learning rate of CSDCNN 
was set to 0.01 and the number of training iterations was 5K, which had the best accuracy from the validation 
and test set.

Data augmentation.  We utilize multi-scale data augmentation and over-sampling methods to avoid over-
fitting and unbalanced classes problem. The training set is augmented by 1) intensity variation between −0.1 to 
0.1, 2) rotation with −90° to 90°, 3) flip with level and vertical direction, and 4) translation with ±20 pixels. We 
also adopt a random combination of intensity variation, rotation, flip, and translation. Since the classes of breast 
cancer are imbalanced due to a large amount of ductal carcinoma, which meets the Gaussian distribution and 
clinical regularity, we use an over-sampling manner by the above augmentation methods to control the number 
of breast cancer histopathological images of each class.
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