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Emotions are a fundamental part of mental health and human behavior. In the workplace, optimal performance of employees is
necessary for productivity enhancements and its relation to the quality of a manufacturing product, therefore leading a company
to advantages and competitiveness. +is means that the workplace staff must remain in a neutral or a calm emotional state, for an
adequate job performance. When an operation is not pleasant or the same task is carried out for a long period of time (repetitive),
it can cause negative emotions such as stress, and this will have repercussions in poor work performance. +e purpose of this
research is, by means of an electroencephalogram (EEG), to identify the stress in the repetitive assembly of a manufacturing
product. Tomeasure brain waves, the Emotiv Epoc equipment was used and amanufacturing line was designed, divided into three
workstations, where the assembly of product comprising a LEGO car was carried out within a manual repetitive approach. +e
appearance of stress was determined by employing two different methodologies, the prefrontal relative gamma marker (RG) and
the valence, arousal, and dominance (VAD) emotional categories.+e results obtained from the first methodology, corresponding
to the RGmarker, displayed a significant more change between the relaxation state and the product assembly carried out at 70% of
the standard time (ST). A less significant change was observed between the relaxation state and the product assembly carried out at
100% ST, thus signaling the presence of stress. Additionally, the results from the VADmethodology resulted in moderate and low
levels of stress, when the product assembly was carried out at 70% and 100% standard time, respectively.

1. Introduction

Stress is a disorder that continuously affects the population,
regardless of age, marital status, gender, or activity. Our
society needs people to be capable and trained to face and
solve labor-related problems [1]. Overload work occurs
when humans are subjected to more demanding activities
outside of their ability to handle [2]. Nowadays, human well-
being is considered a crucial aspect in every organization.
Labor is considered an important wealth within every
economic sector [3]. +erefore, stress identification repre-
sents an important research topic for psychologists and
engineers [4].

Work-related stress is a problem that has increased in
recent years; stress affects workers’ health/increasing med-
ical costs and also causes absenteeism problems, accidents,
poor work performance, and manufacturing defects [5].
Many researchers have studied the phenomenon of stress
over the years; one of the most accurate definitions is
proposed by Lazarus and Folkman [6] as “a particular
psychological relationship between the person and the en-
vironment that is evaluated by the person as something
difficult or that exceeds their resources and endangers their
well-being.” Stress can affect the organs and functions of the
whole body (e.g., depression or anxiety, headache, and in-
somnia). +ere are different types of stress. First, acute stress
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occurs, which is the most common form of stress; symptoms
may occur (e.g., irritability, depression, and tachycardia);
however, when treated, the symptoms disappear easily. Next
comes acute episodic stress, where the emotional state is
irritable; it is always in a hurry and tends to be difficult.
Finally, chronic stress is when stressors are present for
several months or even years; illnesses can occur (e.g.,
gastritis, anxiety, insomnia, neurosis, and decreased per-
formance) [7]. Not all stress is negative; there is positive
stress that helps to perform tasks better called eustress.
Eustress helps us to increase attention and performance
capacity. When the activation exceeds the capacity of the
human being, it becomes against the health of the person
and lowers its performance [8].

Workers that continuously perform the same move-
ments for a prolonged period of time often present problems
in the neck, have muscle pain, and can feel tired and fatigue.
Fatigue is named as a kind of distress due to the muscle
exhaustion resulting from repetitive work [9]. +e strain
occurred by performing repetitive tasks for a long time
produces injuries in joints, tendons, and muscles [5].

+ere are several approximate methods to measure
stress, such as psychological questionnaires, physiological
measures such as cortisol in the blood, and catecholamines.
In the last 20 years, saliva testing has been the most popular
method of measuring stress [7]. However, only some types of
stress can be measured by techniques such as cortisol and
heart rate.

Nowadays, stress research has focused on measuring
neurological signals (EEG) that have a better temporal
resolution, are noninvasive, economical, and rapid, and can
be applied in real-time processing operations [10]. +e EEG
measures the electrical activity of the cortex of the brain to
study its functionality. +rough special electrodes, it records
the electrical currents from the brain neurons [11]. +e
frequency characteristics are extracted from the neuronal
activity of each person and are grouped into different bands
(delta, theta, alpha, beta, and gamma) [12]. EEG studies have
indicated that changes registered in the prefrontal regions
and frontal areas through certain brain waves (e.g., +eta,
Alpha, and gamma) are related to stress.

+ere exist two methodologies that have gained im-
portance for detecting stress: the first one is based on a
prefrontal relative gamma marker developed by Minguillon
et al. [10] based on complementing fast and slow brain
rhythms and the other methodology is based on emotional
categories such as valence, arousal, and dominance, here-
after named “VAD” employed by many authors [13–15],
where stress is categorized as a state of negative valence and
positive arousal. +erefore, the level of arousal has an effect
on personal performance, and the affective state of valence is
associated with the level of stress. A high level of stress is
related to positive arousal and negative valence, a moderate
level appears with negative or positive arousal but with
positive valence, and a low level occurred with negative
valence and negative arousal [16].

Unfortunately, to the best of our knowledge, there are no
well-established and reliable methodologies to detect stress
in a manufacturing environment in real time, involving

manual repetitive tasks in a product assembly [13]. +e
presence of repetitive andmanual tasks throughout the work
shift can cause musculoskeletal disorders (MSDs) of the
upper extremities such as the forearm and wrist in workers
and stress-related illness [17].

+e main contribution of this work is the use of two
markers in order to detect stress, the prefrontal relative
gamma power (RG) [10] and the valence, arousal, and
dominance (VAD) emotional categories [13]. +ese meth-
odologies were applied and compared within a
manufacturing line prototype for the assembly of a product
composed of LEGO bricks [18], involving manual repetitive
tasks, to mimic a real manufacturing environment. +e
results from this work could be helpful for the imple-
mentation of neuroergonomic strategies to improve work
performance, diminishing musculoskeletal disorders as well
as reducing adverse emotional conditions in the
manufacturing industries.

+e remaining sections of this work are organized as
follows: the literature review is presented in Section 2, the
experimental methodology is described in Section 3, the
results derived from the statistical analysis using both the
prefrontal RG marker and VAD marker are displayed in
Section 4, the discussion of the significant results is pre-
sented in Section 5, and finally the summarized conclusions
from this work are given in Section 6.

2. Literature Review

Recently, the electroencephalogram has become an easy-to-
use and affordable tool; its use consists of three steps: (1)
emotion capture, where people are presented with stimuli
while EEG signals are recorded; (2) data processing, where
signals are recorded under noise cancellation; (3) classifi-
cation, where the relevant characteristics are extracted
according to the classification method [19].

+rough the brain-computer EEG interface, a wave
analysis can be performed, and classification of the emotions
can be carried out as well as stress level detection. Brain
signals are relatively weak in the range of 0 to 100Hz. One of
the advantages of analyzing stress using EEG is that it is a
noninvasive technique [20]. +e cognitive representation of
the emotions has eight variables, represented within a circle,
in a two-dimensional space, as shown in Figure 1. In this
spatial figure, the horizontal dimension, pleasure, or en-
joyment are localized in the eastern part and disgust or anger
in the west region. In the vertical dimension in the northern
part, the arousal (agitation or excitement) is located, and in
the southern part, the state of drowsiness is located [21].

According to recent investigations, the study of emo-
tions with brain-computer interfaces has received consid-
erable interest. To detect emotions regarding arousal and
valence, the activity of alpha and beta waves was analyzed, by
measuring EEG signals in the prefrontal cortex, corre-
sponding to the AF3, AF4, F3, and F4 electrodes [13].

Alpha waves are more dominant in a relaxed state, while
beta waves are associated with a state of agitation or alertness
[14]. Also, alpha waves predominate during a state of mental
relaxation and are most visible over the occipital and parietal
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lobes. +e intense activity of the alpha waves has been cor-
related with the inactivation of the brain. In other words, the
activity of the beta wave is related to the active state of themind;
it is more predominant in the frontal cortex during intense
mental activity. For this reason, the beta/alpha ratio is an
indicator of people’s arousal status. To define the level of the
valence, if the state of mind is negative or positive, the acti-
vation levels of the two cortical hemispheres are compared [13].

Valence is the regulation of emotion and conscious
experience; the prefrontal lobe has a crucial role (F3 and F4).
+e inactivation of the right front side indicates a positive
emotion, just as the inactivation of the left front side in-
dicates a negative emotion [14]. +e frontal inactivation of
the left side is an indicator of a withdrawal response, as-
sociated with negative emotion. Also, the frontal inactiva-
tion of the right hemisphere is associated with an
approximation response and related to positive emotions
[13]. +e domain is characterized by an increase in beta/
alpha radius in the frontal lobe and an increase in beta waves
in the parietal lobe [14].

Alpha and beta wave activities can be used to detect
emotions (arousal and valence). Ramı́rez and Vamvakousis
in their article indicated that Choppin [22], in 2000, pro-
posed the use of EEG to classify six emotions employing
neural networks. Choppin’s approach is based on classifying
emotions through valence, arousal, and a domain of the EEG
signals. It characterized positive emotions by a high co-
herence in the alpha wave in the frontal region and high
power of the beta wave in the right parietal region. High
arousal was characterized by the highest potency of the beta
wave and coherence in the parietal lobe, plus the lowest
activity of the alpha wave, while the dominance (the strength
of emotion) is characterized by an increase in the radius of
beta/alpha activity in the frontal lobe, plus an increase in
beta activity in the parietal lobe [13]. In the literature review,
it was found that there are different ranges to determine
emotions using the VAD methodology. According to dif-
ferent authors, Hosseini and Khalilzadeh [23] measured
emotions using the “International Affective Picture System
IAPS,” and to determine the level of arousal and valence,

they used a scale from 1 to 9 based on the following intervals:
calm state represented with arousal values <4, and valence in
a specific range (4 <valence <6), negative excitations cor-
respond to arousal values >5, and valence values <3. Instead,
Verma and Tiwary [24] divided VAD into three categories
using a continuous range of 1–9: low valence, arousal, and
dominance (1–4.5); medium valence, arousal, and domi-
nance (4.5–5.5); and high valence, arousal, and dominance
(5.5–9), as shown in Table 1.

Cui et al. [25] used the range between 0 and 1 in their
studies to measure emotions based on valence and arousal.
In arousal, there is a continuity from the calmest (0) to very
exciting (1); the same continuity is present in the valence
with the value of zero (0) corresponding to the most de-
pressed state and a value (1) corresponding to the most
pleasant state, as shown in Figure 2.

One study, related to manufacturing using EEG, was
found in the literature, with regard to a study conducted in
Serbia in 2015 using EEG in conjunction with the wireless
SMARTING equipment (mBrain Train). +e experiment
consisted of studying whether workers’ attention can be
enhanced, by instructing them with which hand to start the
assembly operation instead of choosing any hand freely [26].
+e results of this experiment showed that the attention level
was increased with the help of instructions.

3. Methodology

3.1. Subjects. +e experiment in this work was carried out
with 6 volunteer students, between 19 and 25 years old (5
men and one woman). None of the participants had neu-
rological disorders, and they were alcohol, drugs, and
medications free. All participants signed the informed
consent, expressing their voluntary participation in the
experiment and their disposition to leave at any time.

3.2. Experimental Measurements. In this research, a simu-
lation of a manufacturing line was carried out by assembling
a car with LEGO’s pieces in an ergonomic workstation,
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Figure 1: Emotional categories [21].

Computational Intelligence and Neuroscience 3



mimicking the real conditions of a work area and recording
brain waves to determine stress. LEGO is a system of
building bricks that can be freely joined between two parts of
LEGO and remain together until being separated and has
been used in the simulation of manufacturing systems to
teach Lean Philosophy [27]. Also, LEGO bricks have been
employed for educational purposes in the design and
management of manufacturing systems focused on an in-
tegrated approach [28].

3.3. Procedure. +e manufacturing line was divided into
three stations, and the experiment was carried out using two
standard times, one of them at 100% and the second at 70%
percentage (this last time was used as a stimulus to cause
stress in the assembly of a LEGO-based product). +e ST
corresponds to 2 minutes and 28 seconds (100% ST). +e
operational time (ST) was decreased from 100 to 70% (30%
less); this means that each person needed to assembly the
product more rapidly. +e experiment was planned with 6
random people, 2 standard times, and 3 replicates, as shown
in Figure 3, where EEG signals were recorded for the re-
laxation and assembly time. It is important to emphasize that
each EEG epoch of 30-minute length was subdivided into
five windows, therefore, obtaining a total of 15 EEG data per
person, resulting in 90 brainwave values in total for each
product assembly time (in total� 90).

+e experiment started at 10 : 00 a.m. and ended at 2 : 00
p.m for a period of several weeks. +e Emotiv Epoc
equipment [29] and the Emotiv Pro Software were used for
the recording of brain waves [30]. It was ensured that during
the EEG recording there was good contact and good signals
for all the electrodes.

At the beginning of the experiment, the people were
trained to get acquainted with the Emotiv Epoc and to
minimize artifacts that can occur by body movements (e.g.,

talking, smiling, and/or any unnecessary movement) while
recording in the EEG experiment.

Before carrying the assembly task, each person was at
rest, and in order to eliminate artifacts related to eye
movement, 15 seconds were recorded with eyes open and 15
seconds with eyes closed, as shown in Figure 4, and the
brainwaves were saved using the Emotiv Pro software.
Furthermore, another 20 seconds was added to the relax-
ation time before starting the assembly operation, resulting
in a total time of 50 seconds.

Given that the assembly activities for the participants are
very similar within each of the workstations, the product
assembly was performed only in workstation 2, involving a
time length of 30 minutes. +e assembly operations con-
sisted of “picking up the LEGO and assembling it.” A dif-
ficulty encountered during the operations arises because the
LEGO pieces that are handled are small and also all the
movements involving the assembly process are repetitive, as
shown in Figure 5.

3.4. Analysis of EEG Signals

3.4.1. Preprocessing. For the recording of the EEG signals,
the Emotiv Epoc device was used, containing 14 channels
(electrodes), spaced at the scalp in accordance with the
international 10–20 system. +e channels were labeled as
follows: AF3, F7, F3, FC5, T7, P7, 01, 02, P8, T8, FC6, F4, F8,
and AF4. It has two reference electrodes CMS/DRL, noise
cancellation settings at P3/P4 locations, a sampling rate of
128Hz, a bandwidth of 0.16–43Hz, and digital notch filters
at 50Hz and 60Hz.+e resolution is 16 bits (14 bits effective)
[29]. +e two references CMS and DRL electrodes must be
placed behind the ear, close to or above the mastoids; this is
essential for its correct functionality and to assure adequate
electrical signals [11].

+e electrical activity produced by the brain is measured
in units of microvolt; also, due to power line interferences
and external interferences, the recorded EEG signals usually
contain noises, produced by artifacts involving the eye
(Electrooculogram), muscle (Electromyogram), and vascu-
lar movements (Electrocardiogram). Consequently, it is
necessary for the preprocessing of the signal to remove these
noises [31]. All processing and data analysis was performed
with theMATLAB software environment [32].+e EEG data
were preprocessed with EEGLAB 14.1.1 toolbox [33].

First, the data components were removed using inde-
pendent components analysis (ICA). Second, the artifacts
correction was performed using the Artifact Subspace Re-
construction (ASR) method [34]. ASR rebuilds the missing
data with a spatial mixing matrix and uses an algorithm to
remove nonstationary high variance in EEG signals. +e
ASR criteria for identifying a bad channel and its removal

Arousal

0
Very calm

1
Very exciting

Valence

0
Very depressed

1
Very pleasant

Figure 2: Range of valence and arousal values associated with
emotional states [25].

Table 1: Valence, arousal, and dominance categories for emotions [24].

Valence class (range) Arousal class (range) Dominance class (range)
Low valence (1–4.5) Low arousal (1–4.5) Low dominance (1–4.5)
Medium valence (4.5–5.5) Medium arousal (4.5–5.5) Medium dominance (4.5–5.5)
High valence (5.5–9) High arousal (5.5–9) High dominance (5.5–9)
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were the following: (a) the presence of flat line length of
more than 5 seconds, (b) high-pass filter transition band-
width (0.25–0.75Hz), as signals at frequencies below 0.25
were removed, (c) if a channel has a correlation of less than
80% with respect to its activity based on the other channels,
and (d) if a channel has more line noise relative to its signal
in excess of four standard deviations relative to the overall
channel population [35]. +e EEG signal has a dissimilar
frequency at different time intervals because the signals are
nonstationary [36].

+e domain frequency analysis was performed using the
Fast Fourier Transform (FFT) algorithm to calculate the
power spectral density (PSD) with units of μV2/Hz at various
frequency intervals (Hz) for the EEG data and plotted using
the EEGLAB graphical interface. +e brainwaves are clas-
sified according to their frequency as follows: delta (1–4Hz),

theta (4–8Hz), alpha (8–13Hz), beta (13–30Hz), and
gamma (30–50Hz) [37]. An in-house MATLAB script was
developed to extract the PSD values in tabular form at
different frequencies. +e spectral analysis of signals, in-
cluding removal of both noise and outliers, has also been
applied, in other scientific areas such as seismology for the
prediction of earthquakes, tsunamis, and volcano eruptions;
speech recognition; radar and sonar systems; and control
systems, to characterize the dynamical behavior of a given
system, and for monitoring the wear of different mechanical
parts [38]. For example, in the area of mechanics, Castaño
et al. [39] employed a sensor designed to monitor the
machining and milling operations on conductive materials.
Beruvides et al. [40] applied the spectral analysis of signals
for the detection of run-out in the microdrilling processing
of metals.

Figure 4: EEG recording during the relaxation state.

Relax 70% S.T. Relax Relax

Relax 100% S.T. Relax Relax

Replica 1 Replica 2
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Figure 3: Experimental methodology for each participant.
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Also in this work, in order to compare the brainwaves
behavior within the different periods of time, where the
assembly was carried out, each EEG recording length of
30min was divided into 5 windows of 6 minutes each. +e
RG and VAD analyses were performed in the prefrontal area
(AF3, F3, F4, and AF4) since this area has been used in
previous studies to reveal emotions using the valence and
arousal methodology [13–15]. Channels P8, FC6, and F8
were used for the dominance analysis [14, 19], and the values
were averaged across these channels and analyzed together.
+e RG was calculated by taking the ratio of the gamma
power (30–50Hz) with respect to the power average of low
rhythms (4–13Hz). +e spectral analysis using the RG is
based on the work of Minguillon et al. (2016) [10] who
elucidated it as an efficient and robust marker to measure
stress, based on the VAD ranges obtained by two researchers
[24, 25] and shown in Table 2.

In this work, the data were normalized by using the
maximum and minimum values and the following formula
ynorm � ([y − min(y)]/[max(y) − min(y)]) [10], where y is
the entire feature set, min(y) is the minimum value in the
feature set, and max(y) is the maximum value in the feature
set, respectively [36]. +e data from each person were
normalized to reduce interparticipant variability (differences
between participants) on a scale between 0 and 1 [41].

3.5. Data Analysis. All statistical analysis was performed
with the Minitab Software [42]. First, the RG was calculated
for the AF3, AF4, F3, and F4 channels for each of the five
EEG windows, each window having a 6min time length, at
different ST and relaxation states for every person. Subse-
quently, the outliers were eliminated from the data
according to three standard deviations criteria.

+e Anderson Darling normality test was used to
evaluate whether the data conforms to a normal distribution,
giving rise to p values <0.05. +en, a Student’s t-test was
applied with a significance level α� 0.05 to determine dif-
ferences between 70% ST versus relaxation and 100% ST
versus relaxation states. Finally, the mean power of the RG of
all people was calculated and normalized within the cor-
responding time period for all cognitive states: relaxation,
70% ST, and 100% ST, and the Student’s t-test was applied to
determine the statistically significant differences between the
different states.

For the VAD methodology, an analysis of variance
(ANOVA)-General Linear Model was performed applying
the following factors: people and ST (relax, 70%, and 100%).
Subsequent responses (normalized) were valence, arousal
low beta and high beta, and dominance. +e outliers were
removed from the data. All results had p value <0.05 as
shown in Table 3, indicating the existence of a statistically

(a) (b)

(c) (d)

Figure 5: Assembly of a LEGO-based product and brainwaves recording.
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significant effect of each response variable (VAD) for the
factors (people and ST) with p< 0.05.

4. Analysis of Statistical Results

+e statistical analysis results for the prefrontal RG marker
corresponding to each person are presented in Table 4.

+e graphical representation of the average normalized
prefrontal RG values for each state is shown in Figure 6,
where it can be observed that subjects 1 and 6 have higher
RG values in comparison with other persons at 70 and 100%
ST.

Figure 7(a) displays the calculated difference in the RG
prefrontal mean values between 70% STand relaxation for all
people. +e difference was statistically significant (Student’s
t-test; p< 0.05). Person 6 presented the highest difference,
followed numerically by persons 1, 5, and 3. On the contrary,
persons 2 and 4 displayed the smallest differences.
Figure 7(b) shows the calculated difference in the RG pre-
frontal mean values between 100% ST and relaxation; re-
garding persons 1, 2, 4, 5, and 6, the difference was
statistically significant, except for person 3.

Figure 7(c) shows the normalized RG value averaged for
all six persons; in the left part, the state of relaxation presents
a lower RG value with respect to 70 and 100% ST. +e
highest RG value was at 70% ST. +e calculated RG average
difference was statistically significant between the relaxation
state and the product assembly at 70 and 100% ST.

Table 5 presents the numerical p-values corresponding to
the RG differences for each person between the relaxation
state and 70% ST; all the differences are statistically sig-
nificant (Student’s t-test; p< 0.05). With respect to the
calculated RG difference between relaxation state and 100%
ST, it can be observed that for persons 1, 2, 4, 5, and 6 the
differences were statistically significant, with the exception
of person 3, where the difference was not statistically
significant.

+e valence, arousal, and dominance (VAD) method-
ology proposed by Blaiech et al. [14] was also used in this
work in order to detect stress. +ese three factors or cate-
gories classify the seven states of emotions as follows: dis-
gusted, enjoyed, surprised, sad, scared, angry, and neutral.
To determine the valence and arousal values, the EEG data
from electrodes AF3, AF4, F3, and F4 was employed, and for

the domain, the information from electrodes P8, FC6, and
F8 was used. In Figure 8, the VAD values for every person in
the relaxation state are observed, where the values of low
arousal and high beta for all people were <0.45, high valence
(HV) values >0.45 were present for persons 1 to 4, and
persons 5 and 6 displayed low valence (LV) <0.45, signaling
a lower stress level.

Figure 9 displays the VAD values corresponding to the
product assembly using a standard time of 70%. From this
figure, it can be observed that persons 1 and 6 presented
large arousal low beta (HALB) values >0.55, and only person
6 presented large arousal high beta (HAHB) values. Person 3
presented a medium arousal low beta value (MALB) of 0.46,
and persons 2, 4, and 5 had values <0.55, which correspond
to the low arousal low beta (LALB) regime. Persons 1, 2, 3, 4,
and 5 had low arousal high beta (LAHB) values <0.45.
Persons 1, 3, 5, and 6 presented low valence (LV) values,
person 2 presented amedian valence (MV) value, and finally,
person 4 presented a high valence (HV) value. +e analysis
of these VAD results for the product assembly at 70% ST
showed that persons 1 and 6 presented a high stress level
with arousal low beta (ALB) values. +e analysis corre-
sponding to arousal high beta (AHB) values showed that
only person 6 presented a high stress level.

Figure 10 displays the behavior of the VAD values with
respect to the product assembly at 100% ST. Persons 1 and 6
had HALB values >0.55, and the other people got a LALB
<0.45. Only person 6 got HAHB, and the other persons
obtained LAHB values. Person 2 presented a medium va-
lence (MV) value, person 5 presented an HV> 0.55, and also
persons 1, 3, 4, and 6 got an LV. +e summarized results of
the analysis for the product assembly at 100% ST indicated
that persons 1 and 6 showed a high stress level with arousal
low beta (ALB) values; with respect to the arousal high beta

Table 2: Normalized values for the valencia, arousal, and dominance emotional categories in this study.

Valence (range) Arousal (range) Dominance (range)
Low valence (0–.45) Low arousal (0–.45) Low dominance (0–.45)
Medium valence (.45–.55) Medium arousal (.45–.55) Medium dominance (.45–.55)
High valence (.55–1) High arousal (.55–1) High dominance (.55–1)

Table 3: Summary of experimental ANOVA p values.

VAD
Valence Arousal low beta Arousal high beta Dominance

Person p≤ 0.001 p≤ 0.001 p≤ 0.001 p≤ 0.001
Standard time 0.002 p≤ 0.001 p≤ 0.001 p≤ 0.001
Person∗ST p≤ 0.001 p≤ 0.001 p≤ 0.001 p≤ 0.001

Table 4: Prefrontal mean values of the RG marker during relax-
ation states and product assembly at 70 and 100% standard times.

Mean RG SUB 1 SUB 2 SUB 3 SUB 4 SUB 5 SUB 6
Relaxation 0.1585 0.0499 0.1863 0.2217 0.0556 0.1702
Standard
time 70% 0.5746 0.1356 0.5628 0.3339 0.4569 0.802

Standard
time 100% 0.4879 0.0862 0.2221 0.3027 0.3191 0.604
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(AHB) values, only person 6 showed a high stress level, since
this person displayed a faster assembly’s ability compared to
the other persons.

5. Discussions

+e RG marker has been used previously to evaluate
meditation states and stress [10]. +e VAD categories had
also been used to determine emotions (stress) [14]. In the

experiment carried out in this work, two methodologies RG
and VAD were used to detect stress in the assembly of a
product involving manually repetitive tasks.

+e results of the VAD methodology showed the
presence of a high level of stress with respect to persons 1
and 6 in the assembly of 70% STusing ALB. Consequently, in
the assembly of 100% ST, only person 6 presented a high
stress level. Figure 11 shows the difference between the mean
power of the RG and VAD markers, for all six subjects at
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Figure 6: Prefrontal mean RG values during relaxation states and product assembly at 70% (subindex i) and 100% (subindex j) standard
times.
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Figure 7: (a) +e top left figure displays the RG differences between relaxation and product assembly at 70% ST, where the i subindex
corresponds to 70% and j corresponds to relaxation. (b) +e top right figure displays the RG difference between relaxation and product
assembly at 100% ST, where i corresponds to 100% ST and j corresponds to relaxation. (c) +e figure at the bottom shows the RG subject-
averaged differences between product assembly at 70 and 100% STagainst the relaxation state, where i and j correspond to relaxation, 70%
ST, and 100% ST.
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70% STversus relaxation, where most of the markers display
a significant statistical difference, with the exception of the
valence category.

In Figure 12, the difference of the mean powers for the
RG and VADmarkers for all six persons at 100% STversus
relaxation is shown. It can be observed that the difference
was not statistically significant for the valence category.

+e numerical differences in this figure (100% ST) are
smaller in comparison to the values displayed in Figure 11
(70% ST).

Finally, Figure 13 summarized the subject-averaged
brainwaves power, with the RG and VADmethodologies, for
the product assembly using manually repetitive tasks at
different operational conditions and relaxation.
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Figure 8: Valence, arousal, and dominance values during the relaxation state.

Table 5: RG Differences between relaxation state and product assembly at 70 and 100% ST for all subjects.

People Relaxation versus 100% ST p value Relaxation versus 70% ST p value
Person 1 p≤ 0.001 p≤ 0.001
Person 2 p≤ 0.001 p≤ 0.001
Person 3 0.443 p≤ 0.001
Person 4 0.002 p≤ 0.001
Person 5 p≤ 0.001 p≤ 0.001
Person 6 p≤ 0.001 p≤ 0.001
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Figure 9: Valence, arousal, and dominance values during the product assembly at 70% ST.

Computational Intelligence and Neuroscience 9



0.337

0.019

0.275
0.2320

0.324

RG Valence Arousal low
beta

Arousal high
beta

Dominance

∗∗∗∗

–0.3
–0.2
–0.1

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Figure 11: Differences in RG and VAD markers’ mean values between relaxation and product assembly at 70% ST.
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Figure 12: Differences in RG and VAD markers’ mean values between relaxation and product assembly at 100% ST.
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Figure 10: Valence, arousal, and dominance values during product assembly at 100% ST.
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6. Conclusions

RG is a marker, based on complementing fast and slow brain
rhythms, and has been used to detect stress [10]. Comparing
the two methodologies (VAD and RG) in this work, it can be
concluded that it was possible to detect the presence of
stress. Also, it was noticed that the RG marker showed
significant changes in the relaxation state versus 70 and
100% ST, respectively.

+e results regarding the VAD methodology were the
following: the values of the valence were similar within the
three states (relaxation, 70%, and 100% ST). +e ALB and
AHB at 70% ST are higher than ALB and AHB at 100% ST.
+e beta brainwave presented more activity when people
carried out the assembly at 70% ST, since the beta/alpha ratio
is an indicator of arousal state [15]. +e medium arousal
range was 0.45–0.55; in the assembly, at 70%, we obtained a
mean for ALB� 0.493 and AHB� 0.427, mean
valence� 0.424, and mean dominance� 0.604. +erefore, it
can be concluded that within 70% ST, the arousal low beta
and high beta showed that people were working at optimal
performance, therefore, signaling a moderate level of stress
(low valence, medium arousal, and high dominance). In the
assembly at 100% ST, a mean value in ALB� 0.424 and
AHB� 0.365, mean valence� 0.395, and mean domi-
nance� 0.536, the arousal low beta and high beta were
obtained, indicating that persons were working at a low level
of stress (low valence, low arousal, andmedium dominance).
In the relaxation state, the following values were obtained:
the mean in ALB� 0.218 and AHB� 0.195, mean
valence� 0.405, and mean dominance� 0.281. It can be
concluded that in a relaxed state according to the arousal low
beta and high beta, persons were in a very insignificantly low
level of stress state according to Giannakakis et al. [16], and
there were LV, LA, and LD categories.

In summary, during the assembly of a product with
LEGOs, while performing manually repetitive tasks, the
persons in the experiment presented a moderate level of
stress within the 70% ST, since they were in an optimal
performance state (LV, MA, and HD). On the other hand,
people who worked at 100% STpresented low levels of stress
level (LV, LA, and MD); with respect to the relaxation state,

the persons presented insignificantly low levels of stress (LV,
LA, and LD).

+e results in this work indicated that both RG and
VADmarkers displayed similar behavior in the detection of
stress and provided reference marker values, hence, sig-
nifying that when the persons were working at 70% ST, a
higher level of stress was detected in comparison to those
working at 100% ST.

+ese results could be helpful in the design of neuro-
ergonomic strategies to improve work performance, di-
minishing musculoskeletal disorders as well as reducing
adverse emotional conditions in the manufacturing indus-
tries involving manually repetitive tasks.
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+e datasets generated during the current study are available
from the corresponding author upon reasonable request.
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