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ABSTRACT: We use dynamic atomic force microscopy (AFM) to
investigate the forces involved in squeezing out thin films of aqueous
electrolyte between an AFM tip and silica substrates at variable pH and salt
concentration. From amplitude and phase of the AFM signal we determine
both conservative and dissipative components of the tip sample interaction
forces. The measured dissipation is enhanced by up to a factor of 5 at tip−
sample separations of ≈ one Debye length compared to the expectations based on classical hydrodynamic Reynolds damping
with bulk viscosity. Calculating the surface charge density from the conservative forces using Derjaguin−Landau−Verwey−
Overbeek (DLVO) theory in combination with a charge regulation boundary condition we find that the viscosity enhancement
correlates with increasing surface charge density. We compare the observed viscosity enhancement with two competing
continuum theory models: (i) electroviscous dissipation due to the electrophoretic flow driven by the streaming current that is
generated upon squeezing out the counterions in the diffuse part of the electric double layer, and (ii) visco-electric enhancement
of the local water viscosity caused by the strong electric fields within the electric double layer. While the visco-electric model
correctly captures the qualitative trends observed in the experiments, a quantitative description of the data presumably requires
more sophisticated simulations that include microscopic aspects of the distribution and mobility of ions in the Stern layer.

1. INTRODUCTION
The vast majority of solid surfaces, including mineral surfaces,
semiconductors, polymers, and biological membranes, sponta-
neously assume a finite surface charge upon immersion into
water. This charging is caused either by dissociation of surface
groups or by adsorption of charged species dissolved in the
water.1−3 The resulting surface charge, which can reach
densities up to the order of a few elementary charges per
nanometer square is screened by the counterions in the
electrolyte in a space charge layer with a typical thickness
ranging from a fraction of a nanometer up to tens of
nanometers, depending on the concentration of dissolved
salts, see Figure 1a. The properties of the resulting ionic
distribution, the electric double layer (EDL), are crucial for
many disciplines of science and technology, including electro-
chemistry,4 colloid science5 and micro- and nanofluidics,6,7

energy conversion and storage,8−10 membrane technology, and
enhanced oil recovery.11 Often, the relevance arises from the
intrinsic coupling between fluid flow and electrical transport
within the EDL. The traditional approach to model such
electrokinetic phenomena is based on continuum physics. Fluid
flow as well as electrical charge distribution are described in
terms of flow fields and charge distributions that evolve
according to the classical Navier−Stokes and Maxwell
equations. In this context, the properties of the interfaces are
casted into boundary conditions for charge, mass, and
momentum transport. Classically, the EDL is decomposed
into two parts, a diffuse layer, in which the distribution of
electrical charge is described by the Poisson−Boltzmann theory
and a compact part, the “Stern” layer, which comprises ions that
are directly adsorbed to the solid surface. The ions in the Stern

layer are usually assumed to be positioned about an ion radius
away from the solid surface. In EDL models, there is a sharp
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Figure 1. (a) A sketch of the electric double layer. Red dots represent
positive charges, blue dots negative charges; ψ0 and σ0 are the potential
and surface charge at the substrate, ψβ and σβ the potential and surface
charge at the transition from the Stern to the diffuse layer. (b)
Schematic presentation of the experimental setup. The blue laser ray
indicates the photothermal driving of the cantilever, while its
deflection is detected by reflecting the red laser onto a four quadrant
detector. The flow in the electrolyte between the tip and the substrate
has a pressure driven and an oppositely directed electro-osmotic
component.
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boundary between ions in the Stern layer that are taken to be
immobile and do not contribute to any electrical current and
those in the diffuse part of the EDL, which move under the
influence of electric fields and hydrodynamic drag. The solvent
is also believed to be immobilized in the vicinity of the solid
surface. Similar to the electric problem, there is a “slip plane”,
from where onward continuum Navier−Stokes equations with
bulk fluid properties are used to describe the flow. The
Smoluchowski equation2 that describes how tangential electric
fields at solid−liquid interfaces give rise to an effective slip
velocity in the presence of a finite ζ potential at the slip plane is
one of the most widely used relations resulting from this
classical EDL model. This approach has evolved into one of the
most widely used pumping mechanisms in microfluidics,
electro-osmotic pumping. Scientifically, casting all the details
of microscopic molecular interactions into boundary conditions
of macroscopic continuum models with sharp transitions
between mobile and immobile parts of the system is not very
satisfying. More importantly, it has also become clear
throughout decades of research, and in particular within the
past decade or so with the rise of various types nano-
electrofluidic applications, that important aspects of these
phenomena cannot be captured in a continuum picture.
Examples of such failures include the capacitance of electric
double layers, the discrepancy between charge densities based
on electrophoresis and titration, quantitative predictions of
electro-osmotic flow, surface conduction, as well as simply the
charge distribution and microscopic structure of the EDL.
Various approaches have been introduced to account for these
deficiencies. In particular, the so-called dynamic Stern layer
concept allowed for ions in the Stern layer to respond to
tangential electric fields while leaving them along the adjacent
water unaffected by hydrodynamic drag (see refs 12,13). More
recent treatments involve both extensions of the Poisson−
Boltzmann equation to account for the finite ion size.7,14

A frequently investigated generic situation is the hydraulic
resistance experienced upon pumping an electrolyte solution
through a nanochannel with charged walls. In this case, the
hydrodynamic flow carries along the ions within the diffuse part
of the EDL thereby generating a streaming current. This
streaming current gives rise to a streaming potential, which, in
turn drives a compensating Ohmic current of mobile ions in the
center of the channel. Viscous drag between the fluid and the
moving ions generates an additional flow that increases the
hydraulic resistance of the channel that is frequently interpreted
as an effective “electro-viscous” enhancement of the viscosity.15

It is maximum if the channel width is comparable to the
thickness of the EDL. This electro-viscous effect is also believed
to be the origin of the enhanced viscosity of suspensions of
charged colloidal particles as compared to the well-known
Einstein relation for hard spheres.16,17 Notwithstanding the
general qualitative acceptance of this scenario, substantial
quantitative discrepancies between experiment and theory are
rather common, in particular for nanochannels,8,18−22 where
the microscopic properties, e.g., of the internal surfaces, are
difficult to characterize and frequently poorly known.21 A
sound and quantitative picture of electro-viscous dissipation
enhancement requires simultaneous characterization of (i) the
surface charge (or potential), (ii) the hydrodynamic boundary
conditions, (iii) the distribution of the ions in the vicinity of the
interface, and (iv) their local mobility.
Force measurements in thin lubricant films provide another

approach to study the same type of phenomena. The first

experimental studies on friction enhancement in thin film flow
date back to the pioneering work of Israelachvilli23 who studied
the dissipation near mica substrates using the surface force
apparatus (SFA) technique, but they did not observe any
significant increase of the dissipation for electrolytes. Later
Raviv et al. reported no dissipation enhancement for aqueous
electrolytes, also using an SFA, in contrast to nonpolar liquids
for which the effective viscosity diverges at small mica−mica
distances.24,25 These measurements where all performed at
neutral pH, in which case the diffuse layer charge of mica is
rather low and hence little viscosity enhancement is expected.
In the 2000s an extensive series of colloidal probe atomic force
microscopy (AFM) studies on hydrodynamic squeeze out were
performed in the context of hydrodynamic slip.26−31 While
addressing possible effects of enhanced surface charge in
passing26 the primary goal of these studies was to identify the
role of hydrodynamic slip at hydrophilic and, in particular, at
hydrophobic surfaces. Hence, like the SFA measurements, these
studies did not systematically address fluid compositions that
lead to high surface charges. In recent years, a wealth of novel
experimental techniques have been developed that provide an
increasingly detailed picture of the microscopic properties of
solid−electrolyte interfaces. X-ray reflectivity32−34 and surface
X-ray diffraction35 have revealed the positions of ions and
surrounding hydration water molecules with atomic precision.
X-ray spectroscopy techniques have produced a detailed
information about the binding configurations of interfacial
water and ions.36 Optical vibrational spectroscopy, in particular
nonlinear sum frequency generation, has delivered valuable
information about the ordering of molecules at interfaces,
including in particular the average orientation of interfacial
water.37−40 Atomic force microscopy and spectroscopy have
provided simultaneous insight into the arrangement of
adsorbed ions and water molecules in three dimensions41−45

along with values of electrostatic and other forces that allow to
quantify certain aspects of the interfacial charge distribu-
tion.41,46 Increasingly, the techniques are being exploited to
study kinetic and transport properties at solid−liquid
interfaces.34,38,47 At the same time, molecular simulations
have advanced dramatically.48−53 They allow to trace the
position of each individual atom in the system in time and
thereby provide, within the limitations of the underlying
molecular force fields and base functionals, the most detailed
picture conceivable of ions and solvent molecules at solid−
liquid interfaces. One of the key insights from both advanced
experiments and molecular simulations has been that the
description of solid−electrolyte interfaces requires more than
solving an electrostatic problem for the distribution of charge.
The solvent, water, plays a very important role in mediating
interactions, solvating the ions, and screening electric fields. In
many cases, ions can adsorb to interfaces in competing states of
hydration that display different dynamics. Hydration water can
thereby stabilize specific configurations of adsorbed ions.41,42 At
the same time, the properties of interfacial water itself are
different from the bulk, e.g., regarding structure and dielectric
response, which are affected by packing constraints, hydrogen
bonding, and, given the large dipole moment of water
molecules, the strong local electric fields within the EDL.
In the present work we use dynamic AFM measurements to

determine the dissipation upon squeezing out thin aqueous
solutions of NaCl at (primarily) elevated pH, see Figure 1b.
The experiment makes use of a combination of analysis
procedures that we have developed in recent years to quantify
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dissipation54,55 and to analyze the conservative tip−sample
interaction forces41,46 to solve for the surface charge in the
diffuse part of the EDL. Experiments are carried out using
oxidized silicon wafers as samples and spherical tips with radius
of approximately 1μm, equally made of oxidized silicon.
Standard continuum models, Poisson−Boltzmann (PB) and
DLVO theory in combination with specific surface speciation
reactions as well as continuum hydrodynamics, are used as a
reference frame to extract effective quantities of the surface
charge density and the enhancement of effective viscosity. The
article is organized as follows: in Section 2, we provide an
overview of the materials and experimental methods to extract
tip−sample interaction stiffness and damping from the
measured signals using photothermal excitation amplitude
modulation AFM. The first part of Section 3 is devoted to
the analysis of the conservative part of the tip−sample
interaction using PB and DLVO theory and presents the
results for the surface densities. The second part of Section 3
addresses the analysis of the dissipative forces, in which we
define a viscosity enhancement factor cev with respect to the
dissipation based on the bulk viscosity. The results are
compared to a simplified continuum approximation of the
classical electroviscous effect and, more favorably, to a model
ororiginally proposed by Lyklema and Overbeek based on an
electric field-enhanced local viscosity. We end with a discussion
of our results in the light of other recent work on ionic mobility
within the EDL.

2. METHODS
2.1. AFM Force Spectroscopy with Photothermal

Excitation. Using amplitude modulation (AM) AFM we
probe the amplitude and phase response of the cantilever tip,
while we drive the bending of the cantilever by photothermal
excitation, i.e., we locally heat the cantilever with a laser beam.
Analyzing the motion of the cantilever tip in terms of a
harmonic oscillator,54,56−60 one can express the tip−substrate
interaction force Fts in the interaction stiffness kint = −∂Fts/∂h
and interaction damping γint = −∂Fts/∂ḣ as

γ+ ̇ = − − ̇F h z z F h k z z( , ) ( , 0)ts ts int int (1)

where Fts(h, 0) is the equilibrium force at distance h.
Linearizing Fts is justified because the oscillation amplitude is
less than 1 nm, which is much smaller than the characteristic
length of the interaction force. Solving the equation of motion
of the harmonic oscillator, we derive in Appendix A:
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where A and ϕ are the amplitude and phase of the cantilever
deflection measured at a distance h from the substrate while A∞
and ϕ∞ are the amplitude and phase, measured at 140 nm from
the substrate. Δγc is an offset that is added to account for the
small but finite hydrodynamic coupling between tip and sample
at the calibration distance, which we will calculate using
continuum hydrodynamics, as discussed further below.
(Alternatively, one could use the measured transfer function
of the cantilever and continuum hydrodynamics to calculate the

phase and amplitude offset at h = 140 nm.) Before we can
calculate kint and γint with eqs 2 and 3, we have to calibrate the
cantilever parameters kc, γc, and ω0. The stiffness kc is obtained
from the thermal noise spectrum of the cantilever61 when it is
not in contact with the substrate, i.e., h > 1 μm. The damping
coefficient γc is obtained from the resonance frequency ω0 and
the quality factor Q of the oscillator under liquid. The
hydrodynamic load on the cantilever beam varies with tip−
substrate separation, but is constant for 130 nm < h < 1 μm.62

In this range h is much smaller than the height of the tip cone.
Therefore, ω0 and Q are determined from the thermal noise
spectrum measured at a distance of 140 nm from the surface.63

At this distance, the tip−substrate interaction is supposed to be
negligible. Figure 2 shows the photothermal response function,

measured at a distance of 140 nm. This response is compared
with the response calculated from the thermal noise spectrum.
The slight difference between both response functions is caused
by the thermal driving coefficient AT* which is also frequency
dependent, see Appendix A. Knowing kint and γint one can
calculate both the conservative part Fc of the interaction force
(by integration of kint) and the dissipative force Fd. However,
we will use kint = −∂Fc/∂h and γint = −Fd/ḣ themselves, because
we calculate the excess pressure Π in the liquid film between tip
and substrate. For a spherical colloidal probe with radius Rtip
the relation between the measured kint and the non dissipative
part of the excess pressure Πc = [Π−ḣ ∂Π/∂ḣ] between tip and
substrate turns out to be quite simple. Because the local
thickness of the liquid film can be approximated with h(r) =
h0+r

2/(2Rtip), where h0 is the distance between substrate and
the apex of the tip, the conservative part of the force on the tip
exerted by the liquid film is calculated as Fc(h0) = ∫ 0

∞−Πc(h)

Figure 2. (a) Example of an amplitude- (black) and phase- (blue)
distance curve, measured with a colloidal tip. The fluid is 100 mM
NaCl solution at pH 5.7. The amplitude is normalized by A∞, the
phase is determined with respect to ϕ∞, both measured at 140 nm. (b)
Measured frequency response of the same cantilever (amplitude: black
dots, phase: blue dots) under photothermal excitation in liquid. The
red lines represent the calculated response using the cantilever
parameters determined from its thermal noise spectrum: kc = 0.66 N/
m, γc = 2.17 μNs/m, ω0/2π = 16.11 kHz, ω/2π = 11 kHz, and A∞ ≈
0.8 nm.

The Journal of Physical Chemistry B Article

DOI: 10.1021/acs.jpcb.7b07019
J. Phys. Chem. B 2018, 122, 933−946

935

http://dx.doi.org/10.1021/acs.jpcb.7b07019


2πrdr ≃ 2πRtip∫ h0
∞−Πc(h)dh. Differentiating left and right-hand

side of last equation with respect to h0 then results in

π= Πk h R h( ) 2 ( )int tip c (4)

while the interaction damping is given by

∫γ π= ∂Π ∂ ̇
∞

h R h dh( ) 2 [ / ]
hint tip

0 (5)

2.2. Materials. As a substrate we use a part of a silicon wafer
covered with a thermally grown silica layer, 90 nm thick. The
sample is firmly glued, using epoxy, to a stainless puck, which is
magnetically clamped to the piezo stage of the AFM. The RMS
roughness of the surface is approximately 0.2 nm for a 1 μm ×
1 μm area. Prior to use, the substrate is rinsed with
consecutively isopropanol, ethanol and ultra pure water
(Milli-Q Inc.) in a sonication bath for 10 min. After drying
with a jet of N2, it is exposed to a plasma of residual air
(Harrick Plasma) during 30 min. The cantilevers are cleaned in
a similar manner without using a sonication bath. The
electrolyte solutions are prepared by dissolving NaCl (Sigma-
Aldrich) in ultra pure water. The pH of the solution is
controlled by adding NaOH. The resulting pH value is
measured using a HI 1053 probe (HANNA Instruments).
For our measurements we used 3 solutions with a pH of 9.3
and 2 with pH 5.7. The sodium concentration ranged between
0.1 mM and 100 mM, see Table 1. To obtain the desired

concentrations, first a stock solution of 1 M NaCl was prepared
by weighing in the right amount of NaCl salt. From this 10 mL
amounts of 100, 10, 1, and 0.1 mM NaCl were obtained by
repeated dilution. These solutions have a pH of 5.7. To raise
the pH to 9.3, 10 μL of 0.1 M NaOH is added to 10 mL of the
NaCl solutions. As we will discuss later on, during the
experiments the lowest concentration turns out to be 0.2
instead of 0.1 mM. This is most probably due to slight
contamination of the sample during the nonperfect fluid
exchange in the measuring cell.
2.3. Instrumentation and Experimental Procedures.

The measurements are carried out on an Asylum ES AFM
equipped with photothermal excitation (Blue drive), a sealed
fluid cell and a temperature control unit. We use cantilevers
with a colloidal probe as a tip. Such cantilever is a rectangular
beam with a cone-shaped silicon tip (Team nanotec, LRCH,
Rtip = 1080 nm). The beam is a bilayer of typically 1.5 μm thick
silicon with a 50 nm thick coating of gold. Length and width of
the beam are about 150 and 15 μm, respectively. The total tip
cone height is typically 15 μm and the full-cone angle 45°. The
AFM cantilever is completely immersed in a droplet of

electrolyte that is sandwiched between the substrate and the
top of the cell. The volume of the droplet is 0.2 mL. The
electrolyte is injected and removed via a pair of plastic syringes
(free of lubricants). To exchange the electrolytes, a new
solution is injected via the inlet while at the same time the
mixed solution is sucked out via the outlet of the fluid cell.
Before we replace the fluid, the cantilever is withdrawn from
the surface and repositioned afterward. During an exchange
step in total 4 mL, i.e., 20× the drop volume, is injected, which
is assumed to be sufficient to remove all the original liquid.
After exchanging the electrolyte solutions, we wait approx-
imately 10 min to equilibrate the system. The AFM scanner is
placed in a chamber with temperature control. The temperature
of the chamber has been set to 30 °C. During the actual
measurement of the tip−sample interactions, the cantilever is
driven at a frequency ω ≈ 0.7ω0 by an intensity-modulated blue
laser diode that is focused on the gold coated topside of the
cantilever close to its base. This direct photothermal driving
prevents the excitation of extra resonances (“forest of peaks”)
usually observed with acoustic driving,54 that complicates the
analysis severely, as described in refs 55,64. Figure 2 shows a
very smooth transfer function which is characteristic for
photothermal excitation. The amplitude of the cantilever
oscillation is set to approximately 0.8 nm by tuning the
intensity of the blue laser. For each amplitude- or phase-
distance curve, the distance between cantilever and surface is
ramped from 140 to 0 nm at a ramp velocity of 75 nm/s. For
each fluid composition we measure typically 10 to 30 approach
curves. One of the most crucial steps for the reliability of our
conclusions regarding the enhanced electroviscous damping is
an accurate procedure to determine the tip−sample contact
position. This procedure involves a combination of amplitude-
phase-distance curves and the average static deflection of the
cantilever, as described in Appendix F. For the present
conditions of relatively stiff cantilevers (kc = 0.66 N/m),
small free oscillation amplitudes at large distance (<1 nm) and
slow approach rates, the uncertainty amounts to δh0 < 1 nm. It
takes 20 to 30 min to measure one fluid composition. Judging
from the amplitude- and phase-distance curves, the tip−sample
interaction does not vary within this timespan. This implies that
the pH level stays constant and the solution does not suffer
from adsorption of, for instance, CO2. The position of the
driving laser and the detection laser is kept fixed with respect to
the cantilever throughout all measurements.

3. RESULTS
In this section we present our experimental results. First we
discuss the conservative forces and how we determine the
surface charges. These data are used as input for the analysis of
the dissipation measurements, which will be discussed next in
the context of electrolyte composition and charging behavior of
tip and substrate.

3.1. Conservative Forces and Surface Charge. In Figure
3 the primary results of our measurements with the colloidal
probe have been presented. The characteristic transition in the
A(h) and the ϕ(h) curves, as given in Figure 3a and b, reflects
the range of the electrostatic interactions which is given by the
Debye length κ−1. For a 1 mM salt solution it is approximately
10 nm. The resulting force gradient (interaction stiffness) in
Figure 3c, shows this dependence on κ−1 even better: the final
exponential decays are 1/3.2, 1/10, and 1/18 nm−1 for 10, 1,
and 0.1 mM and pH = 9.3, respectively, see also Figure 4d. For
10 and 1 mM these values match with the estimated Debye

Table 1. Best Fitting pK Values, Debye Length κ−1, Surface
Potential eψ∞/kBT, Surface Charge σ∞, and Color Code
Used in the Graphs, for the Electrolyte Solutions Used in
This Studya

pH
[NaCl]
[mM] pKH pKNa

κ−1

[nm] eψ∞/kBT
σ∞

[e/nm2] color

9.3 0.2 8.345 1.775 20.6 −5.65 −0.092 black
9.3 1.0 7.837 1.775 9.6 −4.84 −0.131 blue
9.3 10 8.345 1.775 3.1 −2.81 −0.141 red
5.7 1.0 5.950 1.750 9.7 −3.65 −0.070 cyan
5.7 100 1.0 green

aSee also the remark below eq 13 about our definition of ψ∞ and σ∞.
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lengths of 3 and 10 nm. For the lowest concentration we
conclude from this observation that the intended concentration
of 0.1 mM is in fact 0.2 mM. At these low concentrations the
solutions are very sensitive to slight contamination of the
sample for instance due to nonperfect fluid exchange in the
measuring cell, which can explain the observed deviation. To
relate the measured interaction stiffness with the electrostatic
properties of the electrolyte film, tip, and substrate, we use
DLVO theory incorporating charge regulation due to surface
chemistry.
DLVO Calculation. The conservative DLVO force per unit

area or disjoining pressure Π between tip and substrate results

from three contributions, i.e., the osmotic, electrostatic, and van
der Waals pressure:

Π = Π + Π + Πh h h h( ) ( ) ( ) ( )osm el vdW (6)

The first term represents the osmotic contribution:

∑ ψ
Π = − −∞
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with ψ being the electric potential, e the elementary charge, and
kBT the thermal energy. Zi is the valency and ni

∞ the bulk
concentration of ions of species i. In our experiment four ionic
species are present, as there are cations and anions from
dissolved NaCl as well as hydroxide and hydrogen ions due to
auto hydrolysis. The second term represents the electrostatic
contribution:

ε ε ψΠ = − ∂
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z
( )

1
2el 0 r

2

(8)

with ε0 the electric permittivity of vacuum and εr the relative
dielectric constant of water. In the third term:

π
Π = −h

A
h

( )
6vdW

H
3 (9)

AH represents the Hamaker constant. Note that Πosm and Πel
depend on both the tip−substrate distance h and the local
distance to both surfaces, but their sum depends only on h.
Calculation of the osmotic and electrostatic contribution
requires knowledge of the electric potential between the tip
and the substrate. This potential is governed by the Poisson−
Boltzmann equation, which is conventionally solved by
assuming either constant charge or constant potential on tip
and substrate. These assumptions are justified for large tip−
substrate separations (where tip and substrate only weekly
interact with each other), but usually fail in the regime of small
tip−substrate distances. In this regime (κh < 10, where κ is the
reciprocal Debye length) the local charge density and potential
vary with separation distance h to compensate the confinement-
induced modification of the surface chemistry. We consider two
surface reactions, deprotonation of the silanol groups, ∼ SiOH
⇌ ∼ SiO− + H+, and adsorption of Na+ ions on the
deprotonated sites, ∼ SiONa ⇌ ∼ SiO− + Na+, with
equilibrium constants:

= =−
− +

K 10
{SiO }[H ]

{SiOH}
K

H
p sH

(10)

and

= =−
− +

K 10
{SiO }[Na ]

{SiONa}
K

Na
p dNa

(11)

respectively. Here the index s indicates the surface itself and d
the boundary between the Stern layer and the diffuse part of the
double layer. Moreover, the total site density Γ is constant:

+ + = Γ−{SiOH} {SiONa} {SiO } (12)

Note that the distribution of Na+ and H+ ions is governed by
the Boltzmann relation, and their concentrations near the tip
and substrate differ from the bulk. The surface potential ψs is
related to the diffuse layer potential ψd via the Stern layer
capacitance: Cs = εε0/ds = σ/(ψs−ψd). Combining eq 10 to 12
the surface charge σ = −e{SiO−} can be expressed as

Figure 3. Amplitude (a) and phase (b) response of the colloidal probe
cantilever as a function of tip−substrate separation. The amplitude is
normalized by A∞, the phase is with respect to ϕ∞ = 0. From these
data the interaction stiffness kint (c) and interaction damping γint (d)
are determined.

Figure 4. (a) The normalized merit function for the tested (pKH,
pKNa) pairs for a solution with pH 9.3/1 mM. (b) The contour plot of
the surface charge; the blue line matches the maximum merit curve in
(a). (c) The normalized merit function for the tested (pKH, pKNa)
pairs for all four solutions. (d) The electrostatic part of the measured
interaction stiffness versus tip−substrate distance (dots) and the best
fitting calculated curves (lines) for the four solutions: pH 5.7/1 mM
(cyan), pH 9.3/0.2 mM (black), pH 9.3/1 mM (blue), and pH 9.3/10
mM (red).
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σ ψ = − Γ
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with ds = 0.4 nm the thickness of the Stern layer. The
procedure to calculate the electrostatic potential and the surface
charge is explained in detail by Zhao et al.46

It should be noted that in this study the surface charge is
defined as the sum of the charge accumulated in the substrate
or zero plane and the charge in the Stern or β plane, while the
surface potential is defined as the potential at the β plane as
defined in Figure 1.
Surface Charge Determination. Eq 13 provides the

boundary conditions for the Poisson−Boltzmann equation. In
this expression the bulk concentrations of the ions are known.
The site density and the stern layer capacitance are more
consistently reported in literature than the pK values of the
considered reactions.46 Therefore, we take pKH and pKNa as the
parameters to fit. For each pair of pK values we can evaluate
Πcalc numerically as a function of tip−substrate distance h and
compare them with the experimentally found Πexp. The fit
quality is characterized by a merit function46 Q(pKH, pKNa) =
1/χ2 where χ2 = ∑j {Πcalc(j) − Πexp(j)}

2. Data at separations h
< 5 nm are not used in the fitting procedure, because the
DLVO theory, as it is continuous in nature, is inadequate to
describe the interactions at these small distances.1 Moreover, at
these distances van der Waals forces and the oscillatory
solvation forces due to ordering in the liquid become dominant.
In Figure 4a, we show the merit function for the data measured
at pH 9.3/1 mM. The function is normalized by its maximum.
It is worthwhile to note that the best fitting pairs are not
unique. This is because the excess pressure Π is governed by σ,
which is a function of both pKH and pKNa, as shown in eq 13.
The decrease of charge by promoting deprotonation, e.g.,
decreasing the pKH, can be fully compensated by promoting at
the same time cation adsorption, e.g., increasing the pKNa. This
explains the strong correlation between the optimal values of
pKH and pKNa as observed in Figure 4a. The slight variation
along the optimal merit curve is unphysical and caused by the
resolution with which the pK values are probed. It can be
suppressed by increasing the resolution, at the expense of
considerably longer calculation times. In Figure 4b the merit
functions for all relevant electrolyte solutions have been shown.
Because the correlation between both pK values in the optimal
merit curve depends on concentration and pH, we expect
different optimal merit curves for different concentrations and
pH values. However, provided that the pK values are invariant
under pH or ionic strength variation (and that the experimental
errors are negligible), we expect one unique (pKNa, pKH) pair
for all conditions, and all the curves should cross this unique
point. As we observe from Figure 4b the maximum merit curves
for pH = 9.3 indeed cross each other almost in a single point
near (pKNa, pKH) = (1.7 ± 0.1, 8.2 ± 0.2). However, the curve
for pH = 5.7 strongly deviates, resulting in a quasi-triangular
region near (pKNa, pKH) = (2.0 ± 0.4, 7 ± 1.4). This
observation is in agreement with previous findings.46,65,66 As
the value of this optimum is considerably lower than the
optimum for pH = 9.3 only, we conclude that our description
of the charge regulation is too simplistic. An exact model of the
charging behavior at variable pH would require a more complex
reaction scheme. For our present purposes, however, the exact
surface chemistry is not a major concern. Our primary goal is to
determine the surface charge for a given fluid composition. In

that respect, it is sufficient to realize that the combinations of
pK values that fit the experimental force curves equally well, all
correspond to constant surface charges. This is indeed the case,
as illustrated in Figure 4b for the specific case of pH 9.3/1 mM
NaCl. The corresponding surface charges (at infinite tip−
sample separation) for the other fluid compositions are
summarized in Table 1, along with the optimum pK values,
surface potentials and Debye lengths. In Figure 4d, the best
fitting interaction stiffness curves are compared with the
experimental data in a semilog plot, showing in all cases a nice
agreement between fit and experiment. The exponential decay
of the curves confirms the expected Debye length. In Figure 5a,

the resulting surface charge is shown as a function of the tip−
surface separation. The magnitude of the surface charge
decreases with decreasing separation. This is a consequence
of the charge regulation: the concentration of both H+ and Na+

increases in the overlapping diffuse layer when it becomes
thinner. Therefore, the chemical equilibrium shifts toward a
higher H+ and Na+ adsorption, reducing the number of charged
sites on the substrates. As expected, the surface charge
dramatically increases when the pH changes from 5.7 to 9.3.
A high pH favors the deprotonation of the silica substrate, so
the surface becomes more negatively charged. At a Na+

concentration of 1 mM, it increases from −0.07 to −0.13 e/
nm2. The concentration dependence as observed in Figure 5b is
less obvious. On the one hand due to the increasing bulk
concentration of the sodium, [Na+]∞, the equilibrium should
shift toward a higher sodium adsorption. This is represented by
the shift of the charge regulation curves (eq 13, the full lines in
Figure 5) to the right with increasing concentration. But on the
other hand the Debeye length (which is hardly affected by pH
variation) decreases. This steepens the solution of the Grahame
equation with increasing concentration, see the dotted lines in
Figure 5. So the adsorption is reduced. The net effect is a

Figure 5. (a) The calculated surface charge as a function of separation
distance. The color scheme is the same as in Figure 3. (b) The surface
charge versus dimensionless potential as obtained from charge
regulation (full lines) and from the PB equation (Grahame equation,
dotted lines), for the four solutions. The crossing of corresponding
curves indicate the actual surface charge at large tip−substrate
separations.
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gradual increase of the surface charge with concentration as can
be observed from the downward shift in the crossing points of
the full lines with the corresponding dashed lines.
3.2. Dissipation in the Electrolyte Film. Figure 3d shows

the measured damping coefficient γint as a function of the tip−
substrate distance h. As expected, γint is found to diverge as the
tip approaches the surface. The curves also display a clear
dependence on ionic strength and pH. As a reference, we
calculate the hydrodynamic damping for a spherical tip
approaching a flat substrate in a neutral liquid. Assuming no
slip on tip and substrate, the hydrodynamic or Reynolds
damping γref(h) is for h/Rtip < 0.15 within 5% accuracy given
by67

γ η
π

=h
R

h
( )

6
ref b

tip
2

(14)

where ηb is the bulk viscosity of the solution, 0.797 mPa s at T
= 30 °C, Rtip = 1.08 μm the radius of the tip, and h the
separation between the tip apex and the substrate.
Before comparing the experimental data to the reference

case, we need to correct for the offset Δγc of the finite tip−
sample damping at the cantilever calibration distance of 140
nm. For a colloidal probe with a radius of 1.08 μm the
hydrodynamic damping is approximately Δγc = 0.09 μNs/m as
we learn from eq 14, which is 4% of the value obtained from the
calibration: γc ≈ 2.17 μNs/m. With this correction in place, all
curves display the expected asymptotic scaling ∝ h−1 for h >
100 nm, as shown in Figure 6.

We expect that the measured damping for the pH 5.7/100
mM solution behaves for h > 5 nm like the reference because in
this case the surface charge is fully screened within the first few
nanometers due to the Debye length of only 1 nm. The
Reynolds damping as calculated with eq 14, the black dashed
line in Figure 6, matches nicely with the green γint curve,
measured for pH 5.7/100 mM, indeed. It also confirms the no
slip assumption, which is in agreement with previous findings
for hydrophilic surfaces.27,28,68 In contrast to the data measured
at pH 5.7/100 mM, the damping, γint(h), measured for the
other four electrolyte solutions significantly deviates from the
Reynolds damping. This implies that the dissipation, and so the
friction, in the electrolyte film depends on the ionic charge
distribution. Using the expectation based on Reynolds theory as

a reference, we define the damping enhancement coefficient cev
as

γ γ
γ

=
−

c h
h h

h
( )

( ) ( )

( )ev
int ref

ref (15)

In Figure 7 cev is plotted versus κh for 4 electrolyte solutions.
When the tip approaches the substrate (decreasing separation),

the enhancement increases monotonically until it reaches a
maximum for κh ≲ 0.5. On further approach the enhancement
decreases again, but here the tip is so close to the interface that
nonelectric interactions like van der Waals forces and short-
range solvation forces come into play. Therefore, we do not
consider these short distances in our analysis. It should be
noted that the absolute value of the dissipation enhancement
curves depends crucially on the accuracy of the tip−sample
contact position. Allowing for an uncertainty of ±1 nm, as
discussed in the experimental section would lead to an increase
or decrease of the maxima of the curves in Figure 7 by
approximately a factor of 2. However, the qualitative shape and
the relative order of the curves are not affected by this
uncertainty. The maxima of the curves in Figure 7 correlate
with the surface charge on the bounding surfaces, see Table 1.
For larger distances this correlation persists for the pH 9.3
curves, but the behavior of the pH 5.7 curve (cyan) deviates
from this trend. To understand the observed dissipation
behavior at least qualitatively, we consider two effects. Due to
the surface charge on tip and substrate counterions accumulate
in the electrolyte film between them, where the ions get
trapped in the local potential field. This causes an additional
body force on the electrolyte film that hinders the squeeze-out
of liquid in the thin film when the tip approaches the substrate
and enhances the dissipation in the film.15 This is known as the
classical electro-viscous effect. To estimate the enhancement we
assume that the ion distribution relaxes fast to its equilibrium
distribution at the momentary tip−substrate distance on a time
scale much shorter than the squeeze-out time scale. Knowing
the mobility of the ions and their distribution in the film, we
can calculate the resulting radial electric field Er and from that
the body force ρeEr on the liquid. This force is taken into
account when we calculate the pressure needed to squeeze-out
the liquid in the film. The second effect that we consider is the
electric field dependence of the viscosity which also enhances

Figure 6. Damping coefficient, γint versus tip−substrate distance h
from Figure 3d plotted on logarithmic scales. The reference case, pH
5.7/100 mM, has been plotted in green. Other curves are pH 9.3/0.2
mM (black), pH 9.3/1 mM (blue), pH 9.3/10 mM (red), and pH 5.7/
1 mM (cyan). The dashed line represents the Reynolds damping, eq
14, using the value for bulk viscosity and has a slope −1.

Figure 7. Measured electro-viscous enhancement cev = γint/γref − 1
versus dimensionless tip−substrate distance κh for pH 5.7/1 mM
(cyan curve), pH 9.3/0.2 mM (black curve), pH 9.3/1 mM (blue
curve), and pH 9.3/10 mM (red curve). The inset shows cev versus h.
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the dissipation in regions with a high electric field i.e. near the
charged substrates.69 This is called the visco-electric effect:

η η= + f E(1 )0 ve
2

(16)

We will calculate the modification of the flow profile in the gap
due to these effects. Although we are aware of the restrictions,
we use the standard mean field approach and solve the
Poisson−Boltzmann equation assuming a Stern layer of
adsorbed cations and a diffuse outer double layer to determine
the ion distributions, as we did for our surface charge
calculations. The governing equations for the flow field u are
given by the continuity equation and the Navier−Stokes
equation:

ρ η ρ∇· ̲ = ∂ ̲
∂

+ ̲·∇ ̲ = −∇ + ∇· + ̲⎜ ⎟⎛
⎝

⎞
⎠t

pu 0,
u

u u (2 D) Ee

(17)

where ρ is the density of the electrolyte solution, η its viscosity,
= ∇ ̲ + ∇ ̲D u u( ( ) )T1

2
is the rate of strain tensor and ρeE the

body force acting on the liquid. Because the equilibration time
of the ions is short compared to the characteristic time of the
oscillating flow, ωh2/Dion ≃ 5 × 10−3 for ω/2π = 10 kHz, h =
10 nm, and Dion ≃ 10−9 m2/s, we consider the equilibrium ion
distributions, instead of solving the Nernst−Planck equation for
the ion densities and fluxes. Therefore, we model the body
force in radial direction, see Appendix B for details, as

ρ = −
−

+

+ −

+
+

−
−E

k T n n
D n D n

u
( )

e r
B

2

r
(18)

Here n± = exp(∓eψ/kBT) is the local cation and anion
concentration while D± is the cation/anion diffusion coefficient.
Moreover, because h2ρ/μt0 ≃ 10−5, hρ U0/μ ≃ 10−6, and h/Rtip
≃ 10−2, eq 17 reduces to

η ρ∂ = ∂ ∂ + ∂ =p u E p( ) , 0r z z r e r z (19)

Because ψ(z,h) is known from the DLVO analysis, we can
calculate ρe Er using eq 18 and solve ur(z) for given r from eq
19. Applying the boundary conditions ur(0) = ur(h) = 0, we get
the flow profile, see Appendix C:

η
=

− ∂
u

h p
w z h( , )r

2
r

0 (20)

where w(z,h) is a dimensionless function, with w(0,h) = w(h,h)
= 0, which has to be calculated numerically. To establish a
relation between ∂r p and U0 we consider the continuity
equation:

∫ η
− ∂

+ =
h

h p
w z h dz

rU
h

1
( , )

2
0

h

0

2
r

0

0

(21)

Here U0 is the speed of the cantilever tip with respect to the
substrate. Because ∂r p does not depend on z we can rewrite last
equation as

η
∂ =p

r U

h w h2 ( )r
0 0

3
av (22)

where wav(h) = h−1∫ 0
h w(z,h) dz. Next, the dissipative force is

calculated from the ∂rp profile under the tip:

∫ ∫π πη= ∂ =
∞ ∞

F r pdr U
r

h w h
dr

1
2 ( )diss

0

2
r 0 0

0

3

3
av (23)

Eventually, we obtain for a spherical tip with radius Rtip and a
flat substrate:

∫γ πη= =
−∞F

U
R

h h dh
h w h

( )
( )hint

diss

0
0 tip

2 0
3

av0 (24)

In Appendix C we explain in detail how the actual calculations
are performed. Once γint is known, the electro-viscous
coefficient is given by

Figure 8. Measured cev = γint/γref − 1 as a function of κh (a), compared with calculated curves for the electro-viscous case with κδ = 1 (b), the visco-
electric case with f ve = 2.4 × 10−14(m/V)2 (c) and the combined effect with f ve = 1.2 × 10−14(m/V)2 and κδ = 0.5 (d). Color scheme as before. The
inset of (a) shows the measured cev on logarithmic axes. The purple curve is the expectation for large κh.
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= − =
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In last expression we used =wav
ref 1

12
. The results of these

calculations are shown in Figure 8.
Electro-Viscous Effect. In Figure 8b the results for the

electro-viscous model are shown. The electric body force ρe Er,
and so the strength of the effect, is determined by the
dimensionless number κδ, see Appendix C, which is defined as

κδ
η

εε
= ≃

e D

k T( )
1

2
0

0 B
2

(26)

δ can be considered as the effective thickness of the stagnant
layer near substrate and tip due to the ion distribution. This
thickness is under our experimental conditions close to the
Debye length κ−1. Comparing these curves with the
experimental results in Figure 8a, we observe that the calculated
coefficients are of the right order of magnitude, specially for the
pH 9.3/10 mM case (black curves), but the width of the
calculated curves is much larger than experimentally observed.
Moreover, the observed dependence on substrate surface
charge is opposite to the model calculations. In fact the
maximum cev value scales with the surface potential ψ∞ instead
of the surface charge σ∞ because the radial field Er is a
monotonic increasing function of ψ. Reducing the value for κδ,
results in an enhancement of cev, but hardly reduces the width
of the curves, nor does it change the order of the curves. So this
model fails to predict the observed effect correctly.
Visco-Electric Effect. In Figure 8c the results for the visco-

electric model are shown. In this case the dissipation
enhancement is controlled by the coefficient f ve. This
coefficient has never been conclusively measured for water
but it is estimated70 to be of the order 10−15(m/V)2. This
implies that the local viscosity will double in value for electric
field strengths of the order 3 × 107 V/m. When we solve the PB
equation, we also obtain the local field strength Ez(z,h) in the
electrolyte film for all tip−substrate separations and all fluid
compositions. Close to the wall, the electric field is in the order
of 107 V/m. In the middle of the gap, the field strength decays
to zero due to the symmetry of the equally charged tip and
substrate. In our calculations we optimized the value for f ve and
found that for f ve = 2.5 × 10−14(m/V)2 the maxima in the
calculated curves match rather well with the experimental
results. More importantly, the calculations predict the observed
dependence on substrate charge density now correctly, i.e., the
order black-blue-red for the pH 9.3 curves is nicely reproduced,
because the local electric field increases monotonic with the
surface charge σs ≃ σ∞. Also the width of the calculated curves,
although still a factor two off, matches much better with the
experimental observations. While the electro-viscous calcula-
tions only reproduce the strength of the enhancement within
an order of magnitude, the visco-electric calculations reproduce
also the observed surface charge dependence quite well as well
as the width of the experimental enhancement curves. To
observe the combined effect we plot in Figure 8d the curves
obtained for κδ = 0.5 and f ve = 1.2 × 10−14(m/V)2.

4. DISCUSSION
To understand the behavior as shown in Figure 8 we go back to
Figure 1b and consider a simple picture in which the regions in
the liquid film near both substrates have a flow resistance that is

considerably higher than in the bulk due to either viscosity
enhancement or opposing body forces. These layers of
enhanced flow resistance have a typical thickness δ. For large
separations h the flow will avoid these high resistance layers and
the damping will behave like γ = 6πη0Rtip

2 /(h − 2δ). This γ(h)
dependence is indicated by the upward curving blue line in the
inset of Figure 9. However, when tip and substrate come close

together, h ≃ 2δ, the liquid is forced to flow through the high
resistance layers. Supposing an effective viscosity ηeff > η0, the
damping behavior for h < δ will be given by γ = 6πηeffRtip

2 /h.
This dependence is indicated by the upper black line with slope
−1. With this limiting behavior for both h ≪ δ and h ≫ δ, the
overall behavior will be given in good approximation by the red
curve in the inset of Figure 9. This curve agrees qualitatively
quite well with the experimental results in Figure 6. The lower
black line with slope −1 represents the dissipation behavior in
absence of any enhancement, and corresponds with the dashed
black line in Figure 6. Translating the red curve into the
enhancement curve cev(h) = γ/γref − 1 we obtain the full red
curve given in the main figure. Comparing this curve with the
curves in Figure 7, we observe for h > 2 nm qualitatively the
same decaying behavior with increasing separation with a
typical decay length of about 5−10 nm. However, the behavior
for h < 2 nm is different. In part, this is caused by the charge
regulation. In our simple picture we assumed a constant
effective viscosity in the high resistance layers. But in Figure 5a
we observe that for h → 0 the surface charges decrease. Hence
we expect that for small h values the flow resistance in this layer
decreases, too. This will result in an h dependence of the
viscosity enhancement as given by the dashed red line in Figure
9. With the discussion around Figure 9 in mind we consider
again the results from Figure 8. In our qualitative picture the
enhancement for large distances depends only on the effective
width δ which will be proportional to the Debye length κ−1.
Indeed we see that the blue and cyan curves in Figure 8a, which
have the same value for κ−1 ≃ 10 nm, overlap for κh > 3.
Looking at the inset of Figure 8a, the curves become very noisy
at larger κh values but the trend confirms our expectation as
indicated by the purple dotted curve, cev = (κh−1)−1.
Considering the other limit, κh < 2, the enhancement is now
mainly determined by the resistance increase in the friction
layers. This increase should depend primarily on the local
potential (in case the friction is caused by the electric body
forces, see Appendix B and C) or the local electric field strength
(when the friction is caused by viscosity enhancement, see

Figure 9. Expected dissipation behavior in a simple “enhanced friction
layer” picture.
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Appendix D). In the first case (Figure 8b) the friction
enhancement scales monotonically with the local potential,
while in the second case (Figure 8c), which agrees better with
the experimental results (Figure 8a), the viscosity enhancement
scales with the square of the surface charge on tip and substrate
and thus with the square of the local field strength. Finally, for
κh≪ 1 the potential in the liquid film increases with decreasing
h and becomes independent of the position in the film.71 This
is called the zero field limit and implies that in both scenarios
the friction enhancement will reduce to zero. Hence, for κh →
0 also the cev coefficient should reduce to zero. The onset of
this trend indeed seems to be visible in the experimental cev(h)
curves. Comparing both scenarios we may conclude that
friction enhancement due to viscosity enhancement in the
double layer describes our experimental findings fairly well. In
this case the behavior can be explained in a simple picture
taking into account both the effective layer thickness, that is
close tot the Debye length, and the surface charge density on
tip and substrate. However, the value obtained for the viscosity
enhancement coefficient f ve = 2.5 × 10−14 is quite large
compared to the value estimated in literature, 1 × 10−15 (m/
V)2. In contrast, the electro-viscous model provides a much
poorer description of the data. In particular, the model fails to
predict the correct order of the damping enhancement as a
function of the fluid composition (Figure 8b). Moreover, the
range of the enhancement extends much farther from the
surface than observed experimentally.
Earlier Approaches. The hydrodynamic drag force for two

charged surfaces that approach each other in an electrolyte
solution has been investigated theoretically.72−74 In these
studies the squeeze-out flow of the ions in the electrolyte film
between two adjacent particles is opposed by an inward electro-
osmotic flow to conserve the charge neutrality in the film. This
osmotic flow is driven by a streaming potential, which is
established by the initial outflow of ions. Chun and Ladd give a
detailed analysis,72 including the case of two parallel surfaces in
an NaCl environment. They consider the system to be quasi-
static and use the narrow gap approximation, based on the same
arguments as we have given above. They obtained a numerical
estimation for cev, considering constant charge and constant
potential as boundary conditions for the PB equation. Their
results show for both boundary conditions that the electro-
viscous coefficient increases gradually when the gap height
decreases from κh = 10 to κh = 3 to cev = 0.4. It decreases
sharply when the separation is further reduced from κh = 3, and
it approaches zero when κh → 0. The maximum enhancement
is much smaller than our experimental observation. If we
consider a parabolic tip on a flat surface, the electro-viscous
coefficient cev is expected to be smaller, as shown in ref 73 for
the case of two spherical particles, resulting in an even larger
deviation between prediction and measurement. Their findings
thus support our conclusion that the observed enhanced
damping is probably not caused the classical electro-viscous
effect.
Microscopic Properties of the Stern Layer. Overall, our

comparison of the experimental data to the two competing
models is based on a number of simplifying assumptions. First,
of all, we make use of Poisson−Boltzmann theory despite the
fact that we observe the enhanced damping in a region of very
high surface charge, where crowding effects may matter and
affect the mobility of ions.7 Moreover, we assume a classical
rigid Stern layer model with immobile ions and a no-slip
boundary condition and constant dielectric permittivity for the

water. Detailed numerical studies74−78 in recent years have
demonstrated that many of these assumptions are violated to
some extent. For instance, Bonthuis and Netz48 show in a
theoretical study that within a few Ångstrom from the substrate
the viscosity strongly increases while the relative permittivity
decreases from 81 in the bulk to 1 near the substrate. Aluru and
co-workers50,51 give, based on molecular dynamics calculations,
an estimate for this viscosity enhancement, which is of the same
order of magnitude as the estimation of Lyklema.69 Moreover,
their calculations show a decrease of the mobility of the
counterions within the first nm from the substrate. Several
experimental studies corroborate the conclusions from these
theoretical investigations. More detailed numerical studies will
be required to reach a quantitative understanding of the
enhanced dissipation in confined electrolyte layers.

5. CONCLUSION
We have studied the hydrodynamic damping in thin electrolyte
films with overlapping electric double layers, using AFM
amplitude modulation force spectroscopy. The AFM technique
has a unique advantage compared to conventional approaches.
It enables the simultaneous determination of both the surface
charge density and the hydrodynamic damping as a function of
the tip−substrate distance by analyzing the conservative and
dissipative part of the measured force−distance curves. Our
analysis of the conservative part of the tip−substrate interaction
shows that one can accurately measure the surface charge
density on tip and substrate with AFM force spectroscopy.
From the force−distance measurements in electrolyte solutions
with varying ionic strength and pH, we observe that the viscous
dissipation enhancement is correlated with the surface charge
density on tip and substrate as well as the ionic strength (e.g.,
Debye length) in the electrolyte film. Using the measured
surface charges, the enhancement in dissipation is calculated
following two scenarios; (i) from the excess ion distribution
and streaming current in the diffuse layer, (ii) from the viscosity
enhancement due to the strong electric field in the double layer.
The experimental data agree qualitatively with the calculations,
the order of magnitude of the effect is correctly reproduced, but
for case (i) the calculated surface charge dependence is not in
agreement with the experimental observations, nor is the
distance dependence. For case (ii) the surface charge
dependence agrees quite well with the experimental observa-
tions and also the distance dependence is much better
reproduced. However, the value obtained for the viscosity
enhancement coefficient is approximately a factor 25 larger
than the value estimated in literature. Our analysis shows that
the description of an electric double layer using a mean field
approach is not sufficient when it comes to the details of the
electro-hydrodynamic dissipation near charged substrates.
Moreover, the interfacial water layer at a charged surface, a
few Ångstroms thick, can be superviscous while the
conductance of the Stern layer may contribute substantially
to viscous dissipation. However, the complex interplay between
surface charge, structure of the interfacial water layer and
surface conductance is far from resolved.

■ APPENDICES

A. Force Conversion with Photo-Thermal Excitation
The bending of the cantilever is driven by locally heating it with
a laser beam. The laser intensity I varies harmonically as I =
I0+IA exp(jωt) where ω is the driving frequency and IA the
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amplitude of the oscillating intensity. Due to the oscillating
temperature field over the cantilever, the relation between force
F and tip displacement z is given by

= −F k z z( )c T (27)

where kc is the effective stiffness of the cantilever and zT the
zero-load-deflection due to the temperature enhancement along
the beam caused by the laser radiation with intensity I.
According to linear response theory zT can be written, for small
thermal variations, as zT(t) = ∫ 0

∞ AT(t′) I(t−t′) dt′ or in the
frequency domain as zT(ω) = AT*(ω) IA. The amplitude and
phase of the tip displacement, z(ω) = Aejϕ, are measured as a
function of the tip-substrate distance h, to probe the influence
of the tip-substrate interaction on the oscillation behavior of the
cantilever tip. We model the tip deflection as an harmonic
oscillator:59,60

γ* ̈ + ̇ + = + + ̇m z z k z k z t F h z z( ) ( , )c c c T ts (28)

where m*= kc/ω0
2 the effective mass of the cantilever including

the added mass due to the surrounding liquid, ω0 the resonance
frequency, γc = kc/(ω0Q) its damping coefficient, Q the quality
factor of the oscillator and Fts the tip-sample interaction force
given in eq 1. Substituting eq 1 into eq 28, we obtain

ω ωγ ω ωγ ω− * + = * − +k m j z k I A k j z( ) ( ) ( ) ( )c
2

c c 0 T int int
(29)

Writing z(ω) = Aejϕ and AT* = ATe
jϕT the transfer function

becomes

ω ωγ ωγ
=

− * + + +

ϕ ϕAe
I

k A e
k m j k j

j j

0

c T

c
2

c int int

T

(30)

Because the thermal driving coefficient AT*(ω) is not known, we
measure at a fixed frequency ω not only Aejϕ at a certain
distance h but also A∞ ejϕ∞ at 140 nm from the substrate, where
both kint and γint are negligible small. Considering the ratio A/
A∞ ej(ϕ−ϕ∞) we obtain with eq 30:

ω ωγ
ω ωγ ωγ

=
− * +

− * + + +

ϕ

ϕ
∞ ∞

Ae
A e

k m j

k m j k j

j

j
c

2
c

c
2

c int int (31)

from which we obtain the force inversion formulas:

ω
ω

ϕ ϕ

ωγ
ϕ ϕ

= −
− −

+
−

∞ ∞

∞ ∞

⎪ ⎪

⎪ ⎪⎧
⎨
⎩

⎛
⎝⎜

⎞
⎠⎟

⎫
⎬
⎭

k k
A A

A

A
A

1
cos( )

sin( )

int c
0

2

c (32)

and

ωγ ωγ
ϕ ϕ ω

ω

ϕ ϕ

=
− −

− −

−

∞ ∞

∞ ∞

⎪ ⎪

⎪ ⎪⎧
⎨
⎩

⎛
⎝⎜

⎞
⎠⎟

⎫
⎬
⎭

A A
A

k

A
A

cos( )
1

sin( )

int c c
0

2

(33)

B. Estimate of the Body Force
We consider a parallel plate geometry with a distance h
between the substrates. We assume, based on the fast
equilibration time, that the ion distributions are in equilibrium,
i.e.:

ψ= ∓±
∞ #n n exp( )

where ψ# = eψ/kBT. In this case the outward streaming current
is balanced by an inward conduction current. The radial
streaming current is given by

= −+ −j e n n u( )str r

while the conduction current can be expressed as

= ++
+

−
−j

e
k T

n D n D E( )cnd

2

B
r

Because in equilibrium jstr + jcnd = 0 we can express Er in ur
according:

= −
+

− +

−
−

+
+E

k T
e

n n
D n D n

ur
B

r

while ρe = e(n+ − n−). Therefore, we obtain for the body force:

ρ = − −
+

− +

−
−

+
+E k T

n n
D n D n

u
( )

e r B

2

r
(34)

C. Description of the Actual Dissipation Calculation
To perform the actual calculation we make eq 19
dimensionless:

η
ρ

η
∂ =

∂
−ζw

h p
u

h E

u
2

2
r

0 0

2
e r

0 0

where w = ur/u0 and ζ = z/h. Moreover, we write ρe Er as

ρ
ψ

ψ α ψ
= −

−
∞ #

# #
E

n k Tu
D

w
2 sinh ( )

cosh( ) sinh( )e r
B 0

2

where = ++ −D D D( )1
2

and α = −+ −D D D( )/1
2

. Defining:

η
η

δ
∂

= − =
∞

h p
u

D

n k T
1

2

2
r

0 0

0

B

2

we end up with

δ ψ∂ = −ζ #w h w( / ) ( ) 12 2
(35)

where

ψ
ψ

ψ α ψ
=

−#
#

# #
( )

sinh ( )

cosh( ) sinh( )

2

Appendix E describes how to solve this equation numerically
with the boundary conditions w(0) = w(1) = 0. We can write
the solution formally as w = f(ζ, h). Multiplying f(ζ, h) with u0
results in the dimensional form of the flow profile:

η
ζ=

− ∂
u

h p
f h( , )r

2
r

0

with fav(h) = ∫ 0
1 f(ζ, h) dζ

Note 1: Both δ and κ depend on the ionic strength n∞, in
such way that

κδ η
εε

= ≃e D
k T( )

1
2

0 B
2

Note 2: In case no surface charges are present, i.e., for ψ(z) = 0,
the flow profile is just parabolic: ∂ζ

2 w = −1. Hence,
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ζ ζ ζ= −f h( , ) ( )ref 1
2

2 with f av
ref = 1/12 and we get the well

known result:

∫ ∫
∫

πη
ζ ζ ζ

πη=
−

=
∞ ∞

F U
r dr

h d
U

r dr
h( )

6diss 0
0

3

3
0

1 2 0
0

3

3

For a sphere-plate geometry, characterized by = +h h0

r R/1
2

2
tip, we indeed obtain the Reynolds damping force:

πη=F U
R

h
6diss 0

tip
2

0

D. Calculation of the Visco-Electric Coefficient
According to Lyklema69 the viscosity of water depends on the
electric field strength according:

η η= +E f E( ) (1 )0 ve
2

(36)

where f ve ≈ 10−15 m2/V2 is the visco-electric coefficient. As the
field strength varies with position we must consider the
position dependence of the viscosity when solving the Navier-
Stokes equation:

ρ η η ψ∂ ̲
∂

+ ̲·∇ ̲ = −∇ + ∇ ̲ + ∇ · − − ∇+ −⎜ ⎟⎛
⎝

⎞
⎠

u
t

u u p u D e n n2( ) ( )2

(37)

where = ∇ ̲ + ∇ ̲D u u( ( ) )1
2

T is the rate of strain tensor. We

investigate these relations in a parallel plate geometry in the
limit h/R ≪ 1. Here h(r) is the gap height and R the
characteristic radial distance. Neglecting inertia and the ∂rψ
term, eq 37 reduces to

η∂ = ∂ ∂ ∂ =p u p( ) 0r z z r z (38)

while the continuity relation reads:

∫⟨ ⟩ = =
−

u r
h

u r z dz
rU

h r
( )

1
( , )

2 ( )

h

r
0

r
0

(39)

where U0 is the velocity of the upper surface (i.e., the tip). To
continue, we rewrite eq 38 in dimensionless form as

η
η

∂ ∂ =
∂

ζ ζw
h p

u
( )r

2
r

0 0 (40)

with ζ = z/h, ηr = η/η0, and w = ur/u0. Because ∂z∂r p = 0 we
can choose u0 = −h2∂r p/η0 and write last equation as

η∂ ∂ = −ζ ζw( ) 1r (41)

The solution is again formally given by w = g(ζ, h) and wav =
∫ 0
1 g(ζ, h) dζ. Because ⟨ur⟩ = −h2∂r p/η0 wav, we obtain for the

pressure gradient:

∫
η

ζ ζ
∂ =p

rU

h g h d2 ( , )
r

0 0

3
0

1
(42)

which is, when one replaces g(ζ, h) with f(ζ, h), identical with
eq 22. Hence, also the expression for γint is given again by

∫γ πη= =
−∞F

U
R

h h dh
h g h

( )
( )hint

diss

0
0 tip

2 0
3

av0 (43)

where gav(h) = ∫ 0
1 g(ζ, h) dζ.

To take into account both the electro-viscous and the visco-
electric effect we can use the same approach and generalize our
result by considering g(ζ, h) as the solution of:

η δ ψ∂ ∂ = −ζ ζ #w h w( ) ( / ) ( ) 1r
2

(44)

where in this case δ2 = η0 D/(2n∞ kBT). Again, γint can be
calculated with eq 43.
E. Solving Eq 44
Because eqs 35 and 41 are equal to eq 44, for ηr = 1 and δ−1 =
0, respectively, we only need to describe how to solve the last
equation. To do so, we define q(ζ) = ηr∂ζ wr and rewrite the
second order differential equation as two first order equations:

η∂ =ζw q/ r (45)

δ ψ∂ = −ζ #q h w( / ) ( ) 12
(46)

This set is solved using an iterative Runge Kutta integration
scheme, with the boundary conditions w(0) = 0 and q(0) =
qguess. In the iteration process we optimize qguess in such a way
that eventually the second boundary condition for w, i.e., w(1)
= 0, is fulfilled, too. This is achieved by taking an upper and
lower limit for qguess, take qguess as the average of these two limits
and calculate w(1) by applying the integration routine. If w(1)
> 0 we replace the upper limit by qguess, otherwise the lower
limit by qguess and repeat the process. In this way we restrict the
possible values for qguess to an interval that decreases every
iteration by a factor two, until the difference between upper and
lower limit is small enough.
F. Calibration of the Tip−Substrate Distance
To explain the calibration procedure we define in Figure 10 the
substrate position zs, the tip position zt, and the base position zb

of the cantilever, such that the tip deflection u and the tip−
substrate distance h are given by u = zt − zb and h = zt − zs,
respectively. When the tip is in hard contact with the substrate,
i.e., zt = zs, the local slope of the u vs zb curve is −1 and the tip
deflection is given by u′ = zs−zb′, so zs is known from the
extrapolation of the linear part of the curve to u = 0. When the
tip interacts more weakly with the substrate, as indicated in the
inset of the graph, we know that u = zt − zb by definition and
from the geometry depicted in the inset that u = zs − z1. Hence,
zt = zb+zs−z1 and the tip−substrate distance is given by h = zt −
zs = zb − zs+u. So, once zs has been determined properly on the
zb scale we can determine the tip-substrate distance h. The
actual calibration is done by measuring for each tip-liquid-
substrate configuration a few times but at least once the mean
deflection curve u(zb) up to hard contact (blue line in Figure
10) simultaneously with the amplitude curve A(zb) (dashed
blue line). From the first curve the value for zs is determined.
To prevent damage due to hard contact, most curves are
measured with an amplitude set point of typically 80% of the

Figure 10. Full blue and red curve represents cartoons of typical mean
displacement curves u = zt − zb versus zb. The blue curve is measured
up to the linear regime in hard contact, the red one only gently
touches the substrate. Cartoons of the simultaneously measured
amplitude vs distance curves (dashed lines) are also shown.
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amplitude at large distance. All these u(zb) and A(zb) curves
(the red curves in Figure 10) are shifted along the zb axis such
that they optimally overlap with the blue curves. In this way we
can determine the zero point of the u(h) curves within 0.5 nm.
A real world example of the procedure has been shown in
Figures S1 and S2 of ref 55.
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