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Abstract
We present a model-based method for inferring full-brain neural activity at millimeter-scale spatial resolutions and
millisecond-scale temporal resolutions using standard human intracranial recordings. Our approach makes the simplifying
assumptions that different people’s brains exhibit similar correlational structure, and that activity and correlation patterns
vary smoothly over space. One can then ask, for an arbitrary individual’s brain: given recordings from a limited set of
locations in that individual’s brain, along with the observed spatial correlations learned from other people’s recordings, how
much can be inferred about ongoing activity at other locations throughout that individual’s brain? We show that our
approach generalizes across people and tasks, thereby providing a person- and task-general means of inferring high
spatiotemporal resolution full-brain neural dynamics from standard low-density intracranial recordings.
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Introduction
Modern human brain recording techniques are fraught with
compromize (Sejnowski et al. 2014). Commonly used approaches
include functional magnetic resonance imaging (fMRI), scalp
electroencephalography (EEG), and magnetoencephalography
(MEG). For each of these techniques, neuroscientists and
electrophysiologists must choose to optimize spatial resolution
at the cost of temporal resolution (e.g., as in fMRI) or temporal
resolution at the cost of spatial resolution (e.g., as in EEG and
MEG). A less widely used approach (due to requiring work with
neurosurgical patients) is to record from electrodes implanted
directly onto the cortical surface (electrocorticography; ECoG)
or into deep brain structures (intracranial EEG; iEEG). However,
these intracranial approaches also require compromize: the

high spatiotemporal resolution of intracranial recordings comes
at the cost of substantially reduced brain coverage, since
safety considerations limit the number of electrodes one may
implant in a given patient’s brain. Furthermore, the locations
of implanted electrodes are determined by clinical, rather than
research, needs.

An increasingly popular approach is to improve the effec-
tive spatial resolution of MEG or scalp EEG data by using
a geometric approach called “beamforming” to solve the
biomagnetic or bioelectrical inverse problem (Sarvas 1987).
This approach entails using detailed brain conductance models
(often informed by high spatial resolution anatomical MRI
images) along with the known sensor placements (localized
precisely in 3D space) to reconstruct brain signals originating
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Figure 1. Methods overview. A. Electrode locations. Each dot reflects the location of a single electrode implanted in the brain of a Dataset 1 patient. A held-out recording

location from one patient is indicated in red, and the patient’s remaining electrodes are indicated in black. The electrodes from the remaining patients are colored by
k-means cluster (computed using the full-brain correlation model shown in Panel D). B. Radial basis function kernel. Each electrode contributed by the patient (black)
weights on the full set of locations under consideration (all dots in Panel A, defined as R in the text). The weights fall off with positional distance (in MNI152 space)
according to an RBF. C. Per-patient correlation matrices. After computing the pairwise correlations between the recordings from each patient’s electrodes, we use

RBF-weighted averages to estimate correlations between all locations in R. We obtain an estimated full-brain correlation matrix using each patient’s data. D. Merged
correlation model. We combine the per-patient correlation matrices (Panel C) to obtain a single full-brain correlation model that captures information contributed by
every patient. Here, we have sorted the rows and columns to reflect k-means clustering labels (using k = 7; Yeo et al. 2011), whereby we grouped locations based on
their correlations with the rest of the brain (i.e., rows of the matrix displayed in the panel). The boundaries denote the cluster groups. The rows and columns of Panel

C have been sorted using the Panel D-derived cluster labels. E. Reconstructing activity throughout the brain. Given the observed recordings from the given patient
(shown in black; held-out recording is shown in blue), along with a full-brain correlation model (Panel D), we use equation (12) to reconstruct the most probable activity
at the held-out location (red).

from theoretical point sources deep in the brain (and far from the
sensors). Traditional beamforming approaches must overcome
two obstacles. First, the inverse problem beamforming seeks
to solve has infinitely many solutions. Researchers have made
progress toward constraining the solution space by assuming
that signal-generating sources are localized on a regularly
spaced grid spanning the brain and that individual sources are
small relative to their distances to the sensors (Snyder 1991;
Baillet et al. 2001; Hillebrand et al. 2005). The second, and in
some ways much more serious, obstacle is that the magnetic
fields produced by external (noise) sources are substantially
stronger than those produced by the neuronal changes being
sought (i.e., at deep structures, as measured by sensors at
the scalp). This means that obtaining adequate signal quality
often requires averaging the measured responses over tens to
hundreds of responses or trials (e.g., see review by Hillebrand
et al. 2005).

Another approach to obtaining high spatiotemporal resolu-
tion neural data has been to collect fMRI and EEG data simul-
taneously. Simultaneous fMRI-EEG has the potential to balance
the high spatial resolution of fMRI with the high temporal res-
olution of scalp EEG, thereby, in theory, providing the best of
both worlds. In practice, however, the signal quality of both
recordings suffers substantially when the two techniques are
applied simultaneously (e.g., see review by Huster et al. 2012).
In addition, the experimental designs that are ideally suited to
each technique individually are somewhat at odds. For example,
fMRI experiments often lock stimulus presentation events to the
regularly spaced image acquisition time (TR), which maximizes
the number of poststimulus samples. In contrast, EEG experi-
ments typically employ jittered stimulus presentation times to
maximize the experimentalist’s ability to distinguish electrical
brain activity from external noise sources such as from 60 Hz
alternating current power sources.

The current “gold standard” for precisely localizing signals
and sampling at high temporal resolution is to take (ECoG or
iEEG) recordings from implanted electrodes (but from a limited

set of locations in any given brain). This begs the following
question: what can we infer about the activity exhibited by the
rest of a person’s brain, given what we learn from the limited
intracranial recordings we have from their brain and additional
recordings taken from other people’s brains? Here, we develop an
approach, which we call “SuperEEG” (The term “SuperEEG” was
coined by Robert J. Sawyer in his popular science fiction novel
The Terminal Experiment (Sawyer 1995). SuperEEG is a fictional
technology that measures ongoing neural activity throughout
the entire living human brain at arbitrarily high spatiotemporal
resolution.), based on Gaussian process regression (Rasmussen
2006). SuperEEG entails using data from multiple people to
estimate activity patterns at arbitrary locations in each person’s
brain (i.e., independent of their electrode placements). We test
our SuperEEG approach using two large datasets of intracranial
recordings (Sederberg et al. 2003, 2007a,b; Manning et al. 2011,
2012; Ezzyat et al. 2017, 2018; Horak et al. 2017; Kragel et al. 2017;
Kucewicz et al. 2017, 2018; Lin et al. 2017; Solomon et al. 2018;
Weidemann et al. 2019). We show that the SuperEEG algorithm
recovers signals well from electrodes that were held out of the
training dataset. We also examine the factors that influence
how accurately activity may be estimated (recovered), which
may have implications for electrode design and placement in
neurosurgical applications.

Approach
The SuperEEG approach to inferring high temporal resolution
full-brain activity patterns is outlined and summarized in
Figure 1. We describe (in this section) and evaluate (in Results)
our approach using two large previously collected datasets
comprising multisession intracranial recordings. Dataset 1
comprises multisession recordings taken from 6876 electrodes
implanted in the brains of 88 epilepsy patients (Sederberg
et al. 2003, 2007a,b; Manning et al. 2011, 2012). Each recording
session lasted from 0.2 to 3 h (total recording time: 0.3–14.2 h;
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Supplementary Fig. S6E). During each recording session, the
patients participated in a free recall list learning task, which
lasted for up to approximately 1 h. In addition, the recordings
included “buffer” time (the length varied by patient) before and
after each experimental session, during which the patients
went about their regular hospital activities (confined to their
hospital room, and primarily in bed). These additional activities
included interactions with medical staff and family, watching
television, reading, and other similar activities. For the purposes
of the Dataset 1 analyses presented here, we aggregated
all data across each recording session, including recordings
taken during the main experimental task as well as during
nonexperimental time. We used Dataset 1 to develop our
main SuperEEG approach and to examine the extent to which
SuperEEG might be able to generate task-general predictions.
Dataset 2 comprised multisession recordings from 14 860
electrodes implanted in the brains of 131 epilepsy patients
(Ezzyat et al. 2017, 2018; Horak et al. 2017; Kragel et al. 2017;
Kucewicz et al. 2017, 2018; Lin et al. 2017; Solomon et al. 2018;
Weidemann et al. 2019). Each recording session lasted from 0.4
to 2.2 h (total recording time: 0.4–6.6 h; Supplementary Fig. S6K).
Whereas Dataset 1 included recordings taken as the patients
participated in a variety of activities, Dataset 2 included
recordings taken as each patient performed each of two specific
experimental memory tasks: a random word list free recall
task (Experiment 1) and a categorized word list free recall task
(Experiment 2). We used Dataset 2 to further examine the ability
of SuperEEG to generalize its predictions within versus across
tasks. Supplementary Figure S6 provides additional information
about both datasets.

We first applied fourth-order Butterworth notch filters to
remove 60 Hz (± 0.5 Hz) line noise from every recording (from
every electrode). Next, we downsampled the recordings (regard-
less of the original samplerate) to 250 Hz. This downsampling
step served to both normalize for differences in sampling rates
across patients and to ease the computational burden of our
subsequent analyses. We then excluded any electrodes that
showed putative epileptiform activity. Specifically, we excluded,
from further analysis, any electrode that exhibited a maximum
kurtosis of 10 or greater across all of that patient’s recording
sessions. We also excluded any patients with fewer than two
electrodes that passed this criterion, as the SuperEEG algorithm
requires measuring correlations between two or more electrodes
from each patient. For Dataset 1, this yielded clean recordings
from 4168 electrodes implanted throughout the brains of 67
patients (Fig. 1A, colored dots); for Dataset 2, this yielded clean
recordings from 5023 electrodes implanted in 78 patients. Each
individual patient contributed electrodes from a limited set of
brain locations, which localized in a common space (MNI152;
Grabner et al. 2006); an example, Dataset 1 patient’s 54 elec-
trodes that survived the kurtosis thresholding procedure are
highlighted in black and red (Fig. 1A).

The recording from a given electrode is maximally informa-
tive about the activity of the neural tissue immediately sur-
rounding its recording surface. However, brain regions that are
distant from the recording surface of the electrode also con-
tribute to the recording, albeit (ceteris paribus) to a much lesser
extent. One mechanism underlying these contributions is vol-
ume conduction. The precise rate of falloff due to volume con-
duction (i.e., how much a small volume of brain tissue at location
x contributes to the recording from an electrode at location η)
depends on the size of the recording surface, the electrode’s
impedance, and the conductance profile of the volume of brain

between x and η. As an approximation of this intuition, we place
a Gaussian radial basis function (RBF) at the location η of each
electrode’s recording surface (Fig. 1B). We use the values of the
RBF at any brain location x as a rough estimate of how much
structures around x contributed to the recording from location η

rbf (χ|η, λ) =
{

−‖χ − η‖2

λ

}
, (1)

where the width variable λ is a parameter of the algorithm
(which may in principle be set according to location-specific
tissue conductance profiles) that governs the level of spatial
smoothing. In choosing λ for the analyses presented here, we
sought to maximize spatial resolution (which implies a small
value of λ) while also maximizing the algorithm’s ability to
generalize to any location throughout the brain, including those
without dense electrode coverage (which implies a large value
of λ). Here, we set λ = 20, guided in part by our prior related work
(Manning et al. 2014, 2018) and in part by examining the brain
coverage with non-zero weights achieved by placing RBFs at
each electrode location in Dataset 1 and taking the sum (across
all electrodes) at each voxel in a 4-mm3 MNI brain. (We then held
λ fixed for our analyses of Dataset 2.) We note that this value
could in theory be further optimized, e.g., using cross validation
or a formal model (e.g., Manning et al. 2018).

A second mechanism whereby a given region x can
contribute to the recording at η is through (direct or indirect)
anatomical connections between structures near x and η.
Although anatomical and functional correlations can differ
markedly (e.g., Honey et al. 2009; Adachi et al. 2012; Goñi et al.
2014), we use temporal correlations in the data to estimate these
anatomical connections (Becker et al. 2018). Let R be the set of
locations at which we wish to estimate local field potentials
(LFPs), and let Rs ⊆ R be the set of locations at which we observe
LFPs from patient s (excluding the electrodes that did not pass
the kurtosis test described above). In the analyses below, we
define R = ∪S

s=1Rs. We can calculate the expected interelectrode

correlation matrix for patient s, where Cs,k

(
i, j

)
is the correlation

between the time series of voltages for electrodes i and j from
subject s during session k, using:

Cs = r

⎛
⎝ 1

n

⎛
⎝ n∑

k=1

Z
(
Cs,k

)⎞⎠
⎞
⎠ , (2)

where

z(r) = log (1 + r) − log (1 − r)
2

(3)

is the Fisher z-transformation and

z−1(z) = r(z) = exp(2z) − 1
exp(2z) + 1

(4)

is its inverse.
Next, we use equation (1) to construct a number of to-be-

estimated locations by the number of patient electrode locations
weight matrix, Ws. Specifically, Ws approximates how informa-
tive the recordings at each location in Rs is in reconstructing
activity at each location in R, where the contributions fall off
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with an RBF according to the distances between the correspond-
ing locations:

Ws
(
i, j

) = rbf
(
i|j, λ)

(5)

Given this weight matrix, Ws, and the observed interelec-
trode correlation matrix for patient s, Cs , we can estimate the
correlation matrix for all locations in R (Ĉs; Fig. 1C) using:

N̂s
(
x, y

) =
|Rs |∑
i=1

i−1∑
j=1

W
(
x, i

) · W
(
y, j

) · z
(
Cs

(
i, j

))
(6)

D̂s
(
x, y

) =
|Rs |∑
i=1

i−1∑
j=1

W
(
x, i

) · W
(
y, j

)
(7)

Ĉs = r

(
N̂s

D̂s

)
(8)

.

After estimating the numerator (N̂s) and denominator (D̂s)
placeholders for each Ĉs, we aggregate these estimates across
the S patients to obtain a single expected full-brain correlation
matrix (K̂; Fig. 1D)

K̂ = r

(∑S
s=1 N̂s∑S
s=1 D̂s

)
. (9)

Intuitively, the numerators capture the general structures
of the patient-specific estimates of full-brain correlations, and
the denominators account for which locations were near the
implanted electrodes in each patient. To obtain K̂, we compute
a weighted average across the estimated patient-specific full-
brain correlation matrices, where patients with observed elec-
trodes near a particular set of locations in K̂ contribute more to
the estimate.

Having used the multipatient data to estimate a full-brain
correlation matrix at the set of locations in R that we wish
to know about, we next use K̂ to estimate activity patterns
everywhere in R, given observations at only a subset of locations
in R (Fig. 1E).

Let αs be the set of indices of patient s’s electrode locations
in R (i.e., the locations in Rs), and let βs be the set of indices of all
other locations in R. In other words, βs reflects the locations in
R where we did not observe a recording for patient s (these are
the recording locations we will want to fill in using SuperEEG).
We can subdivide K̂ as follows:

K̂βs,αs = K̂ (βs, αs) , (10)

and

K̂αs,αs = K̂ (αs, αs) (11)

.

Here, K̂βs,αs represents the correlations between the “unknown”
activity at the locations indexed by βs and the observed
activity at the locations indexed by αs, and K̂αs,αs represents the
correlations between the observed recordings (at the locations
indexed by αs).

Let Ys,k,αs be the number-of-timepoints (T) by | αs | matrix of
(observed) voltages from the electrodes in αs during session k

from patient s. Then, we can estimate the voltage from patient
s’s kth session at the locations in βs as follows (Rasmussen 2006):

Ŷs,k,βs =
((

K̂βs,αs · K̂−1
αs,αs

)
· YT

s,k,αs

)T
. (12)

This equation is the foundation of the SuperEEG algorithm.
Whereas we observe recordings only at the locations indexed
by αs, equation (12) allows us to estimate the recordings at all
locations indexed by βs, which can define a priori to include
any locations we wish, throughout the brain. This yields the
estimates of the time-varying voltages at every location in R
provided that we define R in advance to include the union of all
of the locations in Rs and all of the locations at which we wish
to estimate recordings (i.e., a timeseries of voltages).

We designed our approach to be agnostic to electrode
impedances, as electrodes that do not exist do not have
impedances. Therefore, our algorithm recovers voltages in stan-
dard deviation (z-scored) units rather than attempting to recover
absolute voltages. (This property reflects the fact that K̂βs,αs and
K̂αs,αs are correlation matrices rather than covariance matrices.)
Also, we note that equation (12) requires computing a T by T
matrix, which can become computationally expensive when
T is very large (e.g., for the Dataset 1 patient with the longest
recording time, T = 12 786 750; also see Supplementary Fig. S6
E and K). However, because equation (12) is time invariant, we
may compute Ys,k,βs in a piecewise manner by filling in Ys,k,βs

one row at a time (using the corresponding samples from Ys,k,αs).
The SuperEEG algorithm described above and in Figure 1

allows us to estimate, up to a constant scaling factor, LFPs for
each patient at all arbitrarily chosen locations in the set R, even
if we did not record that patient’s brain at all of those locations.
We next turn to an evaluation of the accuracy of those estimates.

Results
We used a cross-validation approach to test the accuracy with
which the SuperEEG algorithm reconstructs activity throughout
the brain. For each patient in turn, we estimated full-brain
correlation matrices (eq. 9) using data from all of the other
patients. This step ensured that the data we were reconstructing
could not also be used to estimate the between-location corre-
lations that drove the reconstructions via equation (12) (other-
wise the analysis would be circular). For that held-out patient,
we held out each electrode in turn. We used equation (12) to
reconstruct activity at the held-out electrode location, using the
correlation matrix learned from all other patients’ data as K̂ and
using activity recorded from the other electrodes from the held-
out patient as Ys,k,αs. (For analyses examining the stability of
our estimates of K̂ across time and patients, respectively, see
Supplementary Figs S7 and S8). We then asked: how closely did
each of the SuperEEG-estimated recordings at those electrodes
match the observed recordings from those electrodes (i.e., how
closely did the estimated Ŷs,k,βs match the observed Ys,k,βs)?

We used this general approach to quantify the algorithm’s
performance across the full dataset. For each held-out electrode,
from each held-out patient in turn, we computed the average
correlation (across recording sessions) between the SuperEEG-
reconstructed voltage traces and the observed voltage traces
from that electrode. For this analysis, we set R to be the union of
all electrode locations across all patients. This yielded a single
correlation coefficient for each electrode location in R, reflecting
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Figure 2. Reconstruction accuracy across all electrodes in two ECoG datasets. A. Distributions of correlations between observed versus reconstructed activity by

electrode, for Dataset 1. The across-patient distribution (black) reflects reconstruction accuracy (correlation) using a correlation model learned from all but one patient’s
data, and then applied to that held-out patient’s data. The within-patient distribution (gray) reflects performance using a correlation model learned from the same
patient who contributed the to-be-reconstructed electrode. B. Distributions of correlations for Dataset 2. This panel is in the same format as Panel A but reflects results

obtained from Dataset 2. The histograms aggregate data across both Dataset 2 experiments; for results broken down by experiment see Supplementary Figures S2 and
S3. C, D. Reconstruction accuracy by location. The colors denote the average across-session correlations, using the across-patient correlation model, between the
observed and reconstructed activity at the given electrode location projected to the cortical surface (Combrisson et al. 2019). Panel C displays the map for Dataset 1
and Panel D displays the map for Dataset 2.

how well the SuperEEG algorithm was able to recover the record-
ing at that location by incorporating data across patients (black
histogram in Fig. 2A, map in Fig. 2C). The observed distribution
of correlations was centered well above zero (mean: r = 0.51;
t-test comparing mean of distribution of z-transformed average
patient correlation coefficients to 0: t(66) = 23.55, P < 10−10), indi-
cating that the SuperEEG algorithm recovers held-out activity
patterns substantially better than random guessing.

Next, we compared the quality of these across-participant
reconstructions (i.e., computed using a correlation model
learned from other patients’ data) to reconstructions generated
using a correlation model trained using the in-patient’s data.
In other words, for this within-patient benchmark analysis, we
estimated Ĉs (eq. 8) for each patient in turn, using recordings
from all of that patient’s electrodes except at the location
we were reconstructing. These within-patient reconstructions
serve as an estimate of how well data from all of the other
electrodes from that single patient may be used to estimate
held-out data from the same patient. This allows us to
ask how much information about the activity at a given
electrode might be inferred through 1) volume conductance
or other sources of “leakage” from activity patterns measured
from the patient’s other electrodes and 2) across-electrode
correlations learned from that single patient. As shown in
Figure 2A (gray histogram), the distribution of within-patient
correlations was centered well above zero (mean: r = 0.32;
t-test comparing mean of distribution of z- transformed average

patient correlation coefficients to 0: t(66) = 15.16, P < 10−10).
However, the across-patient correlations were substantially
higher (t-test comparing average z-transformed within versus
across patient electrode correlations: t(66) = 9.17, P < 10−10).
This is an especially conservative test, given that the across-
patient SuperEEG reconstructions exclude (from the correlation
matrix estimates) all data from the patient whose data are
being reconstructed. We repeated each of these analyses
on a second independent dataset and found similar results
(Fig. 2B, D; within vs across reconstruction accuracy: t(77) = 11.25,
P < 10−10). We also replicated this result separately for each of
the two experiments from Dataset 2 (Supplementary Fig. S3).
This overall finding, which reconstructions of held-out data
using correlation models learned from other patient’s data yield
higher reconstruction accuracy than correlation models learned
from the patient whose data are being reconstructed, has two
important implications. First, it implies that distant electrodes
provide additional predictive power to the data reconstructions
beyond the information contained solely in nearby electrodes.
This follows from the fact that each patient’s grid, strip and
depth electrodes are implanted in a unique set of locations, so
for any given electrode, the closest electrodes in the full dataset
tends to come from the same patient. Second, it implies that the
spatial correlations learned using the SuperEEG algorithm are,
to some extent, similar across people.

The recordings we analyzed from Dataset 1 comprised
data collected as the patients performed a variety of (largely
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Figure 3. Electrode sampling density by location. A. Electrode sampling density by voxel location in Dataset 1. Each voxel is colored by the proportion of total electrodes
in the dataset that are located within 20 MNI units of the given voxel. B. Electrode sampling density by voxel location in Dataset 2. This panel displays the sampling
density map for Dataset 2, in the same format as Panel A. C. Correspondence in sampling density by voxel location across Datasets 1 and 2. The two-dimensional
histogram displays the per-voxel sampling densities in the two Datasets, and the one-dimensional histograms display the proportions of voxels in each dataset with

the given density value. The correlation reported in the panel is across voxels in the 4-mm3 MNI152 brain.

idiosyncratic) tasks throughout each day’s recording session.
That we observed reliable reconstructions across patients
suggests that the spatial correlations derived from the SuperEEG
algorithm are, to some extent, similar across tasks. We tested
this finding more directly using Dataset 2. In Dataset 2, the
recordings were limited to times when each patient was
participating in one of two experiments. Experiment 1 is a
random-word list free recall task; Experiment 2 is a categorized
list free recall task (24 patients participated in both). We
wondered whether a correlation model learned from data from
one experiment might yield good predictions of data from the
other experiment. Furthermore, we wondered about the extent
to which it might be beneficial or harmful to combine data
across tasks.

To test the task specificity of the SuperEEG-derived cor-
relation models, we restricted the dataset to the 24 patients
that participated in both experiments and repeated the
above within- and across-patient cross-validation procedures
separately for Experiment 1 and Experiment 2 data from
Dataset 2. We then compared the reconstruction accuracies
for held-out electrodes, for models trained within versus across
the two experiments, or combining across both experiments
(Supplementary Fig. S1). In every case, we found that across-
patient models trained using data from all other patients out-
performed within-patient models trained on data only from the
subject contributing the given electrode (ts(23) > 6.50, Ps < 10−5).
All reconstruction accuracies also reliably exceeded chance
performance (ts(23) > 8.00, Ps < 10−8). Average reconstruction
accuracy was highest for the across-patient models limited
to data from the same experiment (mean accuracy: r = 0.68);
next-highest for the models that combined data across both
experiments (mean accuracy: r = 0.61); and lowest for models
trained across tasks (mean accuracy: r = 0.47). This pattern
of results also held for each of the Dataset 2 experiments
individually (Supplementary Fig. S2). Taken together, these
results indicate that there are reliable commonalities in the
spatial correlations of full-brain activity across tasks, but that
there are also reliable differences in these spatial correlations
across tasks. Whereas reconstruction accuracy benefits from

incorporating data from other patients, reconstruction accuracy
is highest when constrained to within-task data, or data that
includes a variety of tasks (e.g., Dataset 1, or combining across
the two Dataset 2 experiments).

Although both datasets we examined provide good full-brain
coverage (when considering data from every patient), electrodes
were not sampled uniformly throughout the brain. For exam-
ple, in our patient population, electrodes are more likely to be
implanted in regions such as the medial temporal lobe (MTL) and
are rarely implanted in occipital cortex (Fig. S3A, B). Separately
for each dataset, for each voxel in the 4-mm3 voxel MNI152 brain,
we computed the proportion of electrodes in the dataset that
were contained within a 20 MNI unit radius sphere centered on
that voxel. We defined the “density” at that location as this pro-
portion. Across Datasets 1 and 2, the electrode placement densi-
ties were similar (correlation by voxel: r = 0.6, P < 10−10). We won-
dered whether regions with good coverage might be associated
with better reconstruction accuracy. For example, Figure 2C, D
indicate that some electrodes in the MTL (which tends to be
relatively densely sampled) have relatively high reconstruction
accuracy, and occipital electrodes (which tend to be relatively
sparsely sampled) tend to have relatively low reconstruction
accuracy. To test whether this held more generally across the
entire brain, for each dataset, we computed the electrode place-
ment density for each electrode from each patient (using the
proportion of other patients’ electrodes within 20 MNI units of
the given electrode). We then correlated these density values
with the across-patient reconstruction accuracies for each elec-
trode. We found no reliable correlation between reconstruction
accuracy and density for Dataset 1 (r = 0.05, P = 0.70) and a reli-
able negative correlation for Dataset 2 (r = −0.21, P = 0.05). This
suggests that the reconstruction accuracies we observed are not
driven solely by sampling density but rather may also reflect
higher order properties of neural dynamics such as functional
correlations between distant voxels (Betzel et al. 2017).

Prior work in humans and animals has shown that the spatial
profile of the LFP differs by frequency band (e.g., with respect
to volume conductance properties and contribution to the LFP;
Fries et al. 2007; Crone et al. 2011; Buzsaki et al. 2012). For
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Figure 4. Reconstruction accuracy across all electrodes in two ECoG datasets for each frequency band. A. Distributions of correlations between observed versus
reconstructed activity by electrode for each frequency band in Dataset 1. Each color denotes a different frequency band. Within each color group, the darker dots and
bar on the left display the distribution (and mean) across-patient reconstruction accuracies (analogous to the black histograms in Fig. 2). The lighter dots and bar on the
right display the distribution (and mean) within-patient reconstruction accuracies (analogous to the gray histograms in Fig. 2). Each dot indicates the reconstruction

accuracy for one electrode in the dataset. To facilitate visual comparison with the frequency-specific results, the leftmost bars (gray) re-plot the histograms in Figure 2A.
B. Statistical summary of across-patient reconstruction accuracy by electrode for each frequency band in Dataset 1. In the upper triangles of each map, warmer colors
(positive t-values) indicate that the reconstruction accuracy for the frequency band in the given row was greater (via a two-tailed paired-sample t-test) than for the

frequency band in the given column. Cooler colors (negative t-values) indicate that reconstruction accuracy for the frequency band in the given row was lower than for
the frequency band in the given column. The lower triangles of each map denote the corresponding P-values for the t-tests. The diagonal entries display the average
reconstruction accuracy within each frequency band. C. Statistical summary of within-patient reconstruction accuracy by electrode for each frequency band in Dataset
1. This panel displays the within-patient statistical summary, in the same format as Panel B. D. Distributions of correlations between observed versus reconstructed

activity by electrode, for each frequency band in Dataset 2. This panel displays reconstruction accuracy distributions for each frequency band for Dataset 2. E, F.
Statistical summaries of across-patient and within-patient reconstruction accuracy by electrode for each frequency band in Dataset 2. These panels are in the same
format as Panels B and C, but display results from Dataset 2.

example, lower frequency components of the LFP tend to have
higher power and extend further in space than high-frequency
components (e.g., Miller et al. 2007; Manning et al. 2009). We
wondered whether the reconstructions we observed might be
differently weighting or considering the contributions of activity
at different frequency bands. We therefore examined a range of
frequency bands (δ: 2–4 Hz; θ : 4–8 Hz; α: 8–12 Hz; β: 12–30 Hz; γ L:
30–60 Hz; and γ H: 60–100 Hz), along with a measure of broadband
(BB) power. We used second-order Butterworth bandpass filters
to compute the activity patterns within each narrow frequency
band. We defined BB power as the mean height of a linear
robust regression fit in log-log space to the fourth-order Morelet
wavelet-computed power spectrum at 50 log-spaced frequencies
from 2 to 100 Hz (Manning et al. 2009). We then repeated our
within-subject and across-subject cross-validated reconstruc-
tion accuracy tests (analogous to Fig. 2) separately for each fre-
quency band (Fig. 4). (We also carried out a similar analysis
on the Hilbert transform-computed spectral power within each
narrow band; see Supplementary Fig. S4) Across both datasets,
we found that our approach is best at reconstructing patterns
of BB activity (right-most bars in Fig. 4A, D), a correlate of popu-

lation firing rate (Manning et al. 2009). We also achieved good
reconstruction accuracy within each narrow frequency band
(Fig. 4 and Supplementary Fig. S4). Activity at lower frequencies
(δ, θ , α, and β) tended to be reconstructed better than high-
frequency patterns (γ L and γ H), with reconstruction accuracy
peaking in the θ band. Overall, these results indicate that our
approach is able to accurately recover information within the
2–100 Hz range.

A basic assumption of our approach (and of most prior ECoG
work) is that electrode recordings are most informative about
the neural activity near the recording surface of the electrode.
But if we consider that activity patterns throughout the brain are
meaningfully correlated, are there particular implantation loca-
tions that, if recorded from a given patient’s brain, yield espe-
cially high reconstruction accuracies throughout the rest of their
brain? For example, one might hypothesize that brain structures
that are heavily interconnected with many other structures
could be more informative about full-brain activity patterns
than comparatively isolated structures. To test this hypothesis,
we computed the average reconstruction accuracy across all of
each patient’s electrodes (using our across-patients cross vali-
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Figure 5. Most informative recording locations. A. Dataset 1 information scores by voxel. The voxel colors reflect the weighted average reconstruction accuracy across
all electrodes from any patients with at least one electrode within 20 MNI units of the given voxel. B. Dataset 2 information scores by voxel. This panel is in the same
format as Panel A. C. Intersection. Gray areas indicate the intersections between the top 10% most informative voxels in each map and projected onto the cortical
surface (Combrisson et al. 2019). D. Correspondence in information scores by voxel across Datasets 1 and 2. The correlation reported in the Panel is between the

per-voxel information scores across Datasets 1 and 2.

dation test; black histograms in Fig. 2A, B). We first labeled each
patient’s electrodes, in each dataset, with the average recon-
struction accuracy for that patient. In other words, we assigned
every electrode from each patient the same value, reflecting how
well the activity patterns for that patient were reconstructed.
Next, for each voxel in the 4-mm3 MNI brain, we computed
the average value across any electrode (from any patient) that
came within 20 MNI units of that voxel’s center. This yielded
an information score for each voxel, reflecting the (weighted)
average reconstruction accuracy across any patients with elec-
trodes near each voxel, where the averages were weighted to
reflect patients who had more electrodes implanted near that
location. We created a single map of these information scores for
each dataset, highlighting regions that are especially informa-
tive about activity in other brain areas (Fig. 5A, B). Despite task
and patient differences across the two datasets, we nonetheless
found that the information score maps from both datasets were
correlated (voxelwise correlation between information scores
across the two datasets: r = 0.18, P < 10−10). Our finding that there
were some commonalities between the two datasets’ informa-
tion score maps lends support to the notion that different brain
areas are (reliably) differently informative about full-brain activ-
ity patterns. We also examined the intersection between the top
10% most informative voxels across the two datasets (gray areas
in Fig. 5C, networks shown in Fig. 6A, top row). Supporting the
notion that structures that are highly interconnected with the
rest of the brain are most informative about full-brain activity
patterns, the intersecting set of voxels with the highest infor-
mation scores included major portions of the dorsal attention
network (e.g., inferior parietal lobule, precuneus, inferior tem-
poral gyrus, thalamus, and striatum) as well as some portions
of the default mode network (e.g., angular gyrus) that are highly
interconnected with a large proportion of the brain’s gray matter
(e.g., Tomasi and Volkow 2011).

We also wondered whether the map of information scores
might vary as a function of the spectral components of the
activity patterns under consideration. We computed analogous
maps of information scores for each individual frequency
band. Across Datasets 1 and 2 (with the exception of α-

band activity), we observed reliable positive correlations
between the voxelwise maps of information scores (δ: r = 0.09,
P < 10−57; θ : r = 0.24, P < 10−60; α: r = −0.03, P < 0.001; β: r = 0.02,
P = 0.0011; γ L: r = 0.1, P < 10−67; γ H: r = 0.03, P < 10−7; BB: r = 0.21,
P < 10−297).

To gain additional insight into which regions were most infor-
mative about full-brain activity patterns at different frequency
bands, we next computed (for each frequency band) the intersec-
tion of the top 10% highest information scores across the maps
for Datasets 1 and 2 (analogous to our approach in Fig. 5C). This
yielded a single map of the (reliably) most informative locations,
for each frequency band we examined. We then carried out post
hoc analyses on each of these maps to characterize the underly-
ing structural and functional properties of each set of regions we
identified as being particularly informative about one or more
types of neural pattern (Fig. 6 and Supplementary Fig. S5).

A growing body of neuroscientific research is concerned with
characterizing the parcellations of anatomical and functional
brain networks (for review see Zalesky et al. 2010; Arslan et al.
2018). The dominant approaches entail obtaining a full-brain
connectivity matrix using either diffusion tensor imaging (DTI)
to identify the brain’s network of white matter connections, or
functional connectivity (typically applied to resting state data)
to correlate the patterns of activity exhibited by different brain
structures. One can then apply graph theoretic approaches to
assign each brain structure (typically a single fMRI voxel) to
one or more networks (for review see Bullmore and Sporns
2009). The result is a set of distinct (or partially overlapping)
brain “networks” that may be further examined to elucidate
their potential functional role. We over-laid a well-cited seven-
network parcellation map identified by Yeo et al. (2011) onto the
maps of brain locations that were most informative about each
type of neural pattern. For each of these information maps, we
computed the proportion of voxels in the most informative brain
regions that belonged to each of the seven networks identified
by Yeo et al. (2011); Figure 6D. We found that the regions we iden-
tified as being most informative about different neural patterns
varied markedly with respect to which functional networks they
belonged to (Fig. 6A, B).
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Figure 6. Most informative recording locations by frequency band. A. Intersections between information score maps by frequency band. The regions indicated in each
row depict the intersection between the top 10% most informative locations across Datasets 1 and 2. B. Network memberships of the most informative brain regions.
The pie charts display the proportions of voxels in each region that belong to the seven networks identified by Yeo et al. (2011). The relative sizes of the charts for each
frequency band reflect the average across-subject reconstruction accuracies (Fig. 4A, D). The voxels in Panel A are colored according to the same network memberships.

C. Neurosynth terms associated with the most informative brain regions, by frequency band. The lists in each row display the top five neurosynth terms (Rubin et al.
2017) decoded for each region. D. Network parcellation map and legend. The parcellation defined by Yeo et al. (2011) is displayed on the inflated brain maps. The colors
and network labels serve as a legend for Panels A and B. E. Combined map of the most informative brain regions. The map displays the union of the most informative

maps in Panel A, colored by frequency band. The labels also serve as a legend for Panel C.

The variability we observed in the frequency-specific infor-
mation score maps is consistent with the notion that there is
no “universal” brain region that reflects all types of activity
patterns throughout the rest of the brain. Rather, each region’s
activity patterns appear to be characterized by different spec-
tral profiles, and the ability to infer full-brain activity patterns
at a particular frequency band depends on the structural and
functional connectome specific to that frequency band (Fig. 6E).
We wondered how the maps we found might fit in with prior
work. To this end, in addition to examining the anatomical
profiles of each map, we used neurosynth (Rubin et al. 2017)
to identify (using meta analyses of the neuroimaging litera-
ture) the top five most common terms associated with each
frequency-specific map (Fig. 6C). We found that δ patterns across
the brain were best predicted by regions of ventromedial pre-
frontal cortex, striatum, and thalamus (yellow). These regions
are also implicated in modulating δ oscillations during sleep
and are heavily interconnected with cortex (e.g., Amzica and

Steriade 1998). The brain areas most informative about full-brain
θ patterns were occipital and parietal regions associated with
visual processing and visual attention (light green). Prior work
has implicated θ oscillations in these areas in periodic sampling
of visual attention (e.g., Busch and VanRullen 2010). We found
that full-brain α patterns were best predicted by motor areas
(dark green), which also exhibit α band changes during voluntary
movements (e.g., Jurkiewicz et al. 2006). Striatum and thalamus
(teal) were most informative about full-brain β patterns. Prior
work has implicated striatal β activity in sensory and motor
processing (Feingold et al. 2015), and thalamic β activity has been
implicated in modulating widespread β patterns across neocor-
tex (Sherman et al. 2016). Somatosensory areas (dark blue) were
most informative about full-brain γ L patterns. Prior work has
implicated somatosensory γ L in somatosensory processing and
motor planning (Ihara et al. 2003). Occipital cortex (purple) was
most informative about full-brain γ H patterns. Occipital γ H has
also been linked with visual processing and reading (Wu et al.
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2011) and the transmission of visual representations from low-
order to high-order visual areas (Matsumoto et al. 2013). Full-
brain BB patterns were best predicted by inferior parietal cortex
precuneus (maroon). Functional neuroimaging BOLD responses
(Simony et al. 2016) and BB ECoG patterns (Honey et al. 2012)
in these default-mode hubs have been implicated in process-
ing context-dependent representations that unfold over long
timescales.

Discussion
Are our brain’s networks static or dynamic? And to what extent
are the network properties of our brains stable across people and
tasks? One body of work suggests that our brain’s functional net-
works are dynamic (e.g., Manning et al. 2018; Owen et al. 2019),
person-specific (e.g., Finn et al. 2015), and task-specific (e.g.,
Turk-Browne 2013). In contrast, although the gross anatomical
structure of our brains changes meaningfully over the course
of years as our brains develop, on the timescales of typical
neuroimaging experiments (i.e., hours to days), our anatomical
networks are largely stable (e.g., Casey et al. 2000). Furthermore,
many aspects of brain anatomy, including white matter struc-
ture, are largely preserved across people (e.g., Talairach and
Tournoux 1988; Mori et al. 2008; Jahanshad et al. 2013). There
are several possible means of reconciling this apparent incon-
sistency between dynamic person- and task-specific functional
networks versus stable anatomical networks. For example, rel-
atively small magnitude anatomical differences across people
may be reflected in reliable functional connectivity differences.
Along these lines, one recent study found that DTI structural
data are similar across people but may be used to predict person-
specific resting state functional connectivity data (Becker et al.
2018). Similarly, other work indicates that task-specific func-
tional activations may be predicted by resting state functional
connectivity data (Cole et al. 2016; Tavor et al. 2016). Another
(potentially complementary) possibility is that our functional
networks are constrained by anatomy but, nevertheless, exhibit
(potentially rapid) task-dependent changes (e.g., Sporns and
Betzel 2016). This prior work differs from ours in a number of
ways. For example, fMRI data have substantially higher spatial
resolution than (raw) ECoG data, and fMRI data have nearly
complete spatial overlap across participants, whereas ECoG data
have minimal spatial overlap across participants. Nevertheless,
our work draws inspiration from those studies in that we also
attempt to estimate held-out activity patterns across people and
tasks.

Here, we have taken a model-based approach to studying
whether high spatiotemporal resolution activity patterns
throughout the human brain may be explained by a static
connectome model that is shared across people and tasks.
Specifically, we trained a model to take in recordings from a
subset of brain locations and then predicted activity patterns
during the same interval, but at other locations that were held
out from the model. Our model, based on Gaussian process
regression, was built on three general hypotheses about the
nature of the correlational structure of neural activity (each
of which we tested). First, we hypothesized that functional
correlations are stable over time and across tasks. We found
that, although aspects of the patients’ functional correlations
were stable across tasks, we achieved better reconstruction
accuracy when we trained the model on within-task data. This
suggests that our general approach could be extended to better
model across-task changes, e.g., following Cole et al. (2016);

Tavor et al. (2016); and others. Second, we hypothesized that
some of the correlational structure of people’s brain activity
is similar across individuals. Consistent with this hypothesis,
our model explained each patient’s data best when trained
using data from other patients–even when compared models
trained within-patient. Third, we resolved ambiguities in the
data by hypothesizing that neural activity from nearby sources
tends to be similar, all else being equal. This hypothesis was
supported through our finding that all of the models we trained
that incorporated this spatial smoothness assumption predicted
held-out data well above chance.

Another important finding is that SuperEEG-based recon-
structions accurately recover activity patterns at a broad range
of frequencies (as well as BB patterns). However, brain networks
differed in how informative they were about activity within each
frequency band. Prior work has largely treated region-specific
narrowband and BB activity as an indicator that activity at those
frequency ranges reflects that the given region is representing
or supporting a particular function. Our work suggests a com-
plementary interpretation that when we observe a particular
neural pattern in a particular brain region, it may instead (or in
addition) reflect how that region is transmitting information to
the rest of the brain via signaling at the given frequency range.

One potential limitation of our approach is that it does not
provide a natural means of estimating the precise timing of
single-neuron action potentials. Prior work has shown that
gamma band and BB activity in the LFP may be used to
estimate the firing rates of neurons that underlie the population
contributing to the LFP (Miller et al. 2008; Manning et al.
2009; Jacobs et al. 2010; Crone et al. 2011). Because SuperEEG
reconstructs LFPs throughout the brain, one could in principle
use BB power in the reconstructed signals to estimate the
corresponding firing rates (though not the timings of individual
action potentials). We found that we were able to reconstruct
full-brain patterns of BB power well (Fig. 4).

A second potential limitation of our approach is that it relies
on ECoG data from epilepsy patients. Recent work comparing
functional correlations in epilepsy patients (measured using
ECoG) and healthy individuals (measured using fMRI) suggests
that there are gross similarities between these populations (e.g.,
Kucyi et al. 2018; Reddy et al. 2018). Nevertheless, because all
of the patients we examined have drug-resistant epilepsy, it
remains uncertain how generally the findings reported here
might apply more broadly to the population at large (e.g., non-
clinical populations).

Beyond providing a means of estimating ongoing activity
throughout the brain using already-implanted electrodes, our
work also has implications how to optimize electrode place-
ments in neurosurgical evaluations. Electrodes are typically
implanted to maximize coverage of suspected epileptogenic
tissue. However, our findings suggest that this approach
might be improved upon. Specifically, one could leverage
not only the noninvasive recordings taken during an initial
monitoring period (as is currently done routinely) but also
recordings collected from other patients. We could then
ask: given what we learn from other patients’ data (and
potentially from the scalp EEG recordings of this new patient),
where should we place a fixed number of electrodes to
maximize our ability to map seizure foci? As shown in
Figures 5 and 6, and Supplementary Figure S5, recordings from
different regions vary with respect to how informative they
are about different narrowband and BB full-brain activity
patterns.
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By providing a means of reconstructing full-brain activity
patterns, the SuperEEG approach maps ECoG recordings from
different patients into a common neural space, despite those
different patients’ electrodes were implanted in different loca-
tions. This feature of our approach enables across-patient ECoG
studies, analogous to across-subject fMRI studies (e.g., Haxby
et al. 2001, 2011; Norman et al. 2006). Whereas the focus of this
manuscript is to specifically evaluate which aspects of neural
activity patterns SuperEEG recovers well (or poorly), in parallel
work, we are training across-patient classifiers by leveraging the
common neural spaces obtained by applying SuperEEG to multi-
patient ECoG data. For example, we have shown that SuperEEG-
derived activity patterns may be used to accurately predict
psychiatric conditions such as depression (Scangos et al. 2020).
Analogous approaches could in principle be used to develop
improved brain–computer interfaces and/or to carry out other
analyses that would benefit from high spatiotemporal resolu-
tion full-brain data in individuals, projected into a common
ECoG space across people.

Concluding remarks
Over the past several decades, neuroscientists have begun to
leverage the strikingly profound mathematical structure under-
lying the brain’s complexity to infer how our brains carry out
computations to support our thoughts, actions, and physio-
logical processes. Whereas traditional beamforming techniques
rely on geometric source-localization of signals measured at
the scalp, here, we propose an alternative approach that lever-
ages the rich correlational structure of two large datasets of
human intracranial recordings. In doing so, we are one step
closer to observing, and perhaps someday understanding, the
full spatiotemporal structure of human neural activity.

Code availability
We have published an open-source toolbox implementing the
SuperEEG algorithm. It may be downloaded here. Additionally,
we have provided code for all analyses and figures reported in
the current manuscript, available here.

Data availability
The datasets analyzed in this study were generously shared by
Michael J. Kahana. A portion of Dataset 1 may be downloaded
here. Dataset 2 may be downloaded here.
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