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Abstract: Poly(aspartamide) derivatives, one kind of amino acid-based polymers with excellent
biocompatibility and biodegradability, meet the key requirements for application in various areas
of biomedicine. Poly(aspartamide) derivatives with stimuli-responsiveness can usually respond to
external stimuli to change their chemical or physical properties. Using external stimuli such as tem-
perature and pH as switches, these smart poly(aspartamide) derivatives can be used for convenient
drug loading and controlled release. Here, we review the synthesis strategies for preparing these
stimuli-responsive poly(aspartamide) derivatives and the latest developments in their applications
as drug carriers.

Keywords: poly(aspartamide) derivatives; stimuli-responsive; drug carrier; nanoparticles; hydrogel;
polymer-drug conjugate; drug-loading; controlled drug release

1. Introduction

Though the carbon-carbon backbone is conducive to the stability of polymers, it also
limits the applications of these polymers in biomedical fields due to its low biocompat-
ibility and non-biodegradability. In the past decades, the interest in amino acid-based
biodegradable polymers has increased significantly in biomedicine due to their good
biocompatibility, biodegradability and non-toxicity of their degradation products. For
example, poly(glutamic acid) (PGA) and PGA-based polymers have been widely applied
for controlled release of peptide, protein and anti-tumor drugs [1]; polylysine (PLL) and
its derivatives have been extensively investigated in gene delivery systems [2]. Moreover,
other amino-acid containing degradable polymers have also been studied in tissue engineer-
ing and biomedical imaging (e.g., magnetic resonance imaging and fluorescence imaging).

Poly(aspartic acid)-based polymers, whose backbone is composed of aspartic acid, are
one of the most intensively studied amino acid-based polymers in drug [3,4]/gene [5–7] de-
livery systems and other biomedical applications [8] due to their simple synthesis method,
excellent biocompatibility and biodegradability. The synthetic strategies of poly(aspartic
acid)-based polymers mainly include the aminolysis reaction of poly(succinimide)
(PSI) (Figure 1a) and the ring-opening polymerization (ROP) of benzyl-L-aspartate
N-carboxyanhydride (BLA-NCA) (Figure 1b). For side chain-modified poly(aspartic acid)-
based polymers, they can generally be prepared by the aminolysis reaction of PSI. For
example, a side chain-modified poly(aspartamide) (PASPAm) derivative, α,β-poly(N-
2-hydroxyethyl)-D,L-aspartamide (PHEA), can be obtained by the aminolysis reaction
between ethanolamine and PSI, and has been further modified and intensively studied as
scaffolds [9], siRNA delivery systems [10,11] and drug carriers (e.g., hydrogel, nanoparti-
cles) [12–16]. For the block copolymers containing poly(aspartic acid)-based segment, they
usually can be synthesized by ROP of BLA-NCA. For instance, NK105 polymer, which is
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composed of a poly(ethylene glycol) (PEG) block as the hydrophilic segment and modi-
fied poly(aspartic acid)-based block as the hydrophobic segment in which 50% carboxylic
groups of PASPAm were reacted with 4-phenyl-1-butanol by esterification reaction [17,18],
has been used as delivery system in a paclitaxel-incorporating micellar nanoparticle anti-
cancer formulation (NK105) that was approved for clinical trials (phase III) [19,20]. Besides
NK105, poly(aspartic acid)-based polymers were also applied in two other formulations,
NK911 [21] and NC-6300 [22,23]. Among the above three clinical formulations, NC-6300
that is an epirubicin (EPI) conjugated PEG-block-PASPAm derived copolymer containing
acid-labile hydrazone linkages, is the only one with stimuli-responsiveness. Results showed
that NC-6300 exhibited a stronger anti-tumor effect and lower cardiotoxicity compared to
free EPI, which may be due to its pH responsiveness.
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Figure 1. The synthetic pathways of PASPAm-based (a) graft copolymers and (b) block copolymers.

Because stimuli-responsive polymers can respond to the changes of environmental
factors (e.g., pH, temperature) by self-changing either their physical properties, chem-
ical structures, or both, they exhibit attractive prospects in a variety of fields such as
sensors, energy conversion and drug/gene delivery systems [24]. Therefore, various
stimuli-responsive PASPAm derivatives such as NC-6300 have been designed and syn-
thesized over the last decades, and their potential applications in different fields were
also investigated extensively. In this review, PASPAm derivatives are defined as polymers
composed wholly or partly of aspartamide units as shown in Figure 1.

Although some papers have reviewed the synthesis and applications of poly(aspartic
acid) (PASP) [25] and PSI [26] derivatives, there is no comprehensive review summariz-
ing the recent progress of “stimuli-responsive PASPAm derivatives”. In this paper, we
will provide an overview of the up-to-date developments on stimuli-responsive PAS-
PAm derivatives and their applications as drug carriers. First, the synthesis strategies of
stimuli-responsive PASPAm derivatives will be reviewed by the type of triggers. Next,
the applications of stimuli-responsive PASPAm derivatives for drug delivery will be in-
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troduced. Finally, the further perspectives of stimuli-responsive PASPAm derivatives will
be discussed.

2. Synthesis
2.1. Temperature-Responsive Poly(aspartamide) Derivatives

Temperature is an important stimulus for stimuli-responsive polymers. Poly(N-
isopropylacrylamide) (PNIPAAm) is one of the most investigated temperature-responsive
polymers with a lower critical solution temperature (LCST) at around 32 ◦C. As is well
known, the temperature-responsive behavior of PNIPAAm is ascribed to its N-isopropylamide
pendants. Therefore, N-isopropylamide and various functional groups with similar struc-
tures were introduced for preparing temperature-responsive PASPAm derivatives. For
instance, two different temperature-responsive PASPAm derivatives, PAIPAHA and PAA-
TS, were prepared by the following procedures: (1) First, a certain amount of isopropy-
lamine was reacted with PSI, and then (2) alkanolamines [27] or NaOH [28] were fur-
ther used to open the remaining succinimide rings to obtain temperature responsive-
ness. Besides N-isopropylamide pendants, diisopropylamide [29] and isopropylethylene-
diamide [30,31] pendants were also introduced for the design of temperature-responsive
PASPAm derivatives.

In fact, in the absence of isopropylamide or diisopropylamide pendants, PASPAm
derivatives containing alkanolamides moieties also can possess temperature responsive-
ness. In 2003, a series of temperature-responsive PASPAm(C5OH/C6OH) were synthesized
via the aminolysis reaction of PSI with a mixture of 5-aminopentanol (NH2C5OH) and
6-aminohexanol (NH2C6OH) by Kobayashi’s group [32]. Interestingly, the reaction prod-
uct of PSI with NH2C5OH, denoted as PHPA, was completely soluble in water; while
the reaction product of PSI with NH2C6OH was insoluble in water (test temperature:
0–100 ◦C). Since then, more and more temperature-responsive PASPAm derivatives con-
taining alkanolamides moieties were designed and synthesized [33–35]. For instance,
adopting the similar strategy of Kobayashi’s group, Chu et al. prepared a new family of
temperature-responsive PASPAm(C4OH/C6OH) with an LCST ranging from 28 to 53 ◦C
using the mixture of 4-aminobutanol (NH2C4OH)/NH2C6OH instead of the mixture of
NH2C5OH/NH2C6OH [36]. In 2014, phenethyl alcohol (phe) was grafted to the pen-
tanolamide pendants of PHPA, and the obtained five phe-g-PHPA polymers all exhibited
temperature responsiveness. The LCST of phe-g-PHPA can be tuned by adjusting the per-
centage of grafted phe moieties, and has a negative linear correlation with the grafting ratio
of phe [37]. In 2015, a certain amount of 2-azidoethylamine (Az) was used for aminolysis
reaction with PSI, and then excess NH2C5OH was further utilized to open the residual
succinimide rings to prepare azide-functional PASPAm derivative P(Asp-Az)x-HPA. Two
P(Asp-Az)x-HPA polymers showed temperature-responsive behaviors in aqueous solution,
and the molar ratio of Az/NH2C5OH in these two P(Asp-Az)x-HPA polymers was 39/61
and 56/44, respectively [38]. Additionally, the LCST of P(Asp-Az)x-HPA-based polymers
can be further adjusted by grafting hydrophobic moieties, such as cinnamoyl group [33].

Moreover, ether oxygen also plays an important role for the design of temperature-
responsive polymers. For example, oligo(ethylene glycol) (OEG) containing ether oxygen
was usually introduced for preparing temperature-responsive polymers, such as OEG
methacrylate based polymers [39,40] and polypeptides bearing OEG pendants [41,42]. In
2021, linear alkyl ether-type amine compounds, which contain one ether oxygen and vary-
ing carbon atoms, were successfully used for the synthesis of temperature-responsive PAS-
PAm derivatives bearing alkyl ether-type pendants [43]. The composition of temperature-
responsive PASPAm derivatives and their LCSTs are summarized in Table 1.
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Table 1. A summary of temperature-responsive PASPAm derivatives.

Temperature Responsive
PASPAm Derivatives

Composition of Side Chain
R1/R2 LCST (◦C) Ref

R1 R2

PAIPAHA
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2.2. pH-Responsive Poly(aspartamide) Derivatives

Poly(aspartic acid) is a water soluble polymer, and its conformation in aqueous
solution can be affected by pH due to pH-induced deprotonation and protonation of
its carboxylic acid pendants. For example, the α helical conformation of poly(aspartic
acid) that appeared in acidic solution was not observed in basic solution [44], which may
be attributed to the negative charge repulsion caused by the deprotonation of pendant
carboxylic acid groups in alkaline environment. Thus, one strategy for preparing pH-
responsive PASPAm derivatives is to introduce other pH-sensitive groups or non-ionic
groups. The introduction of non-ionic groups can usually be used to adjust the phase
transition pH value (pHt) [45].

1-(3-aminopropyl) imidazole (API) is one of the most commonly used reagents for
introducing imidazole groups to PASP or PBLA. For instance, Kim et al. grafted imidazole
to PEG-b-PASP copolymer in which 60% carboxyl groups were reacted with the amine
group of API forming amide linkages, resulting a pH-responsive zwitterionic PASPAm
derivatives [46]. In addition, pH-responsiveness also can be obtained by substituting the
benzyl groups of PBLA with API [47]. Another way for introducing imidazole groups
to synthesize pH-responsive PASPAm derivatives is to directly react the succinimide
rings of PSI with API [48–53] or histamine [54] through aminolysis reaction. Besides
imidazole, tertiary amine [34,55–58] and other groups [30,59] are also intensively adopted
for endowing pH responsiveness to PASPAm derivatives.

Another strategy for preparing pH-responsive polymers is to introduce pH-cleavable
linkages, which mainly include hydrazone [60–62], imine [63], acetal, orthoester and 2,3-
dialkylmaleamidic amide linkages. Hydrazone linkage [64] plays an important role in the
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preparation of pH-responsive polymers. The most well-known pH-responsive PASPAm
derivative is NC-6300, in which EPI is bound to a PEG-PASPAm block copolymer through
hydrazone linkage [23]. Thus, EPI can be released under acidic environments, such as in
lysosomes. Doxorubicin (DOX)-conjugated PASPAm derivatives with hydrazone linkages
were also designed and prepared by researchers [65–68]. Moreover, two PASPAm cross-
linkers containing hydrazide groups (PHHZA) or amine groups (PHEDA) were synthesized
by Cha’s team. PHHZA and PHEDA can react with the aldehyde groups of oxidized algi-
nate forming alginate-based hydrogels via hydrazone and imine linkages, respectively [69].
In addition, Kataoka’s team synthesized three pH-responsive charge-conversional PASPAm
derivatives containing cis-aconitic amide linkage (PAsp(DET-Aco) [70], PEG-PAsp(DET-
Aco) [71]) or 2-propionic-3-methyl maleic amide linkage (PEG-PAsp(DET-PMM) [71]). The
obtained three polymers showed negative charge at pH 7.4 due to the carboxylic group
in cis-aconityl (Aco) or 2-propionic-3-methyl maleic (PMM) moieties, but exhibited pos-
itive charge at pH 5.5 because they can return to PAsp(DET) or PEG-PAsp(DET) via the
breakup of cis-aconitic amide linkage or 2-propionic-3-methyl maleic amide linkage under
acidic conditions. The pH-cleavable linkages used for preparing pH responsive PASPAm
derivatives are summarized in Table 2.
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Table 2. A summary of pH-responsive PASPAm derivatives containing pH-cleavable linkages.

pH Responsive
PASPAm Derivatives

Linkages Formation of Linkages between
Ref

A B

NC-6300 Hydrazone Hydrazide group of PEG polyaspartate block
copolymer Ketone group of EPI [23]

Cross-linked nanocapsules with PADH and PACA Hydrazone Hydrazide group of PADH Aldehyde groups of PACA [56]
PALHy-hyd-DOX Hydrazone Hydrazide group of PALHy Ketone group of DOX [65]

ALN-PEG/C-18/HYD-DOX-g-PASPAM Hydrazone Hydrazide group of PASPAM Ketone group of DOX [66]

MPEG/CA10/DOX-g-PASPAM Hydrazone Hydrazide group of
MPEG/Hyd/CA10-g-PASPAM Ketone group of DOX [67]

PA Hydrazone Hydrazide group of
biotin-PEG/C18-PSI/Hydrazine Ketone group of DOX [68]

PEG/Hyd-Curcumin/C18-g-PSI (NFA-Cur) Hydrazone Hydrazide group of PEG/C18-g-PSI Ketone group of Curcumin [60]
Injectable PAsp hydrogel Hydrazone Hydrazide group of PAHy Aldehyde groups of PAAld [61]

PHHZA-linked alginate hydrogels Hydrazone Hydrazide group of PHHZA Aldehyde groups of oxidized alginate [69]
PHEDA-linked alginate hydrogels Imine Amino group of PHEDA Aldehyde groups of oxidized alginate [69]

Pasp-EDA-g-Ad/mPEG Imine Amino group of Pasp-EDA Aldehyde group of 4-adamantane carboxylate
benzaldehyde [63]

PAsp(DET-Aco) cis-Aconitic amide Amino group of PAsp(DET) Anhydride group of cis-aconitic anhydride [70]
PEG-PAsp(DET-ACO) cis-Aconitic amide Amino group of PEG-PAsp(DET) Anhydride group of cis-aconitic anhydride [71]

PEG-PAsp(DET-PMM) 2-propionic-3-methyl
maleic amide Amino group of PEG-PAsp(DET) Anhydride group of 2-propionic-3-methyl maleic

anhydride [71]

mPEG-g-P(ae-Asp)-Hap β-carboxylic amide Amino group of PEG-g-P(ae-Asp) Anhydride group of hexahydrophthalic
anhydride [72]
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Besides the two above mentioned strategies, the unreacted succinimide rings in PAS-
PAm derivatives also can be utilized to design pH-responsive controlled-release delivery
vehicles, because the hydrophobic succinimide units can be hydrolyzed at pH above 7.0 to
form hydrophilic aspartic acid units, thereby releasing the encapsulated materials due to
the hydrophobic-to-hydrophilic change of PASPAm derivatives [73].

Interestingly, it has been reported that some temperature-responsive PASPAm deriva-
tives also exhibit pH responsiveness even without introducing pH-responsive functional
groups or pH-cleavable linkages. The pH responsiveness of temperature-responsive PAS-
PAm derivatives may be related to the presence of hydroxyl groups in alkanolamide
pendants [36] or the end groups (carboxyl and amine groups) of PASPAm backbone [43].

2.3. Redox-Responsive Poly(aspartamide) Derivatives

PASPAm derivatives generally can be endowed with redox-responsiveness by intro-
ducing disulfide linkage in their backbone (Figure 2a) or side chains (Figure 2b). Chu
et al. [47] used cystamine-modified mPEG as a macroinitiator to initiate the polymerization
of BLA-NCA, and then obtained a redox-responsive mPEG-block-PASPAm derivative,
which contains a disulfide linkage between mPEG segment and PASPAm segment. Redox-
responsive PASPAm derivatives, which have mPEG pendants with disulfide linkages,
can also be synthesized through grafting 3,3’-dithiodipropionic acid-modified mPEG [74]
or the aminolysis reaction between PSI and amino-terminated disulfide functionalized
mPEG [48]. Moreover, some cationic polymers [75,76] or other compounds [77] can also
be functionalized with cystamine and then used to design reduction-responsive PASPAm
derivatives for DNA/RNA delivery. Of course, cystamine also can be used as a cross-linker
for preparing reduction-responsive nanogels [78] or nanoparticles [33] (Figure 2c). In
addition to S-S linkage, Se-Se linkage is also a good strategy for designing redox-responsive
PASPAm derivatives [79].
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Figure 2. The redox-responsive PASPAm derivatives containing disulfide linkages (a) in backbone
and (b) in side chains, and disulfide cross-linked (c) nanogels or nanoparticles and (d) hydrogels.

In addition, thiol-disulfide inter-conversion can also be used for preparing redox-
responsive PASPAm hydrogels [80–83] or stabilized disulfide cross-linked nanoparti-
cles [84]. For instance, PSI first reacted with cysteamine, and then further reacted with other
amine compounds (e.g., N,N-dimethyl-2-aminoethyl [85], 6-monodeoxy-6-monoamino-
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beta-cyclodextrin hydrochloride [86]) to obtain thiolated PASPAm derivatives. The ob-
tained thiolated PASPAm derivatives can be cross-linked by the oxidation of the thiol groups
in their cysteamide pendants and formed reduction-responsive hydrogels (Figure 2d).

2.4. Other Stimuli-Responsive Poly(aspartamide) Derivatives

Besides the above three stimuli-responsive (temperature, pH and redox) PASPAm
derivatives, PASPAm derivatives with other stimuli responsiveness (including light respon-
siveness and carbon dioxide (CO2) responsiveness) have also been investigated in the past
two decades.

CO2 is an inexpensive gas and also an important metabolite in cells. It is reported
that polymers containing dialkylamine [87,88], amidine [89] or guanidine [90] moieties can
exhibit reversible CO2-responsive behavior because CO2 can be bonded onto these poly-
mers in the presence of water. For example, Kim’s group prepared three CO2-responsive
PASPAm derivatives, PHEA-HIS [54], PHEA-Larg and PolyAspAm(OA/Larg) [91]. The
swelling degree of cross-linked PHEA-HIS hydrogel decreased to about 18 when CO2 was
bubbled into the solution containing PHEA-HIS hydrogel samples, and returned to about
50 after bubbling N2 gas. PHEA-Larg hydrogels and PolyAspAm(OA/Larg) nanoparticle
also exhibited similar reversible volume change behavior by CO2/N2 purge.

Because light is a clean stimulus and can be easily triggered on or off, light-responsive
polymers have shown huge potential for a variety of applications. For designing light-
responsive polymers, photo-cleavage groups such as o-nitrobenzyl [92] were generally
introduced. For instance, o-nitrobenzyl (NB) alcohol [35] was first activated by N,N′-
carbonyldiimidazole and then grafted onto the pendant pentanolamide moieties of PHPA.
When the obtained light-responsive NB-g-PHPA was treated under UV light at 365 nm
for 30 min, the photo-cleavage o-nitrobenzyl carbonate ester linkage was broken and
byproduct o-nitrosobenzaldehyde was detected.

In addition, light can also be used for cross-linking to stabilize PASPAm-based mi-
celles. For instance, light responsive coumarin moieties were introduced to the side chains
of PASPAm derivative, and the formed micelles can be conveniently cross-linked and stabi-
lized by exposing it to the light of 365 nm for 30 min [93]. Photo-crosslinking can also be
achieved by introducing methacryloyl [9,94] or acryloyl [95] moieties to the ethanolamide
or hydrazide pendants of PASPAm.

Dual or multi-responsive PASPAm derivatives can also be prepared by the combina-
tion of above-mentioned strategies for endowing various stimuli-responsiveness. Therefore,
we will not go into the details here.

3. Applications

Due to their good biocompatibility and biodegradability, PASPAm derivatives could
be regarded as potential and promising materials and can be utilized in various areas of
biomedical applications, such as drug carriers. As a drug carrier, the process of drug load-
ing and drug release are both important. PASPAm derivatives with stimuli-responsiveness
can usually show convenient drug loading methods or excellent controlled drug release per-
formances. Therefore, this part focuses on the applications of stimuli-responsive PASPAm
derivatives as drug carriers from two aspects: drug loading and drug release.

3.1. Drug Loading

Amphiphilic polymers, which can self-assemble to form nanoparticles including
micelles and vesicles, are one of the most important classes of polymers used to deliver
hydrophobic drugs such as paclitaxel (PTX) and doxorubicin (DOX). For preparing drug-
loaded nanoparticles, one of the important methods is dialysis. However, the dialysis
method often takes a long time (at least a few hours) and requires the use of toxic organic
solvents (e.g., DMSO, CH3OH) to dissolve the polymeric carrier [93], and the drug loading
efficiency is usually low. Thus, a simple, easy-to-implement drug loading strategy with
high efficiency is needed for preparing drug-loaded nanoparticles.
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Temperature and pH are often used as triggers for drug loading. For temperature
responsive polymers, the general drug loading process is as follows: (1) prepare polymer
aqueous solution of a certain concentration in PBS at a temperature (e.g., 4 ◦C) lower
than LCST; (2) add high-concentration drug solution (e.g., 20 mg/mL) to the prepared
temperature responsive polymer aqueous solution; (3) heat the mixture of drug solution
and polymer aqueous solution immediately with about 1 min incubation by soaking into
a water bath or other ways (temperature higher than LCST, such as 60 ◦C); (4) slowly
cool down the mixture to room temperature and then filter the mixture to remove non-
entrapped hydrophobic drug. The process of preparing drug-loaded nanoparticles from
the temperature-responsive polymer aqueous solution is called the quick heating method.
For example, Jiang et al. reported that PTX was successfully loaded into micelles formed
by temperature-responsive PASPAm derivatives through quick heating method, avoiding
the use of toxic organic solvents [35,96,97]. Using temperature-responsive PEGylation
phe-g-PHPA as drug carrier, the PTX-loading capacity was high, up to 29%, with a high
loading efficiency of 99% [97]. Using pH-responsive PASPAm derivatives, the drug also
can be loaded into micelles by quickly changing the pH of the polymer aqueous solution
from below to above pHt. For instance, the aqueous mixture containing pH-responsive
phe/DEAE-g-PHPA-g-mPEG and doxorubicin hydrochloride was prepared at pH value
below pHt first (pH = 4.0), and then a certain volume of weakly alkaline PBS solution
(pH = 8.2) was added to adjust the pH above pHt. After filtering to remove non-entrapped
DOX, DOX-loaded micelles prepared with pH-responsive phe/DEAE-g-PHPA-g-mPEG
were obtained [34]. Therefore, temperature-responsive and pH-responsive PASPAm deriva-
tives play an important role in the drug loading process because they can achieve a rapid
drug loading procedure (Figure 3).
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Hydrogels are also an important class of polymers that can be used as drug carriers.
Cross-linking is a well-known strategy for preparing drug-loaded hydrogels or nanogels.
The cross-linking reaction can occur between two polymers containing reactive functional
groups [13,69,81], or between polymer and small molecule cross-linker [98–101]. Of course,
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enzymes can also be used as cross-linker to promote the cross-linking reaction of PASPAm
derivatives for the preparation of nanogels [102]. For PASPAm derivatives without stimuli-
responsiveness, another option is the precipitation of the polymer in physiological medium
to form gel-like depot. The drug and polymer can be dissolved in an organic solvent with
high miscibility with water, and then the resulting mixture solution was slowly injected
into physiological medium to allow the formation of drug-loaded hydrogels. According
to this strategy, Fiorica et al. successfully prepared a sulpiride-loaded gel-like depot
using PASPAm-polylactide copolymer, in which N-methyl-2-pyrrolidone was employed to
dissolve sulpiride (an antipsychotic drug) and PASPAm-polylactide copolymer due to its
low systemic toxicity [14]. This sulpiride-loaded depot can prolong a sustained release of
sulpiride in vitro for about one week.

For PASPAm derivatives that respond to stimuli, even if organic solvents are not used,
drug-loaded hydrogels can also be prepared, which will reduce the potential risks caused by
the use of organic solvents. For instance, Cao et al. successfully prepared ketoprofen-loaded
hydrogels by irradiation of the mixture of light-responsive PASP-Hy-AC aqueous solution
and ketoprofen (a nonsteroidal anti-inflammatory drug) under long-wavelength UV for 1 h,
and the obtained ketoprofen-loaded hydrogel exhibited the sustained ketoprofen release
for about 50 h [95]. Redox-responsive PASPAm derivatives containing thiol groups can
also be used for drug-loading. For example, PASP-CEA was dissolved in the PBS contain-
ing ofloxacin (a second-generation fluoroquinolone antibiotic), and then oxidant solution
was added to ofloxacin/PASP-CEA PBS solution to form ofloxacin-loaded hydrogel via
the oxidation of the thiol groups [83]. Moreover, some temperature-responsive polymer
aqueous solutions can turn into a gel state in a short time (a few minutes) when heated.
Thus, the formation of drug-loaded hydrogels based on temperature-responsive polymers,
such as chitosan/β-glycerophosphate [103,104] and Pluronic F127 [105], can be triggered
by the temperature difference between the external environment and the body. However,
there is no report on the use of temperature-responsive PASPAm derivatives for prepar-
ing drug loaded hydrogels, although there are many reported temperature-responsive
PASPAm derivatives.

Polymer-drug conjugates composed of drug molecules covalently linked to polymeric
carriers are also an important part of drug delivery systems. Because the drug and the
polymer carrier are covalently linked, polymer-drug conjugates generally do not require
response to external stimuli to achieve drug loading.

3.2. Drug Release

As drug carriers, it is also very important that they can release drugs to the desired
locations in response to specific stimuli. Thus, stimuli-responsive polymers also play a key
role in the drug release process. For drug release, pH and redox are the most investigated
triggers due to the acidic environment around the tumor (pH range of 5.5–7.0) [106] and in
the endosome (pH ≈ 5.0) [107] and the presence of reduced glutathione (GSH) [108].

Although polymer-drug conjugates are usually not required to respond to external
stimuli during drug loading, they are often required to respond to external stimuli during
the drug release process to deliver the drug to the desired location. NC-6300, which has
already undergone Phase I (19 subjects) [109] and Phase 1b (29 subjects) [110] clinical trials,
is the most famous stimuli-responsive polymer-drug conjugate based on PASPAm. The
EPI conjugated with hydrazone linkage in NC-6300 can be released under acidic environ-
ment around tumors, so it exhibits selective tumor accumulation. Clinical trial results
showed that NC-6300 was well tolerated in patients with various solid tumors includ-
ing urothelial carcinoma, breast cancer, cholangiocarcinoma and leiomyosarcom, and its
toxicity was lower than conventional EPI formulations. The maximum tolerated dose
and recommended phase 2 dose of NC-6300 obtained in Phase 1b were 185 mg/m2 and
150 mg/m2, respectively, which are higher than conventional EPI dose. Besides EPI, DOX
was another widely investigated anti-tumor drug in polymer-drug conjugates as a drug
delivery system. For instance, Lim et al. conjugated DOX to alendronate (ALN)-modified
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PASPAm derivatives with hydrazone linkages to obtain polymer-DOX conjugate ALN-
PEG/C18/HYD-DOX-g-PASPAM, and prepared bone targeting nanoparticles. Results
showed that 75% of the conjugated DOX was released from the prepared polymer-DOX
conjugate at pH 5.0 due to the cleavage of hydrazone bonds, and the volume of tumor
decreased significantly to 1550 mm3 after treatment with ALN-PEG/C18/HYD-DOX-g-
PASPAM (control sample in PBS, 3850 mm3) [66]. The pH-controlled release of DOX in
other PASPAm-DOX conjugates containing hydrazone linkages were also studied, results
showed that the amount of DOX released at pH 5.0 was significantly more than that at
pH 7.4 in the same time period [65,67,68]. Chang et al. conjugated PTX to the end group
(-NH2) of the backbone of PEG-b-PBLA via a reduction-responsive disulfide linkage using
3,3′-dithiodipropionic acid as a coupling agent, and results showed that the release rate of
PTX in an environment with 10 mM GSH (mimicking the environment in tumor cells) was
significantly higher than that in an environment with 2 µM GSH (mimicking the environ-
ment in human blood) [111]. Therefore, the introduction of stimuli-responsive cleavable
linkages is a key strategy for the controlled drug release of polymer-drug conjugates.

For nanoparticle drug delivery systems prepared from amphiphilic polymers, the
response to environmental stimuli generally can break the hydrophobicity-hydrophilicity
balance, thereby disturbing the stability of the drug-loaded nanoparticles to achieve the
aim of drug release. Gu et al. prepared DOX-loaded nanoparticles by dialysis using
temperature-responsive PAIPAHA as polymeric carrier, and their DOX release profiles
evaluated at different temperature showed that the release amount and rate of DOX at
37 ◦C (human body temperature, 45% within 10 h) were both higher than that at 25 ◦C
(room temperature, 35% after 110 h) [27]. This may be caused by the LCST of PAIPAHA
(30 ◦C) being between room temperature and body temperature. When the environmental
temperature is higher than the LCST of PAIPAHA, the formed nanoparticles were disturbed
and became unstable due to the weakened hydrogen-bonding or hydrophobic interactions
between PAIPAHA and DOX. Thus, temperature can be used as a switch to control the drug
release. The response to pH or GSH can also be used to realize the controlled release of drug
from nanoparticles. Cai et al. prepared a disulfide cross-linked micellar nanodrug loaded
with sorafenib from pH/reduction dual-responsive mPEG-PAsp (MEA&DIP), and realized
controlled release of sorafenib using pH and GSH as the switch [112]. Due to the disulfide
cross-linking, this sorafenib-loaded nanodrug can remain stable in blood circulation, but it
can also rapidly release sorafenib inside cancer cells due to GSH-induced disulfide bond
breakage and the protonation of DIP (2-aminoethyldiisopropylamide) pendants in an
acidic environment (leading to a hydrophobic-to-hydrophilic change). Light with specific
wavelength also can be used as a stimulus for controlled drug release. After 15 min of
irradiation at 365 nm, PTX-loaded nanoparticles containing photo-cleavable o-nitrobenzyl
carbonate ester linkages showed an significantly faster PTX release behavior [35].

For hydrogels, drug release generally can be controlled by the degree of swelling, and
redox is one of the most investigated triggers due to the reductive environment in tumor
tissue (10 mM GSH). Krisch et al. chose fluorescein isothiocyanate-dextran as model drug
to investigate the drug release behavior. Results reveal that a reductive environment can
promote the release of model drug from S-S cross-linked PASPAm hydrogel, because the
degree of swelling increased (10 mM DTT in PBS) due to the cleavage of S-S linkages [81].
Park et al. prepared DOX-loaded PASPAm nanogels, the release rate of DOX in reductive
environment was significantly faster than that in non-reductive environment due to the
disintegration of nanogels [78].

4. Degradation

The degradability of PASPAm derivatives is based on the hydrolysis process of amide
linkages in their backbone. Many studies have confirmed that the backbone of PASPAm
derivatives can be degraded by bacteria (i.e., strain KP-2: JCM10638, 15 days) [113,114],
enzyme (i.e., hydrolase purified from Sphingomonas sp. KT-1, β-amide linkage) [115,116]
or activated sludge (28 days) [117,118] after a few days. For PASPAm derivatives that
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respond to stimuli, the degradation site and behavior are more diverse. For instance,
Juriga et al. [119,120] investigated the degradability of cross-linked PASPAm hydrogels
containing disulfide linkages with different enzymes (trypsin-EDTA, dispase and collage-
nase I). Collagenase I showed the best effect for the degradation of hydrogel disk, followed
by trypsin-EDTA and then dispase, because collagenase I cleaved the disulfide linkages
in the hydrogel. Interestingly, the degradation of PASPAm derivatives containing pH-
responsive amino groups can be achieved without enzyme due to the nucleophilic attack
of the N in CONHside at the C in CONHmain [121], and can be affected by their pendant
moieties. Naito et al. [7] reported that the bearing pendants with a longer alkyl spacer (i.e.,
3-aminopropylamide (3 carbons), 4-aminobutylamide (4 carbons)) showed more strongly
suppressed degradation than that with a shorter alky spacer (i.e., 2-aminoethylamide (2
carbons)). Although the degradation of PASPAm derivatives has been widely investigated,
so far there have been no in vivo studies on their degradation.

5. Conclusions

With the ever-increasing demand for novel smart materials in biomedical fields, the
development of stimuli-responsive PASPAm derivatives has attracted more and more
attention due to their biocompatibility and biodegradability. From a synthesis point of
view, most stimuli-responsive PASPAm derivatives can be easily prepared by introduc-
ing functional groups or moieties that respond to various stimuli, but it is worth not-
ing that temperature-responsive PASPAm derivatives can also be synthesized without
introducing specific temperature-responsive moieties. In addition, some temperature-
responsive PASPAm derivatives possess pH responsiveness even without introducing
pH-responsive functional groups or pH-cleavable linkages. Thus, the pH response mech-
anism of temperature-responsive PASPAm derivatives needs to be studied in depth in
the future.

From an application point of view, stimuli-responsive PASPAm-based drug delivery
systems including nanoparticles, hydrogels and polymer-drug conjugates are reviewed
in this paper from two aspects: drug loading and controlled release. External stimuli
can not only be utilized to achieve convenient drug loading but also controlled drug
release. Temperature and pH generally can be used as triggers to realize drug loading for
nanoparticles, while thiol groups and light with specific wavelength usually can be used
as triggers to prepare drug-loaded hydrogels. Although temperature has been reported
to trigger the preparation of drug-loaded hydrogels by other temperature-responsive
materials, there is no report on the use of temperature-responsive PASPAm derivatives
to prepare drug-loaded hydrogels. Considering the advantages of the stimuli-triggered
drug loading method (avoiding the use of toxic organic solvents and high drug loading
efficiency), such studies may be an interesting area in drug delivery systems. For controlled
drug release, it can be triggered by most of stimuli, such as temperature, pH, GSH and
light. NC-6300, which exhibits selective release of EPI into tumor tissue, is a typical
representative of stimuli-responsive polymer-drug conjugates for drug delivery based on
PASPAm derivatives.

In conclusion, stimuli-responsive PASPAm derivatives hold great prospects as drug
carriers. Although some considerable progress has been made, there are still some issues
that have not yet been clarified in terms of response mechanisms. Taking account of
the growing interest in stimuli-responsive polymers, more interesting stimuli-responsive
PASPAm derivatives may be designed and applied for drug delivery in the future.
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