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Background: The coronavirus disease-19 (COVID-19) pandemic has cost lives and economic hardships glob-
ally. Various studies have found a number of different factors, such as hyperinflammation and exhausted/
suppressed T cell responses to the etiological SARS coronavirus-2 (SARS-CoV-2), being associated with severe
COVID-19. However, sieving the causative from associative factors of respiratory dysfunction has remained
rudimentary.
Methods: We postulated that the host responses causative of respiratory dysfunction would track most
closely with disease progression and resolution and thus be differentiated from other factors that are statisti-
cally associated with but not causative of severe COVID-19. To track the temporal dynamics of the host
responses involved, we examined the changes in gene expression in whole blood of 6 severe and 4 non-
severe COVID-19 patients across 15 different timepoints spanning the nadir of respiratory function.
Findings: We found that neutrophil activation but not type I interferon signaling transcripts tracked most
closely with disease progression and resolution. Moreover, transcripts encoding for protein phosphorylation,
particularly the serine-threonine kinases, many of which have known T cell proliferation and activation func-
tions, were increased after and may thus contribute to the upswing of respiratory function. Notably, these
associative genes were targeted by dexamethasone, but not methylprednisolone, which is consistent with
efficacy outcomes in clinical trials.
Interpretation: Our findings suggest neutrophil activation as a critical factor of respiratory dysfunction in
COVID-19. Drugs that target this pathway could be potentially repurposed for the treatment of severe
COVID-19.
Funding: This study was sponsored in part by a generous gift from The Hour Glass. EEO and JGL are funded by
the National Medical Research Council of Singapore, through the Clinician Scientist Awards awarded by the
National Research Foundation of Singapore.
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Introduction

The novel coronavirus, SARS-CoV-2, has emerged to threaten
global health and economic security. Following viral infection, indi-
viduals can be asymptomatic or present with mild symptoms such as
fever, dry cough and lethargy. In some cases, patients develop severe
pulmonary dysfunction, including acute respiratory distress syn-
drome (ARDS), which is associated with poor prognosis. Clinical
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management of patients that progress to respiratory failure involves
intensive care management and reliance on ventilators, which can
impose a significant burden on healthcare systems that are already
overstretched [1]. Pathogenic mechanism guided approach to expand
the extremely limited therapeutic options for COVID-19 could miti-
gate the present negative impact of this pandemic on global health
and economies.

Rapid progress in research has identified several factors that are
associated with severe COVID-19. Increased inflammatory mono-
cytes and neutrophils, accompanied by a sharp decline in lympho-
cytes, including T cell count and activation, have been found to be
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Research in context

Evidence before this study

The COVID-19 pandemic has caused significant mortality and
morbidity worldwide, but the principal drivers leading to
severe disease progression and resolution remain poorly
understood. Studies on severe COVID-19 patients have indi-
cated that increased dysregulation and hyperactivation of the
innate and acquired immune systems are associated with
severity of the disease. However, it is unclear which of these
responses are causative or merely associative.

Added value of this study

Through daily transcriptomic profiling of severe and non-
severe COVID-19 patients spanning the nadir of respiratory
function, this study reveals that neutrophil activation but not
type I interferon signaling transcripts, tracked most closely
with severe disease progression and resolution. This study thus
highlights neutrophil activation as a critical factor of respiratory
dysfunction in COVID-19.

Implications of all the available evidence

Our findings can guide the future development of therapeutics
against COVID-19. As neutrophil activation is functionally
involved in COVID-19 resolution, drugs that target this pathway
could be repurposed for the treatment of severe COVID-19.
Moreover, our data may provide a valuable resource towards
our understanding of the host-pathogen dynamics involved in
severe COVID-19 disease progression and resolution.

associated with severe COVID-19 [2-5]. Severe COVID-19 patients
have also shown heightened production of proinflammatory cyto-
kines (TNF, IL-6 and IL-1) and interferon (IFN) [5]. However, these
responses are highly dynamic and changes daily following illness
onset [6]. Their statistical association with severe COVID-19 may
be heavily influenced by sampling points in the course of acute ill-
ness. Consequently, efficacy outcome of trials that tested inhibitors
of hyperinflammation have been, at best, mixed. For instance,
despite the consistent findings of elevated IL-6 expression in
COVID-19 patients, IL-6 inhibitors (tocilizumab and sarilumab)
failed to show efficacy in preventing severe COVID-19 [7,8]. IFN
therapy reduced mortality if administered early, but late adminis-
tration potentially worsens disease outcome [9]. IL-1 receptor
antagonist (Anakinra) and TNF antagonists are promising candi-
dates [10,11] but their effectiveness have yet to be evaluated in
randomised, placebo-controlled trials. Among the licensed cortico-
steroids, only dexamethasone has shown efficacy in reducing
COVID-19 mortality [12]. Moreover, T cell related therapies, such
as the use of checkpoint inhibitors could be useful in preventing
respiratory dysfunction given the findings of exhausted T cell phe-
notype in COVID-19 patients [13]. However, overcoming T cell
exhaustion risks exacerbating the hyperinflammatory state. The
mixed clinical trial outcomes of anti-inflammatory therapy and the
uncertain clinical risk-benefit of T cell related therapies collec-
tively underscore a lack of resolution on the causative factors of
severe COVID-19. Sieving the causative from the associative factors
of pulmonary dysfunction thus remains an unmet need.

To define the principal drivers of pulmonary dysfunction in
COVID-19 patients, we focused our attention on the host response
to SARS-CoV-2 infection around the period of the nadir of respira-
tory function. We hypothesised that the principal drivers of
COVID-19 severity must track tightly with respiratory function and
must resolve in sync with respiratory improvement. Thus, instead

of time interval analysis [14—16], we performed daily transcrip-
tomic profiling to obtain a detailed continuum of the host immune
response in COVID-19 patients before, during and after the nadir of
respiratory function. We found that the neutrophil activation path-
way, but not type-I IFN signaling pathways, showed a direct
inverted relationship with respiratory function — genes in this
pathway increased and peaked during the nadir of respiratory
function and then declined during the recovery phase. On the
other hand, transcripts associated with protein phosphorylation
pathways, particularly the serine threonine kinases involved in
cell cycle progression and T cell development increased at conva-
lescence. The understanding of the temporal dynamics involved in
severe COVID-19 progression and recovery provided insights into
the potential drug candidates that can be considered to reduce the
disease burden caused by SARS-CoV-2 infection.

Methods
Ethical approval

COVID-19 patients included 8 male patients and 2 female
patients. The average age of patients was 57 years (s.d.: 12.8,
range: 37-76 years). Detailed subject demographics are detailed
in Supplemental Table 1. Following written informed consent, all
patients were recruited under the Novel Pathogen Study Protocol.
This study was approved by the SingHealth Combined Institutional
Review Board (2013/397/F) and the patients were enrolled for the
study at Singapore General Hospital. Healthy controls consisted of
baseline samples obtained from participants of a measles, mumps
and rubella re-vaccination study [17]. Ten healthy control individ-
uals (7 females, 3 males) were included, with average age of 44.1
years (s.d.: 11.8, range: 30—61 years). All participants gave written
informed consent, and study approval was obtained from the Sing-
Health Combined Institutional Review Board (CIRB 2017/2374).

Patients and clinical data collection

Patients hospitalised at Singapore General Hospital (SGH) test-
ing PCR-positive for SARS-CoV-2 were approached to seek
informed consent to participate in the study. Samples were col-
lected from recruited patients between January 2020 to April
2020. Clinical data was obtained from the patients’ medical records
and clinical charts.

Microarray analysis

RNA was isolated from whole blood collected in Tempus Blood
RNA tubes (Applied Biosystems Cat# 4342792) using the Tempus
Spin RNA Isolation Kit (Life Technologies Cat# 4380204) according to
manufacturer’s instructions. Bioanalyzer assessment was performed
on RNA samples before microarray was performed using the Affyme-
trix GeneChip Human Gene 2.0 ST Array (Applied Biosystems Cat#
902113) at the Duke-NUS Genome Biology Core Facility. Briefly,
50 ng of each RNA sample was processed using Affymetrix GeneChip
Whole Transcript (WT) PLUS Reagent Kit (Applied Biosystems Cat#
902280), according to manufacturer’s instructions. 15 ug of cRNA
was used for the second cycle cDNA reaction and 5.5 g of ss-cDNA
was used for fragmentation. DNA fragment was end-labeled with bio-
tin using terminal deoxynucleotidyl transferase before hybridisation
on the arrays. Hybridisation cocktails containing fragmented, end-
labeled cDNA were prepared and applied to GeneChip Human Gene
2.0 ST arrays. Hybridisation was performed at 60 rpm for 16h at 45°C
using the FS450_0001 fluidics protocol. Arrays were scanned using
Affymetrix GeneChip Command Console Software (AGCC) to produce
.CEL intensity files. The raw .CEL intensity files and the processed files
are deposited in ArrayExpress.
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NanoString profiling

NanoString profiling was performed using the nCounter Human
Immunology v2 Panel (NanoString Technologies, Inc. Cat# XT-CSO-
HIM2-12). 50 ng of RNA was mixed with 8 ul of reporter probeset
and 2ul of capture probeset, and incubated at 65 °C for 24 h. Hybri-
dised samples were loaded onto an nCounter Sprint cartridge and
imaged on a nCounter Sprint system. Raw and normalised counts
were derived with the NanoString nSolver 4.0 software as per manu-
facturer’s protocols. nCounter probe sets included negative and posi-
tive controls that were used for background thresholding, and
normalizing samples for differences in sample input or hybridisation.

Plaque reduction neutralisation test

Plaque reduction neutralisation test (PRNT) was carried out on
Vero E6 cells (RRID:CVCL_0574). Briefly, serial two-fold dilution of
serum samples in DMEM media (Gibco Cat# 11995-040) containing
2% FCS (Hyclone Cat# SH30396.83) was incubated with 40 pfu of
SARS-CoV-2 clinical isolate in equal volumes for 1 h. Thereafter,
100 wL of this serum/virus mix was added to Vero E6 cells in 24-well
plates and incubated for 1 hour at 37 °C, rocking every 15 min. After
1 h, serum/virus mix was removed and cells overlaid with 500ul of
0.8% methylcellulose (Calbiochem Cat# 17851) in DMEM media
(DMEM, 2% FCS, 25 mM HEPES, 1x penicillin/streptomycin). After
incubating at 37 °C for 4 days, the cells were fixed with 4% formalde-
hyde for 30 min to inactivate the virus. Plates were rinsed with water
and stained with 0.5% crystal violet for 5 min to visualise plaques.
Excess crystal violet was removed and plates were rinsed with water,
and allowed to dry before counting plaques.

CIBERSORT and cross-referencing with COVID-19 databases

The CIBERSORT tool was used to digitally quantify the relative fre-
quencies of different immune cell types across time (https://ciber
sort.stanford.edu) [18]. To assess if the upregulated proteins in the
protein phosphorylation pathway had altered phosphorylation levels,
genes from the protein phosphorylation pathway were cross-refer-
enced with the phosphoproteome study described by Bouhaddou
et al. [19]. Differential levels of phosphorylation modulated by SARS-
CoV-2 infection in Vero E6 were extracted from the data analysis by
Bouhaddou et al. For the analysis of the potential drugs that can tar-
get module A genes, we used the Drug Gene Interaction Database
(DGIdb) to query the genes represented in module A. As clusters 3
and 4 are most associated with severe disease progression and reso-
lution, the drugs that exclusively target only clusters 1 or 2 were fil-
tered out. Subsequently, the top drug candidates were ranked based
on the total number of genes targeted in module A [20]. The clinical
usage information was obtained from Health Sciences Authority
(HSA) at the website:

(https://eservice.hsa.gov.sg/prism/common/enquirepublic/Search
DRBProduct.do?action=load&_ga=2.183810082.563179921.
1554083187-551332391.1551944793). Other information pertaining
to the drugs such as route of administration and inflammatory prop-
erties were obtained via UptoDate and clue.io.

Statistical analysis

The Transcriptome Analysis Console (Thermo Fisher) was used to
analyse transcriptomic changes between the different days relative
to respiratory nadir function (Day 0). Differentially expressed genes
(DEGs) were defined based on fold-change > 1.5 with respect to day
0, with false discovery rate adjusted p-value < 0.05 using the Benja-
mini-Hochberg Step-Up FDR-controlling Procedure («=0.05). For
pathway analysis, the identified DEGs were used as input data and
analysed against the Gene Ontology (GO) Biological Processes

database using the Enrichr tool [21]. Adjusted p-values for each
enriched pathway were obtained from the Enrichr tool analysis, and
REVIGO was used to summarise the non-redundant GO terms [22].
Volcano plots and heatmaps were constructed using the Prism 8.4.3
software.

Temporal gene expression was analysed using EDGE on log2
intensity counts [23]. A total of 4,831 genes were temporally altered
in severe COVID-19 patients, p-value < 0.05 and g-value < 0.05. Co-
clustering of significant genes was analysed using Self-Organizing
Maps (SOM) from Partek® Genomics Suite® based on the tabulated
Least Square Means (LSMeans). 8 main clusters were identified which
can be classified into module A and module B, representing 99.7% of
the total significant genes. We excluded cluster 9 from further analy-
sis as it contained only 13 genes. The genes in the different SOM clus-
ters were then queried using the Enrichr tool to identify significantly
enriched pathways (based on adjusted p-value < 0.05). To visualise
the expression changes of pathway genes across time in severe and
mild COVID-19 patients, normalised expression was tabulated by tak-
ing the average LSMeans values of all significant genes in the indi-
cated pathways, such as cellular response to type I IFN pathway,
regulation of immune effector process, neutrophil mediated immu-
nity and protein phosphorylation pathways. Graphs and heatmaps
were constructed using the Prism 8.4.3 software. To visualise the
functional network and interacting partners involved in the protein
phosphorylation pathway, the RegPhos database [24] and Ingenuity
Pathway Analysis were used. For Principal Component Analysis
(PCA), normalised gene transcript counts profiled using the Nano-
String Human Immunology Panel v2 were used for analysis, where
the R packages used are factoextra, ggplot2 and FactoMineR. Pearson
correlation analysis was performed using Prism 8.4.3 software.

Data and code availability

The raw data for microarray profiling is available at Array Express (E-
MTAB-9721). The raw data and normalised counts for NanoString profil-
ing of immune responses is available at Array Express (E-MTAB-9719).

Role of funding source

The funders have no role in study design, data collection, data
analyses, interpretation or writing of report.

Results
Clinical profile of recruited patients

We prospectively enrolled 10 SARS-CoV-2 confirmed patients
admitted to the Singapore General Hospital after written informed con-
sent. Full blood count, C-reactive protein (CRP) and lactate dehydroge-
nase (LDH) were measured as part of routine COVID-19 clinical
management. These data are shown in Supplemental Figure 1a-d, with
normal reference range for healthy subjects shaded in grey. The severe
and moderately severe COVID-19 patients displayed lymphopenia
despite normal white blood cell (WBC) counts, and exhibited higher
CRP and LDH levels compared to the mild COVID-19 patients. These lab-
oratory parameters were tracked longitudinally, and were consistent
with previously reported associations with severe COVID-19 [25,26].
Supplemental oxygen was administered if arterial oxygen saturation
dropped below 95%. We used oxygen requirement to stratify patients
into mild, moderately severe or severe COVID-19. Of the 10 patients, 4
were classified as mild as they did not require supplemental oxygen
over the course of hospitalisation. Of the remaining 6 patients, all
patients required supplemental oxygen; 5 patients needed more than 2
liters/minute of supplemental oxygen, requiring either non-invasive or
invasive mechanical ventilation (MV) while the remaining patient
received not more than 2 liters/minute of supplemental oxygen
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Fig. 1. Suppression of IFN and Toll-like receptor signaling pathways precede the increase in T cell proliferation and activation pathways during the recovery phase. (a) Over-
view of clinical status for severe (P1, P2, P3, P4 and P5) and moderately severe (P6) patients. (b) Summary of sampling points for whole blood collection from severe (red), moder-
ately severe (orange) and mild (blue) patients. Circles indicate the time-points analysed by microarray and crosses indicate the time-points used for NanoString analysis. (c)
Waterfall plot representing the number of differentially upregulated and downregulated genes (Fold change > 1.5, adjusted p-value < 0.05; Benjamini-Hochberg step-up proce-
dure) relative to nadir (day 0) in the severe patients (n=6). (d) Volcano plot displaying genes that were differentially expressed at day 7 post-nadir relative to day O in the severe
patients (n = 6). Genes that were most differentially regulated were annotated on the volcano plot. (e) PCA of the NanoString data for healthy controls (black, n = 9), mild (blue,
n = 3), moderately severe (orange, n = 1) and severe (red, n = 5) COVID-19 patients at the various days relative to respiratory function nadir. The top contributing genes in the respec-

tive PC is shown in Supplemental Figure 2b.

throughout hospitalisation (Supplemental Figure 1e). All 6 patients were
considered to have moderately severe or severe COVID-19, and were
considered as a group in our analysis. In addition, patients who required
supplemental oxygen were tracked using a 4-point ordinal scale, pro-
viding an overview of the disease progression and recovery over time
(Fig. 1a). For the 5 patients that needed non-invasive ventilation (NIV)
or MV, the day of respiratory function nadir was defined as the day the
patient was initiated on NIV or MV. For P6, the patient with moderately
severe COVID-19, day of respiratory function nadir was defined as the

day when arterial oxygen saturation was lowest at 93% (Supplemental
Figure 1e).

Suppression of type-I IFN and Toll-like receptor signaling
pathways preceded the increase in T cell proliferation and
activation pathways during convalescence

To interrogate the transcriptomic changes spanning the nadir of
respiratory function nadir, we sampled daily, where possible, whole
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Fig. 2. Self-organizing map (SOM) clusters reveal distinct transcriptional dynamics in severe COVID-19 patients. (a-b) Average expression of significant transcripts (shown in
red line) modulated by severe and moderately severe COVID-19 patients determined by EDGE (p-value < 0.05; g-value < 0.05; likelihood ratio test), in the respective SOM clusters.
Module A (Clusters 1-4) highlights clusters with reduced gene expression post-nadir, and module B (Clusters 5-8) highlights clusters with increased gene expression post-nadir. n
indicates the total number of transcripts in each cluster and error bars indicate standard deviation. The top 150 genes in each cluster is shown in Supplemental Figure 3c-d. (c) Path-

way analysis of genes in clusters 1-4 in severe and moderately severe COVID-19 patients (n = 6). Pathways were
using Enrichr. All pathways with adjusted p-values < 0.05 (hypergeometric test) are displayed. (d-f) Normalised

analysed against the Gene Ontology Biological Processes database
expression levels for all significant genes in the GOBP pathway for

cellular response to type I IFN, regulation of immune effector process, and neutrophil mediated immunity over time in severe and moderately severe COVID-19 patients (n = 6). n

refers to the number of significant genes involved in the respective pathways. Data are represented as mean = SD.

levels are displayed in Supplemental Figure 3e, g and i.

The individual genes and least squared mean (LSmean) expression
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blood from COVID-19 patients ranging from -4 days to 13 days, with
the nadir being day 0 (Fig. 1b, Supplemental Figure 2a). Healthy con-
trols consisted of baseline samples obtained from participants of a
measles, mumps and rubella re-vaccination study (CIRB 2017/2374),
as previously reported [17].

We first sought to attain an overview of whole genome expression
changes before, during and after the nadir of respiratory function.
Measurement of 29,405 annotated gene transcripts by microarray
showed that the number of differentially expressed genes (DEGs)
increased with time post-nadir (false discovery rate [FDR]-adjusted p
< 0.05 and fold change [FC] > 1.5; Benjamini-Hochberg step-up pro-
cedure) (Fig. 1c¢). Functional annotations of the DEGs revealed that
cytokine and IFN-dependent immune responses, inflammatory sig-
naling pathways, neutrophil mediated immunity and necrotic cell
death pathways were most significantly reduced with time (Supple-
mental Figure 2a). Notably, the most downregulated genes belonging
to these pathways were IFIT1, IFI27, IFI44, IFI44L, CXCL10, RSAD2 and
0AS3 (Fig. 1d). In contrast, no consistent pathway was found among
the upregulated genes, with the most upregulated genes being
involved in metabolism and transport (RPIA, SLC14A1, SELENBP1),
cytoskeleton (PLEK2, EPB42) and Notch signaling (TSPAN5) (Fig. 1d).

Changes in expression of the innate and adaptive immune
response genes were validated using the nCounter assay (NanoString
Technologies), which allows simultaneous digital quantification of
579 immune-related mRNA transcripts. Mild COVID-19 patients and
healthy controls were included in this analysis. Principal component
analysis (PCA) confirmed that COVID-19 patients clearly segregated
from healthy subjects in the PCA space (Fig. 1e). Moreover, distinct
temporal immune signatures between mild and severe patients could
also be largely explained by the variance in principal component (PC)
1 (Fig. 1e). The top contributors in PC1 were transcripts related to
TLR signaling (TLR2, TLR4, TLR5, TLR8) and inflammatory responses
(PRKCD, MAPK14) (Supplemental Figure 2b). Critically, these tran-
scripts were over-expressed in severe COVID-19 patients before or
on the day of respiratory function nadir; these genes were universally
downregulated after the nadir of respiratory function (Supplemental
Fig. 2b). On the other hand, PC3 segregated the healthy subjects from
the infected patients. The top contributors are genes related to cyto-
kine and IFN responses such as CXCL10, MX1, BST2, LAMP3 and IFI35,
where higher levels of these transcripts were observed in both mild
and severe COVID-19 patients, but not in healthy subjects (Supple-
mental Figure 2b). Of note, PC2 did not segregate the healthy from
the infected patients (Supplemental Fig. 2c-d). Consistent with the
microarray observations, the most significant immune pathways that
showed reduced expression with time were the type-I IFN and TLR
signaling pathways (Supplemental Figure 2e-f). On the other hand,
immune pathways that were increased during the recovery phase
included pathways related to T cell proliferation and activation (Sup-
plemental Figure 2e, g). Collectively, these findings highlight that the
suppression of the type-I IFN and TLR signaling pathways precedes
restoration of the T cell proliferation and activation pathways.

Identification of eight distinct gene expression clusters that are
temporally modulated in severe COVID-19 patients

To determine the genes that tracked with disease progression and
resolution, we used extraction and analysis of differential gene
expression (EDGE) to obtain greater insight on temporally regulated
transcripts over the course of illness in severe patients. We identified
4,831 genes (FDR-adjusted p-value < 0.05; g-value < 0.05; Benja-
mini-Hochberg step-up procedure), that were significantly altered
over time in the 6 severe COVID-19 patients (Supplemental Fig. 3a-
b). Self-organizing map (SOM) analysis of the 4,831 genes further
revealed that these genes could be grouped into 8 distinct expression
clusters— linear plots of expression of genes within each of these
clusters against time are shown in Fig. 2a-b. These clusters can be

broadly segregated into 2 main modules: Module A highlights the
genes with reduced expression after respiratory nadir; module B
highlights the genes with increased expression after respiratory nadir
(Fig. 2a-b). In module A, clusters 1 and 2 showed a decreasing trend
in gene expression from day -4 to day 13. Expression of genes in clus-
ters 3 and 4 trended with respiratory dysfunction - expression
increased from day -4 to day O and declined after day O during the
recovery phase (Fig. 2a). In module B, increased expression of the
majority of the genes were observed after day 0 (Clusters 5-7), albeit
at different rates in the different clusters (Fig. 2b). The identity of the
genes and heatmaps of the top 150 genes in each cluster are dis-
played in Supplemental Figure 3c-d.

We next examined the molecular pathways that were enriched in
module A. Consistent with the observations from the nCounter assay,
the top enriched pathway in cluster 1 is the cellular response to type
I IFN (Fig. 2c), where a monotonic decrease in gene expression was
observed from day -4 to day 13 (Fig. 2d). Cluster 1 contains 24 genes
involved in the IFN response pathway, the majority of which are IFN-
stimulated genes (ISGs) (Supplemental Figure 3e). Similar trends
were also observed in mild COVID-19 patients although changes in
the expression of these genes were smaller compared to severe cases
(Supplemental Fig. 3f). In cluster 2, the most enriched pathway is the
regulation of immune effector process (Fig. 2¢), where the majority of
these transcripts encodes for the variable and constant regions of the
immunoglobulin heavy and light chains (Supplemental Figure 3g).
These genes were less abundant in whole blood from day -4 to day 0,
increased transiently from day 0-4, and then declined thereafter in
the severe patients (Fig. 2e). In contrast, expression of these genes
increased over time in mild patients (Supplemental Figure 3h). Along
with the differences in immunoglobulin transcript temporal profiles,
severe cases developed higher titers of neutralizing antibodies to
SARS-CoV-2 compared to mild cases (Supplemental Table 1). Taken
collectively, our data suggests that the reduction in immunoglobulin
transcripts may be explained by greater proportion of B cell migra-
tion to lymphoid organs in severe compared to mild cases.

The expression of genes that tracked most closely in temporal
terms relative to disease progression and resolution were in clusters 3
and 4 (Fig. 2a). Neutrophil mediated immunity and neutrophil activa-
tion were the top 2 enriched pathways in cluster 3 (Fig. 2c). Other
enriched pathways in cluster 3 were cellular response to mechanical
stimulus, regulation of NFKB transcription factor activity, pattern rec-
ognition receptor signaling and IFN-gamma-mediated signaling path-
ways (Fig. 2c). Cluster 4 only had neutrophil mediated immunity
pathway being significantly modulated. Combining both clusters 3 and
4, we identified 87 genes involved in neutrophil mediated immunity
that showed peak expression during the nadir of respiratory function;
expression waned with upswing in respiratory function (Fig. 2f, Sup-
plemental Figure 3i). Critically, the expression of these genes remained
unchanged throughout the period of monitoring in mild patients (Sup-
plemental Figure 3j). Collectively, these data support the notion that
neutrophils may play a key role in shaping disease severity.

The abundance of genes identified in the SOM analysis could be
influenced by changes in cell counts during acute and convalescent
phase of infection. We thus analysed our data using CIBERSORT,
which deconvolutes bulk gene expression data to enumerate
immune cell type frequencies [27]. The plasma cell frequencies signif-
icantly correlated with the transcript levels of immunoglobulins
(IGHV4-39, IGKV2D-40) from cluster 2, indicating that the reduced
abundance of the immunoglobulin transcripts involved in immune
effector processes reflected lower plasma cell frequencies (Supple-
mental Figure 4a). In contrast, monocyte, neutrophil and naive CD4*
T cell frequency levels did not correlate with temporally regulated
genes in the IFN response, neutrophil activation and T cell activation
pathways (Supplemental Figure 4b-d), suggesting that transcriptional
changes observed in these pathways in severe COVID-19 patients
reflected the activation status of immune cells.
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Increased protein phosphorylation signatures after respiratory
function nadir in severe COVID-19 patients

Pathway enrichment on module B genes only led to significant
enrichment of protein phosphorylation, particularly peptidyl-serine
phosphorylation, in cluster 6 (Fig. 3a). No significant pathways were
found in the other clusters (adjusted p-value > 0.05; hypergeometric
test). We identified 36 genes that were significantly upregulated in
the protein phosphorylation pathway, of which 20 were serine-thre-
onine kinases (Fig. 3b-c). When these genes were cross-referenced
against RegPhos, which allows for exploration of the human protein
phosphorylation regulatory network [24], many of these kinases
were identified as interacting partners (Supplemental Figure 4e) in
the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) path-
way. Critically, these kinases are involved in cell growth, cell survival
and T cell development (Fig. 3d), which could be crucial for renewal
and regeneration of immune cells after viral infection. We also found
that 12 of the 36 genes (33.3%) were differentially phosphorylated
during SARS-CoV-2 infection (Supplemental Table 2). Of note, genes
associated with the protein phosphorylation pathway were similarly
increased in mild patients over time, albeit to a lesser extent as com-
pared to severe patients (Supplemental Figure 4f). Collectively,
increased expression of serine-threonine kinases over time suggests
a protective role for these kinases in COVID-19 disease resolution.

Potential molecular targets for drug repurposing

Our analyses thus far suggest that genes in clusters 3 and 4 that
are involved in neutrophil activation, pattern recognition receptor
signaling and NFkB-mediated responses are functionally involved in
COVID-19 resolution, as these genes are most strongly associated
with severe COVID-19 disease progression and resolution (Fig. 2a, c).
To validate this notion, we cross-referenced the transcripts in clusters
3 and 4 with the Drug Gene Interaction Database (DGIdb), which is a
curated resource that can be used to search for druggable targets of
the human genome [20]. If indeed our analysis was clinically perti-
nent, we should identify therapies with demonstrated efficacy in
reducing COVID-19 severity. One such drug is dexamethasone. This
corticosteroid has been found to reduce mortality rates in severe
COVID-19 patients [28]. We found that amongst the module A genes,
6 were known targets of dexamethasone. Of the 6 genes targeted by
dexamethasone, 2 were in clusters 3 and 4 (Fig. 4). Specifically, dexa-
methasone was found to act on JUNB and IRS2 (insulin receptor sub-
strate 2) of clusters 3 and 4, respectively (Supplemental Table 3).
Both these genes are involved in the cytokine-mediated signaling
pathway and are most highly expressed in neutrophils compared to
other blood cells [29]. Notably, aspirin was identified as the top drug
that inhibits the most genes in clusters 3 and 4, which corroborates a
recent cohort study showing that aspirin use is associated with less
mechanical ventilation, ICU admissions and mortality in hospitalised
COVID-19 patients [30]. In contrast, host targets of a different cortico-
steroid, methylprednisolone [12,31], and other drugs such as azithro-
mycin, lopinavir-ritonavir and hydroxychloroquine [31-34], all of
which have shown no efficacy in improving clinical outcomes in
COVID-19 patients, were absent from the hits in clusters 3 and 4.
Likewise, host-directed anti-IL-6 therapies such as tocilizumab and
sarilumab were also not highlighted in this cross referencing. Our
findings are thus consistent with previously published efficacy trials
for severe COVID-19.

Given how we were able to identify targets of dexamethasone but
not other host-directed therapies in our analysis, we next sought to
identify other drugs that may be suitable for repurposing as anti-
COVID-19 therapies (Fig. 4; Supplemental Table 3). Moreover, as the
cluster 6 genes from module B consist of serine-threonine kinases
that could be important for convalescence, we also highlighted the
drug candidates that inhibited module A genes without known
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Fig. 4. Candidate drugs that target clusters 3 and 4. Clinically approved oral drugs
that target genes in clusters 3 and 4. Data obtained by cross-referencing with DGIdb.
Drugs that also target cluster 6 genes are indicated in blue, whereas drugs do not inter-
fere with cluster 6 genes are indicated in purple. The genes that the drugs target are
shown in Supplemental Table 3.

activity on cluster 6 genes (Fig. 4). Many of these drugs are anti-
inflammatory, such as aspirin, sulfasalazine, celecoxib and indometh-
acin. Interestingly, several statins such as lovastatin, atorvastatin and
simvastatin can specifically target module A genes without affecting
the expression of genes from cluster 6. The full list of the potential
drug candidates and their corresponding gene targets are detailed in
Supplemental Table 3.

Discussion

Longitudinal sampling of blood and other samples from COVID-19
patients has enabled the identification of multiple associative factors
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of respiratory dysfunction. However, associative factors that could
also drive pulmonary dysfunction in COVID-19 patients have not
been systematically defined. A major limitation to identifying drivers
of SARS-CoV-2 infection induced pulmonary dysfunction is the lack
of an animal model that accurately recapitulates COVID-19 pathogen-
esis in humans. To overcome this hurdle, we postulated that the host
response to SARS-CoV-2 infection around the period of the nadir of
respiratory function could provide us with a window into distin-
guishing the pathogenic from the associative factors of respiratory
dysfunction. The principal drivers of COVID-19 severity should
resolve before or track tightly with respiratory function.

To test our postulate, we coupled daily sampling with full genome
gene expression measurement in combination with EDGE and SOM
analyses. We identified 8 distinct gene expression clusters that were
altered over the course of disease in severe patients. Cluster 1 and 2
contained transcripts, many of which are IFN-stimulated genes (ISGs)
[35] and other immune effectors, all of which showed a sustained
decrease in gene expression starting from day -4 relative to the nadir
of respiratory function. That these pathways did not track tightly
with respiratory function suggest that the pro-inflammatory and
other immune responses may initiate the cascade of processes neces-
sary for disease pathogenesis but are not the principal drivers of
respiratory dysfunction.

Transcripts that tracked most closely with progression and resolu-
tion of respiratory dysfunction were in clusters 3 and 4. These tran-
scripts belong to neutrophil-mediated activation, pattern recognition
receptor signaling and NF-kB activation pathways. They were signifi-
cantly enriched in severe COVID-19 patients but not in patients that
did not develop progressive pulmonary deterioration. As the bone
marrow is the major site of neutrophil production, the increase in
cytokine and chemokine levels before respiratory function nadir
(cluster 1 and 2) could have led to an increased neutrophil-to-lym-
phocyte ratio in severe COVID-19 patients [36], leading to the accu-
mulation of activated neutrophils in the lung. Our finding is
congruent with previous studies showing elevated neutrophil infil-
tration, activation and neutrophil extracellular trap (NET) markers in
the lung of COVID-19 patients at post mortem examination [37,38].
Similarly, RNA-seq analysis of bronchoalveolar lavage fluid (BALF)
from COVID-19 patients identified an upregulation of neutrophil
enriched and chemotaxis genes (e.g. CD177, FPR2, CXCR1, CXCR2,
CTSZ, S100A8, S100A9) in COVID-19 BALF cells [39,40]. Of note,
S100A8 and S100A9, which were identified in cluster 3 (Supplemen-
tal Figure 3i), are also known to form a stable heterodimer during
inflammation known as calprotectin [41] — plasma calprotectin levels
have been found to discriminate between mild and severe COVID-19
patients [42]. Besides COVID-19, neutrophils are also enriched in the
lungs of patients with ARDS caused by other viral infections [43]. For
example, pathogenic influenza viral strains can cause increased neu-
trophil mobilisation and recruitment to the lungs in mice and
humans, that can result in excessive inflammation and fatality
[44,45]. Taken together, neutrophil activation may thus be an impor-
tant underpinning of respiratory dysfunction in COVID-19 patients.

An additional new finding was the increased transcript levels of
serine-threonine kinases (cluster 6) during the recovery from severe
COVID-19, raising the possibility that these kinases play an important
role in convalescence. Interestingly, many of these are serine-threo-
nine kinases involved in cell cycle progression, which is congruent
with the phosphoproteomics analysis conducted by Bouhaddou et al
that demonstrated that SARS-CoV-2 infection in Vero E6 cells influen-
ces the phosphorylation levels of cell cycle proteins such as PDPK1,
PRKACA, RAF1 and RPS6KA3 (Supplemental Table 2) [19]. Increased
expression and activation of these genes during recovery could facili-
tate cell cycle progression and aid in restoring the frequencies of
immune cell populations, particularly the T cells, that are decreased
over the course of the disease [4,6,37,38]. This explanation is further
supported by the observed increase in T cell transcripts starting from

day ~6 after respiratory function nadir. Thus, although the transcripts
in cluster 6 did not track with progression of respiratory dysfunction,
the coincidence of their expression in respiratory function recovery
suggests that T cell proliferation and development may be important
for convalescence.

The tracking of genes in clusters 3 and 4 with respiratory dysfunc-
tion are consistent with multiple transcriptomics and proteomics
studies in COVID-19 patients [46—49] (Supplemental Table 4). That
we observed these genes to be significantly altered in a high-resolu-
tion time series analysis further highlights the potential for these
genes to be targeted for treating severe COVID-19. Indeed, the finding
of dexamethasone [12] and aspirin [30] when we cross-referenced
our list with DGIdb, suggests the clinical validity of this approach. We
also identified sulfasalazine, an anti-inflammatory drug, as another
potential drug candidate that targets the most number of genes from
clusters 3 and 4. Interestingly, the third candidate, methotrexate is
an FDA-approved inhibitor of purine synthesis that can inhibit SARS-
CoV-2 replication [50]. Clinical trials to test the translatability of these
drug candidates could thus be particularly fruitful.

Our present study has some limitations. While this study provides
high resolution on the temporal dynamics of the host response
involved in disease progression and recovery, gene expression was
profiled from peripheral blood rather than infected organs. Direct
assessment of gene expression in infected organs would require inva-
sive procedures like bronchoalveolar lavage, which is ethically chal-
lenging for mild COVID-19 cases, and risks aerosolization of
infectious respiratory fluids that could compromise the safety of
healthcare workers. Measuring gene expression in peripheral blood
hence provides an opportunity to understand how the host response
to SARS-CoV-2 could impact clinical outcome. Furthermore, our find-
ings were based on a small sample size involving 10 COVID-19
patients, of which 8 were male (Supplemental Table 1). As males and
females may respond to COVID-19 differently [51—53], these tempo-
ral host responses may not be fully generalisable to females. As such,
increasing the sample size, as well as a deeper temporal characterisa-
tion of neutrophil gene expression changes, phenotype and function
at the target sites of infection could provide further mechanistic
insights into the molecular processes that drive disease pathogenesis
and recovery from severe COVID-19.

In conclusion, our results reveal the host responses involved in the
progression and resolution of respiratory dysfunction in COVID-19
patients, which could be useful in guiding the choice of drugs for
repurposing as COVID-19 therapeutics.
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