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Abstract: Poly(N-isopropylacrylamide) (PNIPAm) is a three-dimensional (3D) crosslinked poly-
mer that can interact with human cells and play an important role in the development of tissue
morphogenesis in both in vitro and in vivo conditions. PNIPAm-based scaffolds possess many desir-
able structural and physical properties required for tissue regeneration, but insufficient mechanical
strength, biocompatibility, and biomimicry for tissue development remain obstacles for their applica-
tion in tissue engineering. The structural integrity and physical properties of the hydrogels depend
on the crosslinks formed between polymer chains during synthesis. A variety of design variables
including crosslinker content, the combination of natural and synthetic polymers, and solvent type
have been explored over the past decade to develop PNIPAm-based scaffolds with optimized proper-
ties suitable for tissue engineering applications. These design parameters have been implemented
to provide hydrogel scaffolds with dynamic and spatially patterned cues that mimic the biological
environment and guide the required cellular functions for cartilage tissue regeneration. The current
advances on tuning the properties of PNIPAm-based scaffolds were searched for on Google Scholar,
PubMed, and Web of Science. This review provides a comprehensive overview of the scaffolding
properties of PNIPAm-based hydrogels and the effects of synthesis-solvent and crosslinking density
on tuning these properties. Finally, the challenges and perspectives of considering these two design
variables for developing PNIPAm-based scaffolds are outlined.
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1. Background

Bone, cartilage, and skeletal muscle can be severely injured by repeated overuse [1].
Due to their complex microstructural composition, severe injury to these tissues cannot heal
naturally [2]. To heal these injuries, current treatment methods include autologous and allo-
geneic grafting [3]. Autografts are active tissue parts coming from the same patient. Hence,
autografting shows a higher rate of success and speeds up the healing process. Although
it is considered the gold standard of treatment [4], this approach has some limitations,
including limited availability of donor tissue graft, multiple surgeries required to collect
and separate the grafts, and higher chance of morbidity and associated complications at
the donor site [4]. Allografting, on the other hand, uses the tissue of a deceased donor
for transplanting into the patient [5]. This method has some advantages over autograft
including no donor site morbidity, shorter surgical time and smaller incisions, and higher
availability for transplant [6]. Major drawbacks include potential immune rejection after
grafting and a higher risk of disease transmission. Tissue engineering techniques are being
developed to overcome the limitations of both autograft and allograft methods.

Tissue engineering is an interdisciplinary and rapidly growing field in life sciences
involving cell biology, biochemistry, clinical medicine, materials science, cell–material
interactions, and surface characterization [7]. The main goal of this field is to regenerate
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new biological tissues to replace previously damaged or diseased organs or tissues. Tissue
engineering typically involves the isolation of targeted cells (progenitor or stem cells) from
living tissues and harvesting in vitro. The isolated cells are then seeded and expanded on
three-dimensional (3D) scaffolds (natural or synthetic materials). These scaffolds mimic
the natural extracellular matrices (ECM) by providing support for cell function, adhesion,
and transplantation [8]. The key roles of scaffolds in tissue engineering are: deliver the
seeded cells to the desired site; stimulate cell–material interactions; induce cell adhesion;
and allow sufficient transport of nutrients and growth factors to support cell survival,
proliferation, and differentiation [9]. All these roles of scaffolds help to control the structure
and function of the engineered tissue. The cell-loaded scaffolds are then transplanted into
the patient’s body in any of the following ways: (1) direct injection via needle or other
minimally invasive delivery process and (2) implantation of the regenerated tissue at the
desired site using traditional surgery [10]. Finally, the scaffold degrades gradually as the
tissue develops and the damaged tissue is regenerated.

Among the different types of scaffolds, polymer hydrogels have attracted significant
attention in tissue engineering due to their similarity to the cellular microenvironment and
their tunable physicochemical properties [11]. Hydrogels play an important role in tissue
engineering due to their distinctive characteristics such as hydrophilicity, super-absorbency
(up to 1,000-fold compared to their dry weight), biocompatibility, biodegradability, porosity,
softness, and viscoelastic behavior resembling that of the natural tissue [12]. Hydrogels
are 3D network structures of highly hydrophilic regions formed via physical or chemical
crosslinking. Due to their crosslinked 3D structure, they can encapsulate cells in a ho-
mogeneous manner, and enhance cell–cell and cell–ECM interactions by providing a 3D
microenvironment similar to the native ECM [11].

An important class of hydrogels is stimuli-responsive, or smart, hydrogels [13]. In re-
sponse to external stimuli (e.g., temperature, pH, light, electric field, or ionic strength) these
hydrogels undergo a change in volume or a sol–gel phase change in a reversible manner [14].
This unique feature effectively mimics the sensitivity of biomolecules in the biological
environment. Temperature-responsive or thermoresponsive hydrogels are the most widely
used smart hydrogels due to their capacity for reversible phase transition by a slight change
of temperature [15]. The topographical and physical properties of hydrogel scaffolds enable
the control of biological functions (e.g., cell attachment/detachment, protein absorption,
and cell differentiation) [16]. The phase transition of thermoresponsive hydrogels provides
hydrophobic/hydrophilic surfaces for cell attachment/detachment and also regulates cell
proliferation [16,17]. Thermoresponsive hydrogels can be classified into two categories,
i.e., lower critical solution temperature (LCST) hydrogels that can be hydrated and swell at
lower temperatures, and upper critical solution temperature (UCST) hydrogels that can
swell and hydrate at higher temperatures [18]. Poly(N-isopropylacrylamide) or PNIPAm
is a widely studied LCST polymer because it has an LCST of approximately 32–33 ◦C,
which is close to body temperature (37 ◦C) [19]. That means PNIPAm hydrogels can form a
sol state at room temperature and transform into their gel state at close to physiological
temperature [15]. This property makes PNIPAm hydrogels excellent candidates as potential
scaffolds for tissue engineering. For instance, PNIPAm hydrogels can be applied as an
injectable formulation with stem cells into the body where they can act as extracellular
support [10], helping the cells to maintain normal physiological activity and promoting
cell proliferation and differentiation to repair damaged tissue [20]. PNIPAm hydrogels
can also be used as a 3D scaffold for in vitro regeneration of tissue which can later be
transplanted via minimally invasive surgery [10]. Despite PNIPAm scaffolds’ superior
properties such as tunable structures, thermosensitivity and low toxicity, there are some
drawbacks including poor biocompatibility and weak mechanical properties that hinder
their broader applicability [15].
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The structure and physicochemical properties of PNIPAm scaffolds useful for cartilage
tissue engineering can be controlled by selecting different synthesis-solvents, crosslinking
methods, different biomaterials, and fabrication strategies [21,22]. The objective of this
review is to provide a comprehensive and critical assessment of recent advances in the
tuning of scaffolding properties of PNIPAm hydrogels, with special focus on the role played
by polymer synthesis conditions. First, requirements for cartilage regeneration and the
applicability of PNIPAm in cartilage repair are explored. Then, the effects of synthesis-
solvents and crosslinking methods, as well as crosslinking density, on the structural changes
and physicochemical properties are described in detail. Finally, the challenges of selecting
synthesis-solvents and the potential for replacing them with more sustainable and less
toxic alternatives are discussed.

2. Scaffolds for Cartilage Regeneration

It is crucial to understand the complex structure of the articular cartilage (AC) before
developing a mimicking construct to repair damaged tissue. Articular cartilage is an
elastic tissue that consists of spheroid chondrocyte cells (2% of the total volume of the
AC) protected by the surrounding ECM [23]. The solid phase of the AC is porous and
permeable, while the main part of the fluid phase is water containing inorganic ions such
as sodium, potassium, and chloride [24]. The ECM, which provides support and protection
for the chondrocytes, is mainly composed of water, collagens (type II), proteoglycans,
and non-collagenous glycoproteins [23,24]. The main function of the AC is to transmit
loads to the related subchondral bone and absorb impact forces, resulting in low-friction
gliding between the surfaces of the joints [24]. Damage in the AC of joints can occur due to
trauma, unhealthy lifestyle, age, and various diseases including autoimmune disorders [25].
This leads to an excoriation of the cartilage surface and loss of elasticity and resistance
to friction [26]. As the cartilage is avascular and aneural, it is incapable of transferring
nutrients to cells, and thus not able to heal naturally [27]. Although there are several
treatment methods currently available, none of them is successful in recreating native
cartilage [28]. Tissue regeneration using advanced scaffolds, growth factors and nutrients,
and progenitor or stem cells, provides an alternative treatment option for effectively
recreating native cartilage.

Cartilage tissue regeneration requires scaffolds capable of providing a proper environ-
ment to enhance cell adhesion, migration, and proliferation [29]. There are two approaches
to regenerate cartilage onto scaffolds, namely 2D and 3D scaffolds (Figure 1) [30]. The cell
response in the microenvironment of 3D scaffolds differs from that in the conventional 2D
cell culture system [30]. The 3D design is more effective, as it helps to prevent the dediffer-
entiation of chondrocytes into fibroblast-like cells [31,32]. In the case of 2D scaffolds (flat
scaffold surface), chondrocytes may lose their ability to generate proteins that are required
for the formation of cartilage [33]. For successful cartilage tissue repair, PNIPAm-based
materials used as scaffolds need to support the survival and differentiation of progenitor
or stem cells used. This can be confirmed by analyzing the basic physical properties of
PNIPAm-based hydrogels. Physical properties of hydrogel scaffolds such as stiffness and
mechanical strength, porosity, adhesion, and degradability are critical in cartilage tissue
engineering (Table 1). These properties can be tuned at different levels to fulfil the basic
requirements for cartilage regeneration.
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Figure 1. Schematic diagram showing stem cell isolation and tissue regeneration in hydrogel scaffolds with tunable
properties for cartilage tissue regeneration.

2.1. Porosity

The microstructure of hydrogels is a critical factor in designing scaffolds for carti-
lage tissue regeneration, as it can affect the cells’ activity and functions [11]. Generally,
the structure of bulk hydrogels is a dense polymer network with nano-sized pores [34].
Such a nano-porous structure is too small to facilitate nutrient diffusion, cell migration,
and proliferation [35]; a microporous structure is required instead [21]. The effects of
pore structure and pore sizes have been studied for tissue engineering applications [36].
Scaffolds with a 300 µm mean pore size exhibited higher chondrogenic gene expression
than scaffolds with a smaller mean pore size of approximately 100 µm [37]; chondrocytes
cultured in microporous hydrogel scaffolds showed high proliferation and promoted cell
migration into the microporous cavities [21]. Hence, the engineering of porous scaffolds
is important to promote chondrocyte cell differentiation and successful articular cartilage
tissue engineering.

2.2. Stiffness and Mechanical Strength

Conventionally synthesized hydrogels are breakable, which in turn reduces their
stability; hence, these materials cannot be used without modifications for cartilage tissue
engineering applications. Stiffness and mechanical strength are important for maintaining
the stability of the scaffolds and to ensure effective cell activities and fates [38], as the
mechanical signals at the microscopic level influence chondrogenic, vascular, and neural
cell differentiation [39]. Thus, cell morphology and chondrogenic gene expression can be
regulated by controlling the stiffness of hydrogel scaffolds. In chondrogenic cell differentia-
tion, hydrogel scaffolds with lower stiffness lead to higher mRNA levels of chondrogenic
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markers Col2α1, Agc, and Sox9 [40]. Although different hydrogel scaffolds have been
developed to support healthy cartilage formation, mimicking the mechanical properties
and gaining the resiliency of articular cartilage is still a matter of concern in developing
scaffolds for cartilage tissue engineering.

2.3. Cell Adhesibility

Cell adhesion onto the hydrogel scaffolds is important as it can greatly affect cell
behaviors such as spreading (on the scaffold surface), proliferation, and differentiation [41].
Cell adhesibility can be tuned by introducing bioactive peptides (e.g., arginine-glycine-
aspartate or RGD peptides) onto the hydrogel surface [42], as cell adhesion ligands or
peptides are key biochemical components in the ECM [43]. Cell adhesion to the scaffold
is mediated by the specific interactions of cell surface receptors (e.g., integrin) with the
scaffold to maintain cell functions and viability [44]. Integrin receptors recognize RGD
as the primary cell attachment site [45]. Therefore, it is reported that RGD peptides in
hydrogel scaffolds trigger the chondrogenic gene expression when the scaffolds are loaded
with dynamic mechanical forces [46]. Moreover, the crosslinking and mechanical properties
of the hydrogel scaffolds also significantly influence cell adhesion, which in turn regulates
cell proliferation and migration in the scaffolds’ microenvironment [47]. Therefore, the
effects of crosslinking on cellular adhesion, proliferation, and migration are very crucial to
consider when designing hydrogel scaffolds for cartilage regeneration.

Table 1. Key scaffolding properties of hydrogels used in cartilage tissue engineering.

Property Features and Performance References

Porosity

- higher porosity induces chondrocyte migration and proliferation
- high porosity enhances cell spreading and type II collagen production
- larger pore sizes improve gene expression and ECM secretion
- 300 µm pore size is ideal for chondrogenic gene expression

[48–50]

Mechanical Strength
- higher mechanical strength enhances cartilage regeneration
- scaffolds with strong mechanical properties (i.e., elastic modulus) accelerate cell

migration and spreading and cell differentiation
[51]

Stiffness

- lower stiffness gives higher mRNA levels of chondrogenic markers (Col2α1, Sox9,
and Agc)

- higher stiffness yields a higher percentage of cells with chondrocytic morphology
- higher elastic modulus promotes hypertrophic differentiation of

chondrogenic cells

[40,52,53]

Adhesion
- higher adhesion stimulates chondrogenic cell spreading, proliferation, and

differentiation
- adhesive ligands trigger chondrogenic gene expression

[41,54]

Degradation

- lower degradation of hydrogel scaffold is good for chondrogenesis of stem cells
- differentiation of mesenchymal stem cells (MSCs) is regulated by

degradation-mediated cellular traction
- hydrolytically stable hydrogels show a higher level of chondrogenic marker gene

expression and lower level of hypertrophic genes

[55–57]
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2.4. Degradation

In tissue engineering applications, hydrogel scaffolds’ degradability is a key concern.
Once the targeted tissue regenerates, the scaffold must degrade so that the tissue con-
struct can be retrieved (in vitro) and/or be adapted into the physiological environment
(in vivo) [58]. Degradable hydrogel scaffolds are broken down after a certain time into
smaller polymer blocks, which are small enough to be egested from the body. Covalently
crosslinked hydrogels usually undergo degradation via enzymatic hydrolysis, ester hy-
drolysis, or photolytic cleavage of the polymer chains [59]. Hydrogel scaffolds can be
designed based on these degradation mechanisms to make the scaffold a better temporary
support with good biodegradability and desirable degradation rates. Such degradable
scaffolds will be gradually degraded and replaced with the regenerating tissues. Although
degradation of hydrogel scaffolds is a chemical process, it can act as a dynamic physical
stimulus that mimics the native ECM [60]. Hence, such a process can affect cell spread-
ing, migration, proliferation, and differentiation, thus impacting tissue regeneration. The
rate of degradation can be tuned by altering the ratio of crosslinker to monomer during
synthesis [61]. In PNIPAm-based copolymeric scaffold synthesis, degradation time can be
regulated by tuning the ratio of PNIPAm polymer to another polymer [62]. As the stiffness
or mechanical strength of the scaffolds typically decreases as the hydrogels degrade, it
becomes impossible to assert which factors affect cell behavior and tissue regeneration [21].
Consequently, it is highly desirable to design hydrogel scaffolds able to degrade without
changing their mechanical properties.

3. Application of PNIPAm-Based Scaffolds in Cartilage Tissue Engineering

PNIPAm is an amphiphilic thermoresponsive polymer that contains both hydrophilic
(amide moiety) and hydrophobic (isopropyl moiety) regions in its structure [63]. Their
amphiphilic nature is responsible for the phase changes observed in PNIPAm as a function
of temperature. Above the LCST, PNIPAm hydrogels become hydrophobic and provide an
adhesive surface for cell attachment and proliferation; when the temperature decreases
below the LCST, the cells spontaneously detach [64]. This behaviour makes PNIPAm and
its copolymers attractive candidates in tissue engineering and other biomedical applica-
tions. However, poor mechanical properties and limited biocompatibility are the two
major drawbacks that limit their use in tissue engineering applications such as cartilage
regeneration [15].

To improve PNIPAm’s mechanical properties, copolymerization with other monomers
has been studied [65]. Poly(N-isopropylacrylamide-co-acrylic acid) (PNIPAm-co-AAc)
hydrogels were found to be more stable than PNIPAm hydrogels and showed a lower
extensive capacity change [66,67]. Hence, chondrocytes seeded in PNIPAm-co-AAc could
proliferate and maintain their phenotype better than in PNIPAm scaffolds [67,68]. PNIPAm-
co-AAc scaffolds promoted in vitro cell proliferation and the chondrogenesis of chondro-
cytes when growth factors (such as TGF-β3 and glucocorticoids), and other nutrients such
as vitamin C were provided [68]. Despite the advanced mechanical properties of PNIPAm-
co-AAc scaffolds, biocompatibility and immunogenicity of such hydrogels are still major
issues [67]. Hence, more studies are required to better understand the biocompatibility of
PNIPAm-co-AAc for in vivo tissue engineering applications.

Integration of biocompatible copolymers into a PNIPAm structure has also been
explored to improve its mechanical properties while addressing biocompatibility or cyto-
toxicity issues [69]. A hybrid scaffold containing polyethylene glycol (PEG) and poly(ε-
caprolactone) (PCL) microfibers with PNIPAm (PEG-b-PNIPAm) was developed to en-
capsulate human MSCs (hMSCs) [70]. Rather than cell encapsulation, cell attachment
on the outside surface of such a hydrogel scaffold is a matter of concern due to the poor
cell-adhesive properties of PCL that halt its wide applicability [71]. Kwon and Matsuda
used a copolymer block of PNIPAm and PEG as thermoresponsive support for chondro-
cyte immobilization in cartilage tissue repair [72]. This 3D scaffold showed a minimal
decrease in cell number with excellent cell viability and maintained the morphological
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characteristics of native chondrocytes. Detailed cell function and biodegradability studies
are, however, required before using this hydrogel scaffold for cartilage and other tissue en-
gineering applications, as the fragmented polymer microaggregates after degradation may
be scavenged with a extended period of implantation [72]. Ma et al. developed PNIPAm
hydrogels in conjugation with methacrylate-polylactide (MAPLA) and 2-hydroxymethyl
methacrylate (HEMA) as an injectable solution [73]. This bioabsorbable thermoresponsive
hydrogel showed no cytotoxicity with increased mechanical strength and lower resorption
rates for several months. Despite these advantages, the inability of HEMA to support
protein adsorption, cell attachment, and growth of mammalian cells are major outstanding
issues [74,75]. Poor cell attachment and low interaction ability between MAPLA scaffolds
and the surrounding tissue have also been observed, due to the poor hydrophilicity of PLA
derivatives [76].

Chitin is the second most abundant natural polymer, procured from the exoskeleton of
marine crustaceans, fungi, and insects [77,78]. Chitosan is a linear polysaccharide obtained
from partial deacetylation of chitin [77]. Chitosan is broadly studied in tissue engineering
due to its abundance, biocompatibility, biodegradability, non-toxicity, anti-microbial prop-
erties, and hydrophilicity [79]. Poor mechanical properties in wet conditions are, however,
a major limitation [80]. Hence, chitosan is copolymerized with synthetic polymers such
as PNIPAm to induce mechanical properties for tissue engineering applications [81]. In a
study, a thermoresponsive 3D porous hydrogel scaffold containing PNIPAm-COOH and
chitosan was prepared with an LCST of approximately 30 ◦C [82]. This scaffold exhibited
good phenotypic morphology maintenance of the entrapped chondrocytes, triggered the
initial cell–cell interactions, and preserved cell viability. The hMSCs encapsulated with
chitosan-PNIPAm complex showed enhanced gene expression of Col II and aggrecan,
and successful differentiation into chondrocytes in vivo [83]. These promising results
confirmed the potential of chitosan-PNIPAm composite scaffolds for cartilage tissue engi-
neering. Although the mechanical properties of chitosan-based hydrogel scaffolds have
been improved over the years, the restricted solubility of chitosan is still a major issue [84].
Moreover, additional efforts are needed to tailor the pore morphology of chitosan-based
scaffolds to the precise tissue requirements.

Hyaluronic acid (HA) or hyaluronan is a nonsulfated glycosaminoglycan (GAG) nat-
urally found ubiquitously in the extracellular matrix (ECM) [85]. HA is an important
structural element of the ECM, where it mediates cell migration and proliferation, wound
repair, and matrix organization [86]. Strong hydrophilicity, high water absorption capacity,
biocompatibility, and biodegradability make HA-based scaffolds promising candidates
for tissue engineering [87]. Despite its advantages, HA alone exhibits poor mechanical
properties with rapid degradation behavior [87]. Hence, HA has been crosslinked with
other polymers to overcome these issues. In a previous report, an adipose tissue-derived
stem cells (ADSCs)-encapsulated HA-crosslinked PNIPAm scaffold showed high viability,
increased gene expression of chondrogenic markers and better in vivo hyaline cartilage
formation [88]. A PNIPAm-co-AAc and HA composite scaffold also induced chondrocyte
differentiation in the presence of TGF-β3 [89]. In a recent report, thermoresponsive hy-
drogels were fabricated from norbornene functionalized HA (NorHA) crosslinked with
dithiol-terminated PNIPAm (DTPN). hMSCs adhered and proliferated successfully on
the DTPN patterned surface of the hydrogel [90]. HA-based scaffolding materials still
face some challenges. Absorption of proteins onto the implanted HA-based scaffolds is
a major concern, as it might induce several degeneration effects [91]. In addition, the
rapid degradation of HA-based composite scaffolds is still a matter of concern that can
potentially be addressed by tuning the pore morphology of the composite scaffolds during
synthesis [92].

In general, PNIPAm-based copolymer hydrogels appear to provide an appropriate
milieu for in situ scaffolds for cartilage tissue engineering. Significant progress has been re-
ported, as summarized here, in addressing the biocompatibility and mechanical properties
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of PNIPAm-based scaffolds. The following sections of this review explore more detailed
approaches to carefully tune the properties of these hydrogel scaffolds.

4. Tuning Scaffolding Properties
4.1. Synthesis-Solvent Effects

PNIPAm hydrogels are typically synthesized via free radical polymerization. The
synthesis-solvent used in polymerization acts as a chain transfer agent, affecting the
termination of the growing chains and the reinitiation of growth in other chains [22]. The
polarity of the synthesis-solvent plays a significant role in determining its reactivity [93].
Theoretical studies have indicated that polar solvents could have a faster chain termination
rate than non-polar solvents [94]. This behavior has also been experimentally observed, as
presented in recent reports [22,95].

A broad range of studies have reported on how the synthesis-solvent affects the
porosity, elasticity, and swelling behaviour of the synthesized polymers. Tokuyama et al. re-
ported the synthesis of NIPA hydrogels copolymerized with N,N’-methylenebisacrylamide
(MBAA) via free radical polymerization in four solvents: water, acetone, ethanol, and N,N-
dimethylformamide (DMF) [96]. The swelling and elastic properties of NIPA indicated that
these properties were affected by the type of synthesis solvent (Figure 2). At 10 ◦C, hydro-
gels synthesized in water had a smaller swelling volume and higher shear modulus than
hydrogels synthesized in the other three amphiphilic solvents. The crosslinking network
of the hydrogels was also affected by the synthesis-solvent. NIPA hydrogels synthesized
in water had an inhomogeneous network structure due to the entanglement of polymer
chains; in contrast, hydrogels synthesized in amphiphilic solvents were homogeneous
due to the lower polymer concentration than the pre-gel solution. The conversion from
monomers and MBAA to gel increased with an increase in MBAA and monomer concentra-
tions in the pre-gel solution. In water, this conversion was higher than in other amphiphilic
solvents. Additionally, the gelation was faster in water than that in amphiphilic solvents.
The main reason behind this was the good reactivity of water with monomers and MBAA.
Contrarily, the other solvents were poorly reactive to copolymerization into gels. Hence,
NIPA hydrogel concentrations were lower in amphiphilic solvents than in water. A similar
homogeneous network structure could be observed in the lightly crosslinked hydrogels
synthesized in water. Moreover, the shear modulus of NIPA hydrogels synthesized in
water was one order of magnitude higher than that of hydrogels synthesized in other
amphiphilic solvents. In a subsequent study, Tokuyuma et al. investigated the structure
of NIPA hydrogels polymerized in water and DMF solvent mixtures [97]. They found
that the NIPA gels could have homogeneous/heterogeneous structures depending on the
mole fraction of DMF (XD). Microgels synthesized in a solvent mixture with XD = 0.25
had a porous structure that formed as the microgel aggregates phase-separated due to
the cononsolvency. Due to the higher porosity, these microgels experienced very rapid
shrinking in response to temperature change above the LCST, and vice versa.

García and Cortés carried out the polymerization of acrylamide in different wa-
ter/ethanol proportions to synthesize polyacrylamide (PAAm) [98]. From the swelling
study of PAAm hydrogels, they found that by increasing the proportion of ethanol in
the polymerization, swelling of the synthesized hydrogels and their pore size increased.
Random copolymer hydrogels of NIPAM and N-ethylacrylamide (NEAM) were prepared
by Wang et al. using different proportions of methanol-water mixtures as synthesis-
solvent [99]. The synthesis-solvent composition regulated the porosity (from non-porous
to highly porous) of the hydrogels (Figure 3). The swelling ratio of the hydrogels also
changed depending on the gel morphologies. High methanol concentration during hydro-
gel synthesis resulted in hydrogels with a higher swelling ratio due to a loosely connected
network structure.
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In a study by Zhang et al., a thermoresponsive PNIPA with a covalently incorporated
crown ether derivative (4′-allyldibenzo-18-crown-6, CE) was copolymerized in a water–
tetrahydrofuran (THF) mixed solvent [100]. The synthesis-solvent proportion in the mixed
solvent during copolymerization affected the swelling properties of the synthesized PNIPA-
co-CE hydrogels. The copolymer hydrogels showed faster deswelling rates than the normal
PNIPA hydrogels at a high temperature (50 ◦C). They also found that hydrogels synthesized
in a mixed solvent with lower THF content (33 vol%) exhibited a lower equilibrium swelling
ratio (ESR). In contrast, hydrogels synthesized in a mixed solvent containing higher THF
content (50 vol%) had a higher ESR value. This behavior is explained by the heterogeneity
of the produced polymer network, which is in turn affected by the THF content in the
synthesis-solvent mixture. Due to the lower polarity of THF compared to water, a mixed
solvent with higher THF content produces hydrogels with a profoundly heterogeneous
structure and enlarged polymer network.

In a recent study, crosslinked polyimide aerogels were synthesized using single or
mixed solvents of DMF, N-methylpyrrolidone (NMP), and dimethylacetamide (DMAc) [101].
By changing the solvent or combination of solvents the polymer strand diameter, mesopore
and macropore fractions, compressive modulus, and specific surface area of the aerogels
were successfully manipulated. Using electron-donating solvents such as DMAc or NMP
or including a block copolymer surfactant prolonged the gelation time. This resulted in
the coarsening of the polymer strands and adversely affected the surface area and meso-
pore fraction. The shift from predominantly mesoporous to macroporous states due to
prolonging gelation times also reduced the compressive modulus of the polyimide aerogels.
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(2017) [99].

The free radical photopolymerization of N,N-dimethylacrylamide (NDMAm) using
different solvents (i.e., water, ethylene glycol, methanol, THF, DMF, chloroform, and ace-
tonitrile) was investigated by Valdebenito and Encinas [95]. They found that the polymer-
ization rate increased by one order of magnitude when the synthesis-solvent shifted from
an organic one to water. This enhancement was due to the strong hydrogen bond formation
of the amide C=O group with water. Therefore, the chain transfer efficiency increased in
water with respect to the organic protic solvents. This intermolecular hydrogen bonding
of the chain transfer agents also affected properties such as molecular weight, polymer
stereospecificity, phase transition, and the microgel behavior of poly(NDMAm). In another
study, El-Halah et al. synthesized a series of polyacrylamide hydrogels by free radical
polymerization using different solvents: water/ethanol (100/0, 80/20, 70/30, 60/40, 50/50,
40/60, 30/70, and 20/80 (V/V)) and water/dimethyl sulfoxide (DMSO) (100/0, 80/20,
70/30, 60/40, 50/50, 40/60, 30/70, and 20/80 (V/V)) [102]. The yields and swelling degree
of the hydrogels were strongly affected by the selection of synthesis-solvent. Hydrogels
synthesized in water/DMSO mixtures showed a higher swelling degree compared to those
obtained using water/ethanol mixtures. The swelling degree of the hydrogels obtained in
the water/ethanol mixture was directly related to the yield and pore size; this characteristic
relationship was missing in hydrogels synthesized in water/DMSO mixtures. Moreover,
in both solvent mixtures, the molar mass of the polymers and mechanical properties de-
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creased as the water content in the solvent decreased. This decrease, however, was much
more dramatic in ethanol than in DMSO. This behavior can be explained by the molecular
size of the hydrogels, which were higher in hydrogels synthesized in water/DMSO than in
hydrogels obtained in water/ethanol mixtures.

Synthesis of PNIPAm hydrogels by frontal polymerization using four mixed solvents
(i.e., water/DMSO, ethanol/DMSO, THF/DMSO, and acetone/DMSO, respectively) was
conducted by Feng et al. [103]. The solvent mixtures regulated the porosity and the swelling
capacity of the synthesized hydrogels. Hydrogels synthesized in THF/DMSO had higher
porosity as well as a higher swelling ratio. The lowest swelling ratio and lower porosity
were obtained in hydrogels synthesized in the water/DMSO mixture.

Acrylamide (AAm) and N-2-hydroxyethylacrylamide (HEAAm) in combination with
itaconic acid (IA) were used in one study to synthesize hydrogels using water and wa-
ter/ethanol mixtures [104]. Although the physical properties of hydrogels synthesized in
both synthesis-solvent media were similar, there were significant differences in the degree
of swelling. Hydrogels synthesized in water/ethanol mixtures exhibited a higher swelling
degree than hydrogels synthesized in pure water under the same reaction conditions.

In a recent study, polyacrylamide (PAAm) and poly(acrylamide-co-methyl methacry-
late) (PAAm-co-MMA) hydrogels were synthesized in water, aqueous 1,4-dioxane (50 vol%)
and aqueous ethanol (80 vol%) [105]. Morphological analysis indicated that the incorpo-
ration of MMA into the hydrogels was affected by the selection of synthesis -solvent.
Moreover, hydrogels synthesized in aqueous ethanol displayed higher swelling values
than the hydrogels synthesized in other solvents.

Recently, our group synthesized PNIPAm microgels via free radical polymerization
using four solvents with different polarity index (PI), i.e., 1,4-dioxane, THF, toluene, and
cyclohexane (PI: 5.2, 4.0, 2.4, and 0.2, respectively) [22]. Morphology and porosity analysis
revealed that the microgels synthesized in polar solvents were smaller in size with smaller
pore sizes, while those synthesized in non-polar solvents (i.e., toluene and cyclohexane)
were larger with bigger pore sizes. Higher swelling capacity was observed in microgels
synthesized in non-polar solvents, which was due to higher porosity in the gel structure.
Due to the well-crosslinked network structure of the microgels synthesized in 1,4-dioxane
and toluene, these microgels had better thermomechanical properties. This study confirmed
that the porosity, swelling degree, and mechanical properties of the microgels can be tuned
by choosing synthesis-solvents based on their polarity.

All these previous reports strongly indicate that the crosslinking in PNIPAm hydrogels
is sensitive to the polymerization conditions, such as the synthesis-solvent. The reactivity of
the solvent with the monomer, crosslinker, and initiator controls the crosslinking structure
of PNIPAm. Tuning the hydrogel porosity, mechanical properties, and swelling behavior
can be achieved by regulating the network structure formation during polymerization,
which is in turn affected by the reactivity or polarity of the synthesis-solvent. Hence, it is
crucial to gain a better understanding of the relationship between solvent reactivity and
hydrogel properties. Establishing this relationship will enable the rational selection of
synthesis-solvents for preparing PNIPAm-based hydrogel scaffolds with suitable properties
for tissue engineering applications.

4.2. Effects of Crosslinking-Density

The addition of crosslinks between polymer chains influences the hydrogel’s physical
properties, resulting in changes in elasticity, porosity, swelling, and degradability [106].
Interestingly, crosslinked PNIPAm-based hydrogels are unable to be dissolved in solvents,
but can absorb large amounts of solvents [107–109]. Uncrosslinked PNIPAm is soluble in
water while crosslinked PNIPAm is insoluble and absorbs water [107]. Porosity, mechanical
properties, degree of swelling, and degradation behavior of PNIPAm hydrogels can be
regulated by tuning the crosslinker content during synthesis.



Polymers 2021, 13, 3154 12 of 24

4.2.1. Phase Transition and Swelling Ability

The differences in the swelling behavior of PNIPAm hydrogels is caused by differ-
ences in crosslinking density, as the mesh size of the crosslinked hydrogel decreases as
crosslinking density increases [110]. Mesh size is the average distance between crosslinks
and corresponds to the pore size of the hydrogels [110]. The swelling ratio of hydrogels
decreases by lowering the mesh size [111]. Therefore, crosslinking density has an inverse
relationship with swelling ratio [112]: the higher the crosslinking density, the lower the
swelling ratio, and vice versa. Swelling ability provides softness to the scaffolds and facili-
tates the diffusion of the nutrients, mimicking the biological environment and helping with
tissue regeneration [11]. Navarro et al. recently prepared PNIPAm-based nanogels (NG)
using dendritic polyglycerol (dPG) as a crosslinker and NIPAm as connecting thermore-
sponsive chains in different feed ratios (e.g., 30/70 wt%) [113]. Nanogels synthesized using
lower content of NIPAm (NG/5k/50) were less thermoresponsive compared to others
(Figure 4). This loss in temperature sensitivity was likely due to the induced rigidity of the
network. Rigid polymeric networks were obtained due to the presence of higher amounts
of dPG, which provided more crosslinking points, resulting in a denser network. Such a
dense network contains shorter polymer chains between crosslinker points and decreases
the flexibility of the PNIPAm-based nanogel structure. This also affected the swelling be-
havior of the nanogels; the swelling degree decreased as the dPG content increased. These
results are also supported by Flory’s theory of elasticity. Nanogels with lower crosslinking
density experience an abrupt phase transition due to lower elasticity components. The
competition between elasticity and solvency is more pronounced, which results in an
induced rigidity of the system. The increase in network density also decreases the nanogels’
pore size, enabling the retention of small molecular weight proteins. In another study, it
was observed that when the stiffness of PNIPAm hydrogel particles decreased, the elastic
plateau modulus became weaker in a dense PNIPAm suspension [114]. This was due to
the higher crosslinking density of BIS (or MBAA), which led to a higher interparticle force.
The authors also found a linear relationship between crosslinking density and the average
hydrodynamic diameter of the hydrogel particles. It was observed that the particle sizes
decreased with an increase in BIS content during synthesis.

Polymers 2021, 13, x FOR PEER REVIEW 12 of 25 
 

 

mechanical properties, degree of swelling, and degradation behavior of PNIPAm hydro-
gels can be regulated by tuning the crosslinker content during synthesis. 

4.2.1. Phase Transition and Swelling Ability 
The differences in the swelling behavior of PNIPAm hydrogels is caused by differ-

ences in crosslinking density, as the mesh size of the crosslinked hydrogel decreases as 
crosslinking density increases [110]. Mesh size is the average distance between crosslinks 
and corresponds to the pore size of the hydrogels [110]. The swelling ratio of hydrogels 
decreases by lowering the mesh size [111]. Therefore, crosslinking density has an inverse 
relationship with swelling ratio [112]: the higher the crosslinking density, the lower the 
swelling ratio, and vice versa. Swelling ability provides softness to the scaffolds and facil-
itates the diffusion of the nutrients, mimicking the biological environment and helping 
with tissue regeneration [11]. Navarro et al. recently prepared PNIPAm-based nanogels 
(NG) using dendritic polyglycerol (dPG) as a crosslinker and NIPAm as connecting ther-
moresponsive chains in different feed ratios (e.g., 30/70 wt%) [113]. Nanogels synthesized 
using lower content of NIPAm (NG/5k/50) were less thermoresponsive compared to oth-
ers (Figure 4). This loss in temperature sensitivity was likely due to the induced rigidity 
of the network. Rigid polymeric networks were obtained due to the presence of higher 
amounts of dPG, which provided more crosslinking points, resulting in a denser network. 
Such a dense network contains shorter polymer chains between crosslinker points and 
decreases the flexibility of the PNIPAm-based nanogel structure. This also affected the 
swelling behavior of the nanogels; the swelling degree decreased as the dPG content in-
creased. These results are also supported by Flory’s theory of elasticity. Nanogels with 
lower crosslinking density experience an abrupt phase transition due to lower elasticity 
components. The competition between elasticity and solvency is more pronounced, which 
results in an induced rigidity of the system. The increase in network density also decreases 
the nanogels’ pore size, enabling the retention of small molecular weight proteins. In an-
other study, it was observed that when the stiffness of PNIPAm hydrogel particles de-
creased, the elastic plateau modulus became weaker in a dense PNIPAm suspension [114]. 
This was due to the higher crosslinking density of BIS (or MBAA), which led to a higher 
interparticle force. The authors also found a linear relationship between crosslinking den-
sity and the average hydrodynamic diameter of the hydrogel particles. It was observed 
that the particle sizes decreased with an increase in BIS content during synthesis. 

 
Figure 4. (A) Schematic outline of the temperature-triggered cargo release of dPG/PNIPAm nanogels, (B) synthesis outline 
of dPG/PNIPAm nanogels (dPG with average MW of 10 kDa), (C) size of the nanogels with different crosslinker content, 
(D) normalized transmittance curve of nanogels with different crosslinker content against temperature, (E) size-dependent 

Figure 4. (A) Schematic outline of the temperature-triggered cargo release of dPG/PNIPAm nanogels, (B) synthesis outline
of dPG/PNIPAm nanogels (dPG with average MW of 10 kDa), (C) size of the nanogels with different crosslinker content,
(D) normalized transmittance curve of nanogels with different crosslinker content against temperature, (E) size-dependent
transition of nanogels with changes in temperature, and (F) effect of the crosslinker content on the swelling ratios of the
different thermoresponsive nanogels. Reproduced with permission from Navarro et al. (2020) [113].

It is well established that the magnitude of the thermoresponsive transition of hy-
drogels can be regulated by introducing crosslinks between the polymer chains [115].
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In a recent study, Thiele et al. tuned the thermoresponsive behavior of PNIPAm net-
works by varying the crosslinking density [115]. Different N,N’-methylene-bis-acrylamide
(MBAM) contents (0 to 10 mol%) were evaluated for the synthesis of PNIPAm-co-MBAM
networks via activators regenerated by electron transfer atom transfer radical polymeriza-
tion (ARGET-ATRP) (Figure 5A–C). The swelling/collapse transition was least pronounced
in hydrogel networks with a higher crosslinker content and was nonexistent in networks
with 10 mol% MBAM. The collapse of the hydrogel network occurred within a broad
temperature regime (from 27 to 34 ◦C) for all the MBAM contents investigated. The less
crosslinked networks showed a sharp phase transition upon reswelling. Only PNIPAm-co-
MBAM containing more than 3 mol% crosslinker exhibited a broadened transition. Such
behavior persisted for PNIPAm-co-MBAM gels on nanostructured gold surfaces.
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Figure 5. (A) Fabrication of thermoresponsive PNIPAm brush networks with MBAM in gold-coated ATRP initiator; (B) dry
heights of PNIPAm networks decrease with increasing crosslinker content; (C) the swelling/collapsing height ratio in
PNIPAm brushes reduces with increasing crosslinker content. Reproduced with permission from Thiele et al. (2021) [115].
(D,E) Confocal live-cell imaging of NIPAM-MAA-5L (D) and NIPAM-MAA-13L (E) microgels uptake in HEK293T cells.
(F) Violin plots of uptake kinetics of microgels with co-monomer MAA (NIPAM-MAA-5S) (crosslinker: 5 wt%) and without
MAA (NIPAM-5S) (crosslinker: 5 mol%). Dashed red lines show upper and lower quartiles. Reproduced with permission
from Switacz et al. (2020) [116].

Thermoresponsive PNIPAm-based microgels were developed by Switacz et al. us-
ing NIPAM, comonomer MAA, and crosslinker MBAA with different contents (5 mol%,
10 mol%, 13 mol%, and 15 mol%, respectively) (Figure 5D–F) [116]. The hydrogels’ cellular
uptake capacity and kinetics were affected by the extracellular microgel concentrations,
resulting in gradients across the plasma membrane. Both microgel size and crosslinker
content were found to affect the specific uptake kinetics in HEK293T cells. The combination
of higher crosslinker content (>10 mol%) and relatively large microgel sizes (>800 nm)
hindered cellular internalization. Significant cellular uptake was observed in smaller and
softer PNIPAm microgels that translocated into the cytosol. This study was conducted at
temperatures above the volume phase transition temperature (VPTT). Hence, caution is
needed when conducting experiments and comparing with previous results due to the
network elasticity effects of the temperature-induced collapse of microgels.

Burmistrova et al. synthesized PNIPAm-co-AAc hydrogels with three different MBAA
contents (2%, 5%, and 10%) and analyzed the effect that crosslinker content had on the
swelling/collapsing behavior and Young’s modulus [117]. The swelling ratio and hysteresis
in the reversible swelling/collapsing decreased with increasing crosslinker content. The
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Young’s modulus, on the other hand, increased with increasing crosslinker content. The
expected increase in swelling with decreasing MBAA incorporation was also observed
by Mohapatra et al. in polystyrene-co-PNIPAm (PS-co-PNIPAm) microgels with different
MBAA contents (0 to 3 mol%) [118]. In this study, the bulk modulus was found to be largely
insensitive to crosslinking density while Young’s modulus was more sensitive to increased
crosslinking density.

The softness, swellability, and deformability of PNIPAm-based microgels are regu-
lated by crosslinking density, which in turn, controls the morphology and compressibil-
ity [119]. The deformability is controlled by the crosslinking ratio and increases with in-
creasing swellability of the microgels [119]. PNIPAm-based microgels with different MBAA
densities (1, 2.5, 5.0, 7.5, and 10 mol%, respectively) showed a crosslinking-dependent
swelling at lower temperatures with the volume phase transition occurring at approxi-
mately 32 ◦C [119]. As expected, the swelling degree increased with decreasing crosslinking
density. Mi et al. synthesized alginate-g-PNIPAm (APN) copolymeric hydrogels using
PNIPAm-NH2, N-hydroxy succinimide (HOSu), N,N’-dicyclohexylcarbodiimide (DCC),
and sodium alginate [120]. The swelling ratio of the APN hydrogels was inversely propor-
tional to crosslinking density. Furthermore, higher crosslinking density resulted in APN
hydrogels with smaller pore sizes, leading to a lower degree of release of blue dextran
between 25 and 40 ◦C. Interestingly, the crosslinker density played an important role in
controlling the porosity of PNIPAm-based nanocomposites. Carregal-Romero et al. showed
that the porosity of a PNIPAm nanocomposite (Au@PNIPAm) decreased with increasing
crosslinker concentration [121]. Jafari and Kaffashi synthesized dextran-hydroxymethyl
methacrylate (Dex-HEMA) and PNIPAm copolymerized nanogels using different amounts
of MBAA (0.25, 0.5, and 0.75 w/w%, respectively) via a solvent-free synthesis process [122].
The swelling ratio was affected by the crosslinking agent content; nanogels with the
least amount of MBAA had the highest swelling ratio and water content. In addition,
while the lower crosslinking density allowed the polymer chains to move more freely, the
higher crosslinking density halted the chains from free movement due to their tighted
arrangement. A similar relationship between swelling degree and crosslinking density was
reported by Obeso-Vera et al. for PNIPAm microgels and copolymers synthesized using
different crosslinker agents (i.e., MBAA, ethyleneglycoldimethacrylate, and EGDMA) [123].
Swelling is in general affected by the degree of crosslinking, the interfacial tension, and
the particle size. In the study by Obeso-Vera et al., PNIPAm gel particles were nearly
identical; therefore, the differences in crosslinking density were considered the primary
factor determining the changes in swelling ratios.

4.2.2. Mechanical Strength

The mechanical behavior of the hydrogel is strongly dependent on the crosslinking
density [124]. As crosslinking density decreases, the elastic modulus decreases. Tuning
the mechanical properties is crucial as hydrogel scaffolds for in vivo cartilage regeneration
should have excellent strength and elasticity to support stretching, bending, and fric-
tion [125]. Porosity also has effects on the mechanical properties and in vitro degradation
of the hydrogel scaffolds [126]. It is evidenced that the porosity of the hydrogel increases
with decreasing crosslinking density [127]. Upon implantation, local angiogenesis occurs
with the help of the porosity of hydrogels [128]. Scaffold porosity is also responsible for
facilitating cell survival and proliferation [129]. The extent of secretion of ECM also is
enhanced by increasing porosity [128,130]. Tan et al. incorporated different concentrations
of starch-based nanospheres (SNs) (0.25 to 1.0 g/g of NIPAM) into the structure of thermore-
sponsive PNIPAm hydrogels (TPHs) [131]. In general, the mechanical strength of TPHs
increased with increasing SN content. Hydrogels with 0.75 g of SN provided the maximum
strength at 8.44 MPa; further increase in SN content, however, led to a sharp reduction
in Young’s modulus, as the aggregation of superfluous SNs acted as structural defects
instead of increasing the crosslinking in the hydrogels. In addition, the strain to failure of
TPHs showed a tendency to decrease with increasing crosslinking density. Lehmann et al.
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synthesized PNIPAm hydrogels using MBAA (or BIS) and poly(ethylene glycol)diacrylate
(PEGDA) as crosslinkers [132]. A decrease in crosslinking density increased the mesh size,
which enabled the P(NIPAm-PEGDA) hydrogels to release larger volumes of water from
the network compared to conventional PNIPAm hydrogels P(NIPAm-BIS). Moreover, a
higher storage modulus (G’) independent of temperature could be obtained by increasing
the crosslinking density of both P(NIPAm-PEGDA) and P(NIPAm-BIS) hydrogels. The
difference in the viscoelastic response of the P(NIPAm-PEGDA) hydrogels increased with
decreasing crosslinking density (increasing deswelling ratio). The highest storage modulus
was obtained in hydrogels with the lowest crosslinking density (up to a 50-fold increase
in G’).

Hydrogels crosslinked with metals have also been explored to enhance the mechanical
strength of hydrogel scaffolds. Metal-crosslinked hydrogels can be obtained via metal
coordination and covalent crosslinking [133,134]. Recently, a hybrid hydrogel was fab-
ricated through metal coordination between ferric ions (Fe3+) and carboxyl groups of
poly(acrylamide-co-acrylic acid) (P(AAm-co-AAc) [135]. This physically crosslinked hydro-
gel provided higher stiffness and toughness, resistance to fatigue, shape-memory ability,
and stimuli-responsive healing. In another study, iron-containing diblock copolymer
poly[N-isopropylacrylamide-co-2-nitrobenzyl acrylate)-block-(N,N-dimethylacrylamide-
co-acrylic acid) hydrogels were prepared via coordination interaction between Fe3+ and
carboxylates of polymers [136]. Such amphiphilic hydrogels showed better mechanical
strength and exhibited sol–gel transition in response to different stimuli (i.e., UV, multiden-
tate ligand, and redox agent Na2S2O4). Previously, Andzelm et al. produced hydrogels
with enhanced storage moduli by adding divalent or trivalent ions (Zn2+, Al3+, Ca2+, Cu2+,
and Fe3+) into cellulose nanofibril dispersions [137]. In a recent study, an Fe-containing
hydrogel was formed by one-pot free radical polymerization of acrylic acid with MBAA
as covalent crosslinker and Fe(NO3)3 as the ionic crosslinker [138]. Such a covalently
crosslinked structure made the PAA hydrogels mechanically superior (high toughness)
and stretchable. It was reported earlier that Cu2+, Zn2+, and Fe3+ could act as noncovalent
crosslinkers in hybrid polymer synthesis [139]. Makris et al. showed that the presence of
copper sulphate enhanced the activity of lysyl oxidase (LOX) to form collagen crosslinks,
resulting in an increase in the integrity and strength of neo-cartilage [140]. Some studies
demonstrated the efficiency of copper in promoting chondrocyte proliferation, differentia-
tion, and cartilage matrix generation by enhancing secretions of insulin like growth factor-1
(IGF-1), IGF-binding protein-3, and transforming growth factor-β (TGF-β) [141,142]. Al-
though metals can be used as crosslinkers to form metal-containing hybrid hydrogel
scaffold for cartilage tissue engineering, the complexity in terms of preparation processes is
still a big challenge. For example, copper can induce the crosslinking of collagen to change
the mechanical properties during cartilage regeneration, but interaction between copper
and base materials (e.g., NIPAm) is still a major concern [143]; it is difficult to control the
rate of crosslinking and crosslinking structure between copper and the base materials [143].
Hence, systematic research should be performed in future to understand the influence of
metals in chondrogenesis and determine the appropriate use of metals as crosslinkers in
metal-based hydrogel scaffold synthesis for cartilage regeneration.

Swelling degree, porosity, and mechanical strength are some key properties that
are needed in PNIPAm-based scaffold materials for the regeneration of tissues including
cartilage. Crosslinking density regulates all these properties. Porosity and crosslinking
density have a linear relationship while swelling degree has a reversible relationship
with crosslinking density. The degree of porosity or mesh size has a direct effect on
the mechanical strength or stiffness of the scaffold [129]. The stiffness of the scaffold
increases when porosity decreases and vice versa [144]. Therefore, porosity, swelling
degree, stiffness, and crosslinking density are correlated with each other. Hence, tuning the
crosslinking density during synthesis to prepare PNIPAm-based hydrogel scaffolds with
required properties will help to make them ideally suited for cartilage or muscle tissue
engineering applications.
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5. Challenges and Future Perspectives in Tuning Scaffolds Properties

Many synthesis methods and hydrogel scaffolds with functional advantages have
been developed for tissue engineering applications [8,11]. Still, designing a fully tun-
able scaffold with physicochemical properties similar to those of the cartilage tissue is
the major outstanding challenge. Additional studies are needed to identify the design
parameters that will result in PNIPAm-based scaffolds with biomimetic structures and
improved biochemical and biophysical properties more suitable for cartilage tissue repair
(Figure 6). Moreover, there is also a need to improve the safety and sustainability of the
synthesis methods.
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5.1. Sustainable Synthesis Methods

The synthesis of PNIPAm hydrogels is commonly performed via free radical poly-
merization [22], requiring NIPAm monomer, crosslinker, initiator, and a synthesis-solvent.
The synthesis-solvent has been found to play a crucial role in tuning some of the key
properties required for cartilage tissue engineering [11,22,145]. In particular, the polarity of
the synthesis-solvent affects its reactivity and the physicochemical and mechanical prop-
erties of synthesized hydrogels. The solvents that have been used in PNIPAm synthesis
are unfortunately not environmentally benign [146]. Petroleum-derived solvents, such
as THF, toluene, and 1,4-dioxane, are more frequently used as they are inexpensive [147].
However, these solvents are known hazardous air pollutants, reprotoxins, carcinogens, and
mutagens [148]. Moreover, most of these solvents are also volatile and flammable [149,150].
Although high volatility enables easy recovery and purification via distillation, it also
increases the likelihood of toxic air emissions and the risk of exposure faced by work-
ers [148]. In addition, energy-intensive separation and purification methods are required
to ensure the complete elimination of the solvent from the final hydrogel scaffold [151].
As safety and environmental concerns become more dominant in the material synthesis
industry, there is a need to investigate alternative solvents for the sustainable production
of hydrogel scaffolds.

Water is considered a green solvent for sustainable synthesis processes. There are
reports on the synthesis of PNIPAm hydrogels using water as synthesis-solvent [96,105].
However, the response rate of hydrogels synthesized in water is low due to the formation
of a dense skin layer in the collapsed gels within the initial 30 min of shrinking [152]. Such
behavior hinders the mass transport of water out of the hydrogels and limits their applica-
tion in the field of tissue engineering. Moreover, after synthesis, recovery of wastewater
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via distillation or other purification processes is needed, which can be energy-intensive
and also reduces the sustainability of using water for the polymer synthesis process [153].

Among the other suggested solvents in the last few years for the sustainable syn-
thesis of polymers are ionic liquids (ILs), monoterpenes (MTs), and supercritical fluids
(e.g., supercritical carbon dioxide). [146,148–150,154–156]. These environment-friendly sol-
vents have been reported as synthesis-solvents for different polymeric materials. Some
of these sustainable solvents show performances during free radical polymerization com-
parable to conventional petroleum-based solvents. However, there is an urgent need to
investigate the effect that these sustainable solvents have on the quality and properties of
the PNIPAm-based scaffold materials for tissue engineering.

5.2. Biodegradability

Despite the advantages of PNIPAm-based scaffolds for tissue engineering applications,
the nonbiodegradability of PNIPAm is a lingering concern [69]. Although partial or
completely degradable PNIPAm-based copolymer scaffold materials have been developed,
there are still some gaps in this area and more efforts are needed. For example, premature
degradation of scaffolds induces vascularization and triggers premature ingrowth of peri-
implantation of tissue into the central region of the scaffold [157]. Hence, controlled
degradation of scaffolds is crucial for the complete regeneration of tissue. Crosslinking
density can be an option to tune the degradability of PNIPAm-based scaffolding materials to
a relevant time frame for tissue repair [59]. Porosity also has an impact on the degradability
of hydrogels; the higher the porosity, the greater the degradation rate. Tuning the porosity
in PNIPAm hydrogels can be achieved by adjusting the crosslinking density.

5.3. Stiffness, and Swelling Degree

Better degrees of swelling and higher mechanical strength are both desired for tissue
engineering applications [158]. It is well established that the swelling degree has an inverse
relationship with the stiffness of the hydrogel materials [159]. If it could be possible to
tune the crosslinking structure of PNIPAm-based materials to control both swelling degree
and stiffness, then these materials would emerge as a preferred scaffolding material for
tissue regeneration. Apart from tuning the crosslinking structure, another way to enhance
the stiffness of the scaffold is via 3D or 4D printing. Although 4D printing uses the
same manufacturing processes used in 3D printing, the main difference is the type of the
materials used [160]. The materials for 4D printing exhibit a smart behavior upon exposure
to an external stimulus such as temperature, light, or pH [160]. Therefore, the final 4D
printed product can change its shape, function, or other physicochemical properties in
response to the above-mentioned stimuli. Smart materials such as PNIPAm can be used to
make 4D scaffolds with tunable stiffness and well-defined internal organization to adapt
to their microenvironment [160]. However, the reversible thermoresponsive feature of
PNIPAm-based scaffolds has some drawbacks during printing: impaired printability of
the material and lack of desired 4D effects in the product [161]. Moreover, the presence of
interfacial defects in the 3D layered structure (in layer-by-layer printing) of polymer-based
scaffolds is another major pitfall [162,163]. This drawback leads to the poor stiffness in
the final 3D printed scaffold. These pitfalls could be resolved by using stimuli-responsive
polymers in combination with different concentrations of non-responsive crosslinkers or
polymers, which would serve as a mechanical property enhancer. This would lead to the
synthesis of stiffer 3D or 4D printed PNIPAm-based scaffolds for cartilage repair.

6. Concluding Remarks

Thermoresponsive PNIPAm-based hydrogel scaffolds with modified structures and
physicochemical properties are critical for cell function in cartilage tissue engineering. Vari-
ous design variables including choice of synthesis-solvent and crosslinking density during
polymerization can alter the structure and properties of PNIPAm scaffolds. Such alterations
make the microenvironments of the scaffolds more favorable for tissue regeneration. In
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this review, we presented a comprehensive overview of the key properties of scaffolds and
the effects that synthesis-solvent and crosslinking density have on tuning these properties.
Although the unique properties of PNIPAm-based hydrogels make them a potential candi-
date for cartilage tissue repair application, further research is needed to further enhance
their mechanical properties and biodegradability. So far, several PNIPAm-based scaffolding
materials have shown improved structural properties and physicochemical behavior, but
they still do not match all the functions of the in vivo microenvironments. PNIPAm-based
scaffolds with controlled architecture must be designed and studied to assess their feasi-
bility for clinically viable cartilage tissue regeneration. As highlighted in Section 5 and
Figure 6, future research should focus on developing more sustainable synthesis pathways,
designing advanced procedures to synthesize hydrogel scaffolds with optimized architec-
tures, and generating accurate models to predict the properties of hydrogels so as to enable
the optimization of synthesis conditions to obtain better scaffolding performance.
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