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Abstract

The study of HIV-infected ‘‘controllers’’ who are able to maintain low levels of plasma HIV RNA in the absence of
antiretroviral therapy (ART) may provide insights for HIV cure and vaccine strategies. Despite maintaining very low levels of
plasma viremia, controllers have elevated immune activation and accelerated atherosclerosis. However, the degree to which
low-level replication contributes to these phenomena is not known. Sixteen asymptomatic controllers were prospectively
treated with ART for 24 weeks. Controllers had a statistically significant decrease in ultrasensitive plasma and rectal HIV RNA
levels with ART. Markers of T cell activation/dysfunction in blood and gut mucosa also decreased substantially with ART.
Similar reductions were observed in the subset of ‘‘elite’’ controllers with pre-ART plasma HIV RNA levels below
conventional assays (,40 copies/mL). These data confirm that HIV replication persists in controllers and contributes to a
chronic inflammatory state. ART should be considered for these individuals (ClinicalTrials.gov NCT01025427).
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Introduction

HIV-infected ‘‘controllers’’ are individuals who are HIV-

seropositive but are able to maintain low levels of plasma HIV

RNA in the absence of antiretroviral therapy (ART) [1]. These

individuals are rare, comprising less than 1–7% of the HIV-

infected population, depending upon the plasma HIV RNA

criteria that are used to define the group [2,3,4]. Most controllers

have evidence of strong host immune responses, which have been

widely assumed to be responsible for durable viral control. Because

knowledge regarding these protective immune responses might

lead to novel interventions aimed at preventing or curing HIV

infection, there has been intense interest in further characterizing

these unique individuals.

Multiple groups have examined how HIV is controlled by these

individuals [5,6,7,8,9]. More recently, our group has focused on

defining the potential clinical consequences of long-term, host-

mediated, virologic control. We and others have shown that: (1)

the vast majority of controllers have stable low-level viremia

[10,11]; (2) controllers have elevated levels of microbial translo-

cation and T cell activation compared to HIV-negative and ART-

suppressed individuals [12,13]; (3) a minority (7–10%) of

controllers with high levels of T cell activation progress immu-

nologically to AIDS despite preservation of virologic control [12];

and (4) controllers have accelerated measures of atherosclerosis

compared to HIV-negative individuals, even after adjustment for

traditional cardiovascular risk factors [14,15]. Collectively, these

data suggest that very low levels of viral replication may lead to
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disproportionately high levels of immune activation in HIV-

infected controllers, which may lead to an increased risk of AIDS-

and non-AIDS defining events. However, the degree to which

viral replication contributes to these outcomes is not known. No

prospective ART studies have been performed in controllers,

because it has generally been assumed that most controllers do not

need ART due to their ability to control plasma viremia to very

low levels.

We therefore conducted the first, prospective study of antiret-

roviral therapy in a cohort of asymptomatic HIV-infected

controllers, in order to determine the virologic and immunologic

effects of treating controllers with ART. We also measured

changes in biomarkers of inflammation and coagulation. Multiple

biomarkers (e.g., high sensitivity C-reactive protein and D-dimer)

remain elevated in both untreated and treated non-controllers

[16], and have been shown to be strongly predictive of morbidity

and all-cause mortality in ART-treated non-controllers [17,18,19].

We therefore examined whether ART initiation led to a reduction

in biomarkers of inflammation and coagulation in controllers, in

order to assess whether low-level viral replication has any potential

immunologic and clinical consequences in these individuals.

Results

Study Participants
Sixteen asymptomatic controllers were prospectively treated

with open-label raltegravir+tenofovir/emtricitabine for 24 weeks.

Controllers were defined by the following inclusion criteria: (1)

HIV-seropositive; (2) ART untreated; and (3) plasma HIV RNA

,1,000 copies/mL for $12 months. Exclusion criteria included:

(1) known rheumatologic conditions (e.g., systemic lupus erythe-

matosus), because of the potential for biologic false-positive testing

on HIV antibody tests; (2) known kidney disease; (3) known bone

disease, including pathologic fractures; (4) chronic hepatitis B

infection, because of the potential risk of liver abnormalities after

starting and stopping tenofovir/emtricitabine in patients with

chronic hepatitis B infection; (5) serious illness requiring hospital-

ization or parental antibiotics within the preceding 3 months; and

(6) pregnant or breastfeeding women.

Subjects were seen every four weeks. Plasma and peripheral

blood mononuclear cells (PBMCs) were collected and detailed

interviews were conducted at the majority of visits. Thirteen out of

16 subjects consented to undergo 3 serial colorectal biopsies at

weeks 22, 6, and 22. Five out of 16 subjects also underwent

leukapheresis at weeks 24 and week 21 in order to obtain large

PBMC samples for measurement of integrated HIV DNA.

Adherence to study drug was measured at every study visit by

self-report and pill-count. An independent Data Monitoring

Committee comprised of three individuals from the scientific

community met at 12, 24, 48, and 60 weeks after the enrollment of

the first subject, and at 60 weeks after the enrollment of the last

subject.

Baseline Characteristics (Table 1)
All subjects had a baseline plasma HIV RNA level ,1,000

copies/mL in the absence of ART. The median baseline plasma

Table 1. Baseline characteristics (n = 16).

Baseline Characteristic Median IQR

Age (years) 49 (40–56)

Gender 14 male, 2 female

CD4+ T cell count (cells/mm3) 616 (476–801)

CD8+ T cell count (cells/mm3) 897 (623–1434)

CD4+:CD8+ T cell count ratio 0.71 (0.51–0.95)

Nadir CD4+ T cell count (cells/mm3) 590 (458–746)

Plasma HIV-1 RNA, ,40 copy/mL assay (copies/mL) 77 (40–324)

Number of subjects with plasma HIV-1 RNA ,40 copies/mL 4/16

Plasma HIV-1 RNA, ,0.3 copy/mL assay (copies/mL) 23 (0.3–175)

Duration of HIV diagnosis (years) 10 (4.5–24)

Number of subjects with chronic hepatitis C virus infectiona 3

Data represent medians and interquartile ranges (IQR) unless otherwise noted.
aAt baseline, 3 subjects had chronic hepatitis C infection; 2 additional subjects had spontaneously cleared hepatitis C more than 2 years prior to baseline, and 1
additional subject had completed successful treatment with pegylated interferon and ribavirin more than 1 year prior to baseline.
doi:10.1371/journal.ppat.1003691.t001

Author Summary

HIV-infected ‘‘controllers’’ are rare individuals who are HIV-
seropositive but are able to maintain low levels of plasma
HIV RNA in the absence of antiretroviral therapy (ART).
There has been intense interest in characterizing these
unique individuals because they have been considered as
a potential model for a ‘‘functional cure’’ of HIV. Previously,
our group has shown that controllers have elevated levels
of T cell activation and accelerated atherosclerosis,
suggesting that very low levels of viral replication may
lead to disproportionately high levels of immune activa-
tion. However, the degree to which viral replication
contributes to these outcomes is not known. We therefore
conducted the first, prospective study of ART initiation in a
cohort of asymptomatic HIV-infected controllers, in order
to determine the virologic and immunologic effects of
treating controllers with ART. Controllers had a significant
decreases in ultrasensitive plasma HIV RNA, rectal HIV RNA,
and markers of T cell activation/dysfunction in blood and
gut mucosa with ART. Similar reductions were observed in
the subset of ‘‘elite’’ controllers with extremely low pre-
ART plasma HIV RNA levels (,40 copies/mL). These data
suggest that HIV replication persists in controllers and
contributes to a chronic inflammatory state.

Treatment of HIV-Infected Controllers
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HIV RNA level using a standard assay (Abbott Real Time assay,

lower limit of detection ,40 copy/mL) was 77 copies/mL; 4/16

subjects had an ‘‘undetectable’’ (,40 copies/mL) baseline plasma

HIV RNA level with this assay. The median baseline plasma HIV

RNA level using an ultrasensitive ‘‘single copy assay’’ (lower limit

of detection ,0.3 copy/mL) was 23 copies/mL. The median

baseline age was 49 years; most subjects (88%) were men. The

median baseline CD4+ and CD8+ T cell counts were 616 and 897

cells/mm3, respectively; the median baseline CD4+ to CD8+ T

cell count ratio was 0.71. The median nadir CD4+ T cell count

was 590 cells/mm3. The median self-reported duration of known

HIV diagnosis was 10 years.

Antiretroviral therapy was well tolerated and all subjects

completed 24 weeks of ART. No significant adverse events

occurred during the study. The majority of controllers (11/16)

elected to continue ART after the 24-week study period. Five out

of 16 subjects elected to discontinue ART after the 24-week study

period at various times (median 10.0 weeks, interquartile range

[IQR] 1.0 to 19.0 weeks) after the end of the treatment study.

They have subsequently been followed for a median 63.0 (IQR

47.4 to 66.3) weeks after discontinuing ART, and at the time of

last follow-up the plasma HIV RNA level using a standard assay

(Abbott Real Time assay, lower limit of detection ,40 copy/mL)

was a median ,40 (IQR,40 to 73) copies/mL. Of the 5 subjects

who elected to discontinue ART after the end of the treatment

study, 4/5 of the subjects had an ‘‘undetectable’’ pre-ART plasma

HIV RNA level at baseline using a standard assay (Abbott Real

Time assay, lower limit of detection ,40 copy/mL).

CD4+ T Cell Counts
Controllers did not have a statistically significant increase in

peripheral CD4+ T cell counts (mean 1.00-fold increase in CD4+
T cells at week 24, 95% confidence interval [CI] 1.05-fold

decrease to 1.06-fold increase, p = 0.93) (Fig. 1A). Similarly,

controllers did not have a statistically significant increase in

%CD3+CD4+ T cells in the rectum (mean +0.4%, 95% CI

20.8% to 1.6%, p = 0.50) (Fig. 1B).

Ultrasensitive Plasma HIV RNA and HIV Antibody Levels
Despite having low pre-ART plasma HIV RNA levels by

conventional assays, controllers had an early and persistent

decrease in ultrasensitive plasma HIV RNA levels after initiation

of ART (mean 66-fold decrease in S/Co at week 24, 95% CI 155

to 28-fold decrease, p,0.001) (Fig. 2A). In addition, we examined

change in HIV antibody levels as a surrogate measure of antigenic

stimulation and viral persistence [10,20,21,22,23]. Controllers also

had an early and persistent decrease in HIV antibody levels (mean

27.2 S/Co at week 24, 95% CI 29.6 to 24.8, p,0.001) (Fig. 2B).

Cell-Associated HIV RNA and Total and Integrated HIV
DNA

At baseline, the median (IQR) levels of cell-associated HIV

RNA and total HIV DNA in PBMCs were 6.9 (3.5, 45.7) S/Co

per million CD4+ T cells and 57 (34, 138) copies/million CD4+ T

cells, respectively. In PBMCs, controllers did not have a

substantial decrease in cell-associated HIV RNA (mean 1.20-fold

decrease in S/Co per million CD4+ T cells, 95% CI 2.4-fold

decrease to 1.62-fold increase, p = 0.58) or total HIV DNA (mean

1.22-fold decrease in copies/million CD4+ T cells, 95% CI 1.95-

fold decrease to 1.32-fold increase, p = 0.41) at week 24. However,

controllers did have an early and persistent decrease in rectal cell-

associated HIV RNA after initiation of ART, with a mean

decrease of 0.61 log10 copies/million CD4+ cells, which

corresponded to a 4.1-fold decrease (95% CI 12.0 to 1.40-fold

decrease, p = 0.010) at week 22 (Fig. 3A). There was a similar

trend towards a decrease in rectal total HIV DNA, with a mean

decrease of 0.28 log10 copies/million CD4+ cells, which corre-

sponded to a 1.91-fold decrease (95% CI 5.1-fold decrease to 1.38-

fold increase, p = 0.19) at week 22 (Fig. 3B). We also measured

integrated HIV DNA levels in PBMCs obtained through

leukapheresis in 5 controllers. In these subjects, there was a

statistically significant decrease in integrated HIV DNA after

initiation of ART, with a mean decrease of 0.32 log10 copies/

million PBMCs, which corresponded to a 2.1-fold decrease (95%

CI 2.7 to 1.13-fold decrease, p = 0.027) at week 21 (Fig. 4).

T Cell Activation/Dysfunction
Markers of T cell activation/dysfunction in blood and gut also

decreased substantially with ART. In PBMCs, controllers had a

mean decrease of 1.9% in %CD38+HLA-DR+ CD4+ T cells

(95% CI 22.8% to 20.9%, p,0.001) and a mean decrease of

9.0% in %CD38+HLA-DR+ CD8+ T cells (95% CI 212.4% to

25.6%, p,0.001) at week 24 (Fig. 5). Controllers also had a mean

decrease of 1.6% in %PD-1+ CD4+ T cells (95% CI 23.1% to

20.1%, p = 0.04) and a mean decrease of 4.5% in %PD-1+ CD8+
T cells (95% CI 26.4% to 22.6%, p,0.001) in PBMCs at week

24. In the rectum, controllers had a trend towards a decrease in

%CD38+HLA-DR+ CD4+ T cells (mean 20.9%, 95% CI

22.3% to +0.5%, p = 0.20) and a statistically significant mean

decrease of 12.2% in %CD38+HLA-DR+ CD8+ T cells (95% CI

221.9% to 22.5%, p = 0.014) at week 22 (Fig. 6).

Plasma Biomarkers
At baseline, the median (IQR) levels of high sensitivity C-

reactive protein (hsCRP), interleukin-6 (IL-6), soluble CD14

(sCD14), and D-dimer were 1.20 (0.55, 3.03) ug/mL, 1.71 (1.28,

4.42) pg/mL, 1696 (1446, 1971) ng/mL, and 0.37 (0.28, 0.56) ug/

mL, respectively. After ART initiation, there was a trend towards

a decrease in hsCRP, with a mean 1.74-fold decrease (95% CI 3.2-

fold decrease to 1.04-fold increase, p = 0.069) at week 4, and a

mean 1.67-fold decrease (95% CI 3.0-fold decrease to 1.09-fold

increase, p = 0.093) at week 24 (Fig. 7). We also observed similar

trends in IL-6 (mean 1.34-fold decrease, 95% CI 2.1-fold decrease

to 1.19-fold increase, p = 0.22), sCD14 (mean 244.2, 95% CI

2138.6 to +50.3, p = 0.36), and D-dimer (mean 1.30-fold

decrease, 95% CI 2.1-fold decrease to 1.25-fold increase,

p = 0.29) levels after 24 weeks of ART, although these trends did

not reach statistical significance.

HIV-Specific T Cell Responses
At baseline, the median (IQR) levels of percentage of Gag-

specific IFNc+IL2+ CD4+ and CD8+ T cell responses in PBMCs

were 0.10% (0.03%, 0.17%) and 1.53% (0.37%, 2.55%),

respectively. Controllers did not have a substantial change in the

percentage of Gag-specific IFNc+IL2+ CD4+ T cell responses in

PBMCs (mean 1.07-fold decrease, 95% CI 1.40-fold decrease to

1.22-fold increase, p = 0.62), although there was a trend towards a

decrease in the percentage of Gag-specific IFNc+IL2+ CD8+ T

cell responses in PBMCs (mean 1.28-fold decrease, 95% CI 1.68-

fold decrease to 1.03-fold increase, p = 0.075) at week 24. At

baseline, the median (IQR) levels of percentage of total (IFNc, IL-

2, TNFa, and/or CD107a) Gag-specific CD4+ or CD8+ in the

rectum were 0.56% (0%, 1.3%) and 0.22% (0.08%, 0.32%),

respectively. Controllers did not have a substantial change in the

percentage of total Gag-specific CD4+ (mean 1.26-fold increase,

95% CI 1.82-fold decrease to 2.9-fold increase, p = 0.58) or CD8+

Treatment of HIV-Infected Controllers
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(mean 1.61-fold decrease, 95% CI 3.6-fold decrease to 1.37-fold

increase, p = 0.24) T cell responses in the rectum at week 22.

‘‘Elite’’ Controllers
At baseline, 4/16 controllers had an ‘‘undetectable’’ pre-ART

plasma HIV RNA level using a standard assay (Abbott Real Time

assay, lower limit of detection ,40 copy/mL). Despite having this

extremely low pre-ART plasma HIV RNA level, this subset of so-

called ‘‘elite’’ controllers had a statistically significant decrease in

ultrasensitive plasma HIV RNA levels after initiation of ART

(mean 14-fold decrease in S/Co at week 24, 95% CI 115 to 1.74-

fold decrease, p = 0.013) (Fig. 8A). Similarly, this subset of

controllers had a statistically significant decrease in HIV antibody

levels (mean 24.2 S/Co at week 24, 95% CI 27.9 to 20.5,

p = 0.027) (Fig. 8B). Finally, we observed similar trends in immune

activation in these 4 controllers after initiation of ART. There was

a mean decrease of 6.0% in %CD38+HLA-DR+ CD8+ T cells in

PBMCs at week 24 (95% CI 213.0% to +0.10%, p = 0.091,

Fig. 8C) and a mean decrease of 24.3% in %CD38+HLA-DR+
CD8+ T cells in the rectum at week 22 (95% CI 254.1% to

+5.6%, p = 0.11, Fig. 8D).

Discussion

In this first prospective study of antiretroviral therapy initiation

in asymptomatic HIV-infected controllers, 24 weeks of ART was

safe and well-tolerated. Despite being able to maintain very low

plasma HIV RNA levels in the absence of ART, controllers had

readily measurable levels of HIV RNA and DNA in the gut.

Antiretroviral therapy led to statistically significant decreases in

ultrasensitive plasma HIV RNA levels, HIV antibody levels, rectal

cell-associated HIV RNA, and immune activation in the blood

and gut. Collectively, these data suggest that HIV in most

controllers is replication-competent [24,25,26], and that host

rather than virologic factors account for the remarkable degree of

Figure 1. Change in peripheral CD4+ T cell count and rectal CD4+ T cell content. Thin lines indicate data for each individual subject. The
thick line indicates the estimated mean value over time from mixed effects linear regression. P-values refer to change from baseline at each
referenced time-point.
doi:10.1371/journal.ppat.1003691.g001

Treatment of HIV-Infected Controllers
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viral control in these unique individuals. We also observed a

statistically significant decrease in levels of integrated HIV DNA

with ART, while total HIV DNA levels remained stable. These

findings may be due to an excess of unintegrated HIV DNA in

controllers, as previously reported by our group [27].

We observed that measures of immune activation/dysfunction

decreased as measures of virologic burden and HIV antigenic

stimulation decreased with ART. We also observed a trend

towards a decrease in hsCRP (a measure of systemic inflammation)

with ART; similar trends were observed with IL-6, sCD14, and D-

dimer. These biomarkers have been shown to be strong,

consistent, and independent predictors of increased morbidity

and mortality in HIV infection [18,19,28]. Because the confidence

intervals were wide, however, we cannot assess with certainty

whether the observed decrease in hsCRP levels has any clinical

relevance; it would be important to pursue these findings in future,

larger studies. Taken together, however, these data suggest that

there may be immunologic consequences to even very low levels of

viral replication. This latter finding may have important implica-

tions for HIV-infected non-controllers as well [29,30,31,32,33].

Importantly, our study also shifts the field’s working definition of

a ‘‘functional cure.’’ On one hand, our data suggest that a

complete block of viral replication is not necessary to achieve long-

term virologic control. However, natural long-term virologic

control appears to be coming at an immunologic and/or clinical

‘‘cost,’’ at least as defined by increased levels and manifestations of

immune activation. Thus, although further study of controllers is

warranted, untreated HIV-infected controllers may not represent

the best model of a functional cure, if we believe that a cure should

require a disease-free (and not just treatment-free) state.

Figure 2. Change in ultrasensitive plasma HIV RNA and HIV antibody levels. Thin lines indicate data for each individual subject. The thick
line indicates the estimated mean value over time from mixed effects linear regression. P-values refer to change from baseline at each referenced
time-point. S/Co = signal/cutoff ratio.
doi:10.1371/journal.ppat.1003691.g002

Treatment of HIV-Infected Controllers
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Several limitations of our study deserve comment. First, this was

a small pilot study and our findings should be replicated in a larger

study of HIV-infected controllers with a longer duration of follow-

up. In our study of controllers who had relatively high baseline

CD4+ T cell counts, 24 weeks of ART did not appear to confer a

CD4+ T cell count benefit. In studies of HIV-infected non-

controllers, a greater absolute decrease in plasma HIV RNA levels

during the early period after ART initiation has been shown to be

a consistent predictor of an early increase in CD4+ T cell counts

(with much of the increase assumed to be due to redistribution)

[34]. In our study, although we did observe a significant decrease

in ultrasensitive plasma HIV RNA levels with initiation of ART,

the absolute change was small compared to that observed in HIV-

infected non-controllers; this may have partially accounted for the

limited changes in peripheral CD4+ T cell counts. It is possible

that with a much longer duration of follow-up, an increase in

CD4+ T cell count may have been observed. Second, there was a

trend towards a decrease in the percentage of Gag-specific

IFNc+IL2+ CD8+ T cell responses in PBMCs, although a similar

trend was not observed in the rectum. This observation raises the

possibility that initiation of ART in controllers may reduce host

mechanisms of virologic control, leading to rebound in viremia if

ART is discontinued. However, in the 5 subjects who elected to

discontinue ART after the 24-week study period, there was no

evidence of rebound in plasma viremia after discontinuation of

ART. Nevertheless, the long-term safety of ART in controllers

should be confirmed. Third, we enrolled a relatively heteroge-

neous group of controllers. As we and others have shown,

however, controllers are a heterogeneous group with varying levels

of steady-state viremia; there appears to be a continuum of viremia

across controllers [1,10,12,13,35,36,37,38,39,40]. In order to

determine whether there is a differential effect of ART on a

Figure 3. Change in cell-associated HIV RNA and total HIV DNA in rectum. Thin lines indicate data for each individual subject. The thick line
indicates the estimated mean value over time from mixed effects linear regression. P-values refer to change from baseline at each referenced time-
point.
doi:10.1371/journal.ppat.1003691.g003

Treatment of HIV-Infected Controllers
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spectrum of controllers, we enrolled individuals whose baseline

plasma HIV RNA levels spanned from nearly 0 to 1000 copies

RNA/mL for at least 12 months (median duration of HIV

diagnosis 10 years, IQR 4.5 to 24 years). Thus, our study included

controllers who had both low-level but detectable and undetect-

able pre-ART plasma HIV RNA levels using conventional assays.

Remarkably, however, even amongst the latter group of ‘‘elite’’

controllers who had undetectable pre-ART plasma HIV RNA

levels at baseline, we observed a statistically significant decrease in

ultrasensitive plasma HIV RNA levels and HIV antibody levels,

and a trend towards a decrease in immune activation with ART.

Fourth, although 24 weeks of ART significantly decreased levels of

CD4+ and CD8+ T cell activation, it did not normalize them to

levels observed in HIV-uninfected individuals [41]. Thus, at least

in HIV-infected controllers, low-level viral replication is unlikely to

be the only factor contributing to immunologic disease. The

potential role of other factors that might contribute to immune

activation—including co-infections and substance abuse—could

not be addressed in this pilot study, but might be addressed in

future studies with larger cohorts. It would also be important to

systematically assess the individual and potentially synergistic

contributions of ART and lifestyle modifications towards decreas-

ing inflammation, immune activation, and clinical disease in HIV-

infected controllers [14]. Finally, it is worth noting that there may

be multiple pathways to virologic control, some of which may

represent an appropriate model of a ‘‘functional cure’’ and may

not receive an additional benefit from ART.

In summary, 24 weeks of ART was safe and well-tolerated in

chronically HIV-infected controllers. Antiretroviral therapy in

controllers led to significant decreases in ultrasensitive plasma and

rectal HIV RNA, HIV antibody levels, and markers of immune

activation/dysfunction in blood and gut, confirming that HIV

replication persists in controllers and contributes to a chronic

inflammatory state. We acknowledge that this was a small pilot

study and that our findings would be ideally replicated in a larger,

randomized, clinical-endpoint study. However, the relative rarity

of HIV-infected controllers may make such a study impractical, if

not impossible. In the absence of such a study, clinicians will need

to weigh the potential benefits of ART (suggested by the changes

in immune activation and biomarkers observed in our study) with

the potential risks and costs associated with long-term antiretro-

viral therapy.

Materials and Methods

Ethics Statement
All subjects provided written informed consent. This study was

approved by the University of California San Francisco (UCSF)

Committee on Human Research.

Ultrasensitive Plasma HIV RNA
The isothermal Transcription Mediated Amplification (TMA)

assay (Aptima, Gen-Probe/Hologic) was used to measure

ultrasensitive plasma HIV RNA levels at weeks 0, 4, 12, and

24. This is a nucleic acid-amplification test that has been FDA-

approved for the early detection of HIV infection in blood

donors [42,43,44]. It is a highly specific and sensitive assay, with

a singlicate 50% detection limit of 3.6–14 copies/mL [45,46].

The assay was performed in triplicate on 0.5 mL plasma (1.5 mL

total plasma), improving the overall 50% detection limit to ,5

copies/mL. The output is a signal/cutoff (S/Co) ratio (range 0–

30), with S/Co,1.0 = ‘‘negative’’ and S/Co$1.0 = ‘‘positive.’’

Ultrasensitive plasma HIV RNA levels were also measured at

weeks 0 and 12 with a ‘‘single copy assay’’ (lower limit of

detection ,0.3 copy/mL), using a median 7.3 mL of plasma

[47].

Plasma HIV Antibody Levels
A ‘‘de-tuned’’ or less-sensitive enzyme immunoassay (LS-

VITROS) was used to measure HIV antibody levels at weeks 0,

4, 12, and 24. The VITROS (Ortho-Clinical Diagnostics) is an

FDA-approved diagnostic assay for the detection of IgM/IgG

antibodies to HIV-1/-2. The less-sensitive modification tests 1:400

dilutions of plasma and calculates a S/Co ratio (range 0–80), and

has been validated as a method to identify early HIV infection

[48].

Figure 4. Change in integrated HIV DNA in peripheral blood. Change in integrated DNA levels before and after 21 weeks of antiretroviral
therapy was measured using the paired t-test with bias-corrected and accelerated non-parametric confidence intervals. PBMCs = peripheral blood
mononuclear cells.
doi:10.1371/journal.ppat.1003691.g004
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Cell-Associated HIV RNA and Total HIV DNA (PBMCs)
Cell-associated HIV RNA and total HIV DNA were measured

from PBMCs at weeks 0, 4, and 24. Cell-associated HIV RNA was

measured using modifications of published methods (Aptima, Gen-

Probe/Hologic) [10,49]. The output is a S/Co ratio (range 0–30),

with S/Co,1.0 = ‘‘negative’’ and S/Co$1.0 = ‘‘positive.’’ All S/

Co ratios were normalized to per million CD4+ T cells. Total HIV

DNA was measured using modifications of published methods

with an overall sensitivity of 1 copy/3 mg of DNA (450,000

PBMCs) [10,50,51,52]. All total HIV DNA levels were normalized

to per million CD4+ T cells.

Integrated HIV DNA (PBMCs)
Integrated HIV DNA was measured from PBMCs at weeks 24

and 21. DNA was prepared (Qiagen Mid) and integrated HIV

DNA was measured using a published repetitive sampling method

because integration levels are known to be low in controllers

[27,53]. At least 42 Alu-gag PCR reactions were performed with

150,000 diploid genomes per PCR, for a total of 6.3 million

diploid genomes assayed per subject.

T Cell Immunophenotyping and Cytokine Flow
Cytometry (PBMCs)

PBMCs were isolated from whole blood, cryopreserved, and

stored at the UCSF AIDS Specimen Bank. Markers of T cell

activation/dysfunction and antigen-specific T cell responses were

measured at weeks 0, 4, and 24 at the UCSF Core Immunology

Laboratory, using published methods that have been optimized

and validated for cryopreserved PBMCs [54]. Briefly, cryopre-

served PBMCs were rapidly thawed in warm media, counted on

Figure 5. Change in T cell activation in peripheral blood. Thin lines indicate data for each individual subject. The thick line indicates the
estimated mean value over time from mixed effects linear regression. P-values refer to change from baseline at each referenced time-point.
doi:10.1371/journal.ppat.1003691.g005
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an Accuri C6 (BD Biosciences) with the Viacount assay (Millipore),

and washed and stained the same day (T cell immunophenotyping)

or rested overnight (cytokine flow cytometry [CFC]). The average

viability of thawed cells was 93% (range 61–98%; 80% of samples

had viability .90%).

For T cell immunophenotyping, the percent of activated

(CD38+/HLA-DR+/PD1+) CD4+ and CD8+ T cells were

measured; these markers of immune activation/dysfunction have

been shown to be strong and independent predictors of HIV

disease progression [12,41,55,56,57]. Cells were stained with Aqua

Amine Reactive Dye (AARD, Invitrogen) to discriminate dead

cells, washed, and stained with fluorescently-conjugated monoclo-

nal antibodies: CD3-Pacific Blue (BD Pharmingen), CD38-PE,

HLA-DR-FITC, PD1- Alexa647 (BD Biosciences), CD4-PE Texas

Red, and CD8-QDot 605 (Invitrogen). In each experiment a

fluorescent-minus one control was included for CD38, HLA-DR,

and PD-1. Stained cells were washed, fixed in 0.5% formaldehyde

(Polyscience), and held at 4C until analysis.

For CFC, rested PBMCs were stimulated for 18–22 h at 37C

with overlapping peptide pools corresponding to HIV-1 Con B

Gag peptides (NIH 8117) in the presence of 0.5 ug/mL Brefeldin

A and 0.5 ug/mL Monensin (Sigma-Aldrich). A control well with

no stimulation was run in parallel for each sample. Cells were

washed and stained with AARD, fixed, and permeabilized for

intracellular staining with antibodies against CD3-Pacfic Blue,

IFNc-FITC, IL-2-PE (BD BioScience), CD4-PE Texas Red, and

CD8-QDot 605 (Invitrogen). Cells were washed and stored at 4C

until analysis. We focused on Gag-specific IFNc+IL2+ T cell

responses given that we have shown that these responses are

associated with control of HIV replication in controllers [5,35,58].

Figure 6. Change in T cell activation in rectum. Thin lines indicate data for each individual subject. The thick line indicates the estimated mean
value over time from mixed effects linear regression. P-values refer to change from baseline at each referenced time-point. GALT = gut-associated
lymphoid tissue.
doi:10.1371/journal.ppat.1003691.g006
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Figure 7. Change in high sensitivity C-reactive protein. Thin lines indicate data for each individual subject. The thick line indicates the
estimated mean value over time from mixed effects linear regression. P-values refer to change from baseline at each referenced time-point.
hsCRP = high sensitivity C-reactive protein.
doi:10.1371/journal.ppat.1003691.g007

Figure 8. ‘‘Elite’’ controllers (n = 4). Change in ultrasensitive plasma HIV RNA, HIV antibody levels, and T cell activation in peripheral blood and
rectum in 4/16 controllers with baseline plasma HIV RNA ,40 copies/mL. Thin lines indicate data for each individual subject (n = 4). The thick line
indicates the estimated mean value over time from mixed effects linear regression for the entire cohort (n = 16). The y-axes are on the same scale as
Figures 2, 5, and 6. P-values refer to change from baseline at each referenced time-point. S/Co = signal/cutoff ratio. GALT = gut-associated lymphoid
tissue.
doi:10.1371/journal.ppat.1003691.g008
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Stained cells were run on a customized BD LSR II (BD

Bioscience). 100,000 and 500,000 lymphocytes were collected for

immunophenotyping and CFC samples, respectively. Data were

compensated and analyzed using FlowJo (Tree Star) to determine

the proportion of CD4+ and CD8+ T cells expressing each of the

T cell or cytokine markers. Combinations of markers were

calculated in FlowJo using the Boolean gate function. For CFC

data, results from control wells with no stimulation were

subtracted from stimulated results.

Plasma Biomarkers
High sensitivity C-reactive protein (hsCRP), interleukin-6 (IL-6),

soluble CD14 (sCD14), and D-dimer levels were measured on

stored fasting plasma samples at weeks 0, 4, and 24 at the

Laboratory for Clinical Biochemistry Research at the University of

Vermont. hsCRP was measured with a BN II nephelometer

(Siemens Diagnostics, Deerfield, IL), IL-6 was measured with

Chemiluminescent Sandwich enzyme-linked immunosorbent as-

say, sCD14 with a standard ELISA (both R&D Systems,

Minneapolis, MN), and D-dimer was measured with an immuno-

turbidometric method on the Sta-R analyzer, Liatest D-DI

(Diagnostica Stago, Parsippany, NJ). Interassay coefficients of

variation for a number of different control materials of different

values averaged ,10% or less for all assays.

Gut-Associated Lymphoid Tissue (GALT)
Thirty colorectal biopsy specimens were obtained 10–20 cm

from the anal verge using 3 mm jumbo forceps at weeks 22, 6,

and 22. Eighteen to 24 biopsy pieces were placed into 10 mL

RPMI-1640 media containing fetal calf serum (15%), penicillin

(100 U/mL), streptomycin (100 ug/mL), and L-glutamine

(2 mM). Fresh colorectal cells were isolated on the same day

using a modification of a published protocol designed to optimize

yield and viability of mucosal lymphocytes without compromising

the detection of most surface antigens [59]. Briefly, biopsy pieces

underwent two rounds of digestion in 0.5 mg/mL collagenase type

II (Sigma-Aldrich). Each digestion was followed by disruption of

the tissue with a syringe bearing a 16-gauge blunt end needle and

subsequent passage through a 70 mm cell strainer. Yields were

9.5–316106 (mean 186106) total rectal cells. One aliquot of cells

was set aside for flow cytometry and stained with CD45-FITC,

CD3-APC and CD4-PE (BD biosciences) for 15 min at 25C.

Propidium iodide was added to stain non-viable cells and samples

were run on an Accuri C6 to determine the total number of viable

mononuclear cells and proportion and absolute number of viable

CD45+ leukocytes and CD4+ T cells. Another aliquot of cells was

frozen at 280C for subsequent nucleic acid extraction.

Cell-Associated HIV RNA and Total HIV DNA (GALT)
Total HIV RNA was measured from rectal cells using a

published method [40]. Three replicates of up to 500 ng RNA

were assayed for total processive HIV RNA transcripts using

primers (HXB2 positions 522–543, 626–643) and probe (559–584)

from the LTR region [60]. Genomic HIV RNA standards

(2.56100 to 2.56105) were prepared from lab stocks of NL4-3

virions by extracting and quantifying HIV RNA using the Abbot

Real Time assay. HIV RNA copy numbers were normalized to

cellular input into the PCR, as determined by RNA mass

(assuming 1 ng RNA = 1000 cells [61]), which has been shown

to correlate with levels of GAPDH RNA [62]. Results were further

normalized by the percent of cells that were CD3+CD4+ by flow

cytometry and expressed as copies/106 CD4+T cells.

Total HIV DNA was measured from rectal cells using a

published method [40]. Three replicates of up to 500 ng DNA

were assayed for HIV DNA using a modification of a published

TaqMan PCR assay that uses primers/probe from the LTR

region (as above). External standards (105 to 1) were prepared

from DNA extracted from known numbers of 8E5 cells (NIH

AIDS Reagent Program), each of which contains one integrated

HIV genome per cell. HIV DNA copy numbers were normalized

to cellular input into the PCR, as determined by DNA mass

(assuming 1 ug DNA = 160,000 cells). Results were further

normalized by the percent of cells that were CD3+CD4+ by flow

cytometry and expressed as copies/106 CD4+T cells.

T Cell Immunophenotyping and Cytokine Flow
Cytometry (GALT)

Markers of T cell activation (CD38+/HLA-DR+) and total

Gag-specific responses (Gag-specific CD4+ and CD8+ T cells

expressing one or more of IFNc, IL-2, TNFa, and/or CD107a

[63,64,65]) were measured from rectal cells at weeks 22, 6, and

22. We focused on these responses given that we have shown that

these mucosal T cell responses are associated with control of HIV

replication in controllers [36].

For T cell immunophenotyping of freshly isolated rectal cells,

similar methods were used as for PBMCs [59]. For CFC, freshly

isolated rectal cells were rested overnight at 37C, 5%CO2, in R15

containing 0.5 mg/mL piperacillin-tazobactam, then similar

methods were used as for PBMCs [59]. To account for the lower

numbers of events and elevated baseline cytokine staining in

mucosal samples, response data from peptide-stimulated wells

were first compared against unstimulated controls using a

published algorithm to determine statistical significance, prior to

background subtraction [36,66].

Statistical Methods
Mixed effect linear models with random slopes and intercepts

were used to examine change in virologic and immunologic

measurements over time. Changes in integrated HIV DNA levels

were assessed by estimating the mean change and its bias-

corrected and accelerated non-parametric confidence intervals,

and using a paired t-test to obtain a corresponding p-value [67].

All statistical analyses were conducted with Stata version 11.1

(Stata Corp).
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