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Seagrasses are marine angiosperms that can live completely or partially submerged
in water and perform a variety of significant ecosystem services. Like terrestrial
angiosperms, seagrasses can reproduce sexually and, the pollinated female flower
develop into fruits and seeds, which represent a critical stage in the life of plants. Seed
microbiomes include endophytic microorganisms that in terrestrial plants can affect seed
germination and seedling health through phytohormone production, enhanced nutrient
availability and defence against pathogens. However, the characteristics and origins
of the seagrass seed microbiomes is unknown. Here, we examined the endophytic
bacterial community of six microenvironments (flowers, fruits, and seeds, together with
leaves, roots, and rhizospheric sediment) of the seagrass Halophila ovalis collected
from the Swan Estuary, in southwestern Australia. An amplicon sequencing approach
(16S rRNA) was used to characterize the diversity and composition of H. ovalis
bacterial microbiomes and identify core microbiome bacteria that were conserved
across microenvironments. Distinct communities of bacteria were observed within
specific seagrass microenvironments, including the reproductive tissues (flowers, fruits,
and seeds). In particular, bacteria previously associated with plant growth promoting
characteristics were mainly found within reproductive tissues. Seagrass seed-borne
bacteria that exhibit growth promoting traits, the ability to fix nitrogen and anti-
pathogenic potential activity, may play a pivotal role in seed survival, as is common
for terrestrial plants. We present the endophytic community of the seagrass seeds as
foundation for the identification of potential beneficial bacteria and their selection in order
to improve seagrass restoration.

Keywords: Halophila ovalis, seagrass restoration, seed microbiome, core, bacteria, amplicon sequencing

INTRODUCTION

It is well established that vascular plants form complex interactions and mutualistic relationships
with bacteria that play a critical role in supporting plant growth and fitness (Turner et al.,
2013; Fitzpatrick et al., 2018). This work, conducted largely on terrestrial vascular plants, has
demonstrated that such diverse functions as boosted growth and protection from pathogens, can be

Frontiers in Microbiology | www.frontiersin.org 1 September 2021 | Volume 12 | Article 703014

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2021.703014
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fmicb.2021.703014
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2021.703014&domain=pdf&date_stamp=2021-09-21
https://www.frontiersin.org/articles/10.3389/fmicb.2021.703014/full
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-703014 September 21, 2021 Time: 10:37 # 2

Tarquinio et al. Seagrass Seed Microbiome

attributed to interactions between plants and their unique
microbial communities (microbiomes; Compant et al., 2005;
Gopalakrishnan et al., 2015; Enebe and Babalola, 2019). In
addition to improving our mechanistic understandings of plant
physiology, plant-microbe mutualisms and their manipulation
have become the focus of research into plant husbandry with
applications ranging from crop improvement to vegetation
restoration (Chaparro et al., 2012; O’Callaghan, 2016; Castro
et al., 2018; Compant et al., 2019).

Seagrasses are marine plants characterised by several eco-
physiological traits that allow them to live submerged in water
(Les et al., 1997; Hemminga and Duarte, 2000; Kuo and den
Hartog, 2006). They are globally distributed throughout the
coastlines of all continents (except Antarctica), and are key
players in sequestration of carbon dioxide, coastal protection
and support of human communities by food provision and
tourism (Costanza et al., 1997; Mtwana Nordlund et al., 2016).
By comparison to terrestrial plants, understanding of the nature
of seagrass-bacteria interactions, and the mechanisms through
which bacteria are acquired is limited. This is astonishing, given
the attention that plant microbiomes have received from the
past two decades, and the significant value of seagrasses ($AUD
3.9–5.4 billion for carbon sequestration; Lavery et al., 2013).

As seen in terrestrial vascular plants, distinct seagrass-
associated bacterial communities inhabit discrete
microenvironments within and around the plant, including
the internal tissue of leaves (phyllosphere), roots (endosphere)
and the layer of sediment directly influenced by the plant activity
(rhizosphere) (Crump and Koch, 2008; Garcias-Bonet et al., 2012;
Sun et al., 2015; Hurtado-McCormick et al., 2019). The different
physico-chemical conditions within these microenvironments,
such as oxygen and nutrient concentrations, are likely to favour
the divergent bacterial communities (McRoy and Goering, 1974;
Kilminster and Garland, 2009; Chaparro et al., 2014; Martin et al.,
2019). Seagrass microbiomes are involved in many processes that
benefit the plants (Ugarelli et al., 2017; Tarquinio et al., 2019),
including nutrient supply (e.g., nitrogen fixation associated
with seagrass leaves and roots) and detoxification from harmful
compounds (e.g., hydrogen sulphides around seagrass roots;
Welsh, 2000; Jensen et al., 2007; Hamisi et al., 2009). Indeed,
nitrogen fixing bacteria are estimated to provide up to 50% of
the nitrogen required by seagrasses (O’Donohue et al., 1991),
while sulphate oxidising bacteria alleviate seagrass below ground
tissues from the toxic effects of hydrogen sulphide (Brodersen
et al., 2018; Martin et al., 2019).

Recently, studies on terrestrial plants have focused on
the microbiomes associated with seeds, and particularly their
manipulation in order to improve plant health. Since the
bacterial community established within seeds will be carried
by the seedling and possibly the adult plant (Hardoim
et al., 2015; Truyens et al., 2015), the quality of the seed
microbiome is likely to impact the future plant fitness
(Berg et al., 2017). Seed-borne bacteria are localised within
the integument, endosperm and embryo of seeds (Shade
et al., 2017) and their manipulation has been particularly
significant to reduce, for example, the incidence of plant

disease (Adhikari et al., 2001; Bloemberg and Lugtenberg, 2001),
increase agricultural production (O’Callaghan, 2016), improve
seedling development (Compant et al., 2010; Johnston-Monje
and Raizada, 2011; White et al., 2019), promote germination
and induce plant defence mechanisms (Weyens et al., 2009;
Sánchez-López et al., 2018).

The characteristics and origins of the seagrass seed
microbiome is largely unexamined. Seagrasses can be
monoecious, with flowers containing male and female organs,
or dioecious, with separate male and female plants. During
the reproductive season, male flowers produce a hydrophilic
pollen that fertilises ovules in female flowers, which can produce
up to 60 seeds, depending on the species (Orth et al., 2007).
Seeds represent a crucial phase in the life cycle of flowering
plants, including seagrasses, because they maintain genetic
diversity within a population (Kendrick et al., 2017) and, in
some species, can persist for years in a dormant state developing
into a new plant only when the appropriate conditions are met
(Kuo and Kirkman, 1992; Orth et al., 2000). Halophila ovalis
is a dioecious marine plant present in tropical Indo-Pacific
waters as well as Australian temperate waters (Short et al.,
2007, 2010) and is a foundation species in the Swan River
(Southwestern Australia) where it plays an important role in
terms of sediment stability and ecology (Hillman et al., 1995).
H. ovalis exhibits seasonal colonisation, and, as with other
opportunistic species, relies mainly on sexual reproduction
and seed recruitment for the annual regeneration of meadows
(Statton et al., 2017). The interest in exploring H. ovalis seed
microbiome extends beyond that of exploring a potential
biodiversity niche, as seed borne bacteria are likely to impact
seedling germination and development, therefore affecting
meadows enduring.

When endophytic bacteria form spatially and temporally
stable associations with their host we refer to them as core
microbiome (Astudillo-García et al., 2017). Core microbiomes
can be defined by taxonomy or functionality (i.e., metagenomic
or metatranscriptomic analyses used to predict shared functions).
Moreover, we can define core microbiomes at a population
level (i.e., the bacteria shared between plants of the studied
population) or at a species level (i.e., the bacteria shared between
plants from different populations; Vandenkoornhuyse et al.,
2015). In each case, the plant core microbiome is considered
to contain key microbial taxa that are critical for plant health
and fitness (Lemanceau et al., 2017). For seagrasses, few studies
have explored the existence of a core microbiome (Hurtado-
McCormick et al., 2019; Martin et al., 2019).

In this study, we characterised the diversity and role
of endophytic bacteria associated with a population of the
seagrass Halophila ovalis collected from the Swan River. In
particular, we characterised the composition and role of the
bacterial community for six H. ovalis microenvironments;
leaves, roots, flowers, fruits, seeds and the rhizosphere.
We also investigated the presence of a H. ovalis core
microbiome at a population level, within the six H. ovalis
microenvironments and followed the changes of core bacteria
within the reproductive tissues.
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MATERIALS AND METHODS

Sample Collection and Processing
Seagrass samples were collected from a female H. ovalis meadow
located at Pelican Point, Swan-Canning Estuary, in southwestern
Australia (−32.026S; 115.7580E). H. ovalis is dioecious, with
separate female and male flowers that develop during the austral
summer (between December and February). Fruits start to
develop from February till May and each fruit can contain up
to 60 seeds (each about 2-mm diameter) which are released
into the surrounding sediment once they reach maturity. Plant
material was collected during two different occasions: February
2019 when the plants had immature flowers (Time 1) and April
2019, when the plants had developed mature fruits (Time 2).
Flowers and mature fruits were collected while still attached to
the adult plant. Leaves, roots and sediment were collected during
each occasion (five replicates on each occasion) while flowers,
fruits and seeds were collected once (each represented by five
replicates), reflecting the reproductive phenology of H. ovalis.

Replicates were collected using a sterile PVC core of 10-cm
diameter (1 mt depth), at a distance of 0.5 m apart; cores were
stored in sterile zip-sealed plastic bags, in an ice box filled with
ice until delivery to the laboratory, where they were frozen. The
rhizospheric sediment was kept attached to the roots within the
zip-sealed plastic bags, detached from the roots in the laboratory
and kept in 2.5-ml sterile tubes at−20◦C.

All the seagrass samples were processed in order to remove
plant epiphytes and obtain only microbial endophytic DNA. All
samples were rinsed in 0.2 µm filtered water collected from
the river and, sediment-free tissues were then immerged in
70% ethanol for 30 s followed by a rinse in sterile Milli-Q
water (MoBio Laboratories, Carlsbad, CA, United States). This
procedure was repeated three times, with a final rinse in Milli-
Q water performed three times to remove any excess of ethanol
(Saldierna Guzmán et al., 2020). Fruits were surface sterilised as
described above prior to opening with a sterilised razor blade in
order to remove the seeds. Seeds were then placed in sterile 2.5 ml
tubes and surface sterilised as described above.

DNA Extraction and PCRs
Between 0.132 and 0.333 wet weight grams of samples were
weighed for each replicate and tissue type and DNA was extracted
using a PowerSoil Kit (MoBio) following the manufacturer’s
instructions (on average, sediments = 0.27 g, roots = 0.25 g,
leaves = 0.24 g, flowers = 0.24 g, fruits = 0.26 g, and
seeds = 0.23 g). For each replicate of H. ovalis tissue, 15 flowers,
between 8 and 13 fruits, between 120 and 180 seeds, 5 to
6 leaves and about 15 roots were pooled in order to obtain
enough material for the DNA extraction. Final extracted DNA
concentration was checked by using the QIAxpert machine from
QIAGEN (which calculates DNA concentration of samples from
the measured UV/VIS absorption spectrum) at CSIRO facility.
Extracted DNA was then eluted and kept in 50 µL nuclease-
free water.

PCRs were performed on extracted samples to screen for
bacterial presence. GoTaq Green Master Mix (Promega) was

used for the PCR reactions and primer concentration was
0.7 µM. Primer pairs used for the present study were 515F
5′ – GTGCCAGCMGCCGCGGTAA -3′ and 806R 5′ – GGACT
ACHVGGGTWTCTAAT – 3′ primers which target the V4
hypervariable region of the 16S rRNA gene (Caporaso et al.,
2012). PCR cycling conditions involved an initial step at
95◦C during 120 s followed by 32 cycles of denaturation at
95◦C for 30 s, annealing at 55◦C for 30 s and extension at
72◦C for 60 s; followed by a final extension step at 72◦C
for 10 min in accordance to the guideline of the Taq DNA
furnisher’s (Promega).

Bioinformatic Analyses
Microbial communities were sequenced by the Australian
Genome Research Facility (AGRF) on the Illumina MiSeq
platform, using Nextera XT v2 indices and 300 bp paired
end sequencing chemistry. Bioinformatic analysis of sequence
reads were performed in MOTHUR (v1.39.3; Department of
Microbiology and Immunology, The University of Michigan)1

using the Standard Operating Procedure (SOP, page accessed
on September 2019) (Schloss et al., 2009; Kozich et al., 2013).
Paired end reads were assembled by aligning the forward and
reverse amplicon sequence reads, which joined paired reads using
the make.contigs() command with the option trimoverlap = T.
Sequences with ambiguous bases and and/or containing a
homopolymer stretch longer than eight bases were removed.
Unique contigs were aligned to the SILVA database (version 132)
(Cole et al., 2014) using the align.seqs() command with default
settings. Following alignment, sequences were pre-clustered
(diffs = 2) for further error reduction and chimera.uchime()
command (Edgar et al., 2011) was used for de novo removal
of chimeric reads. Reads were clustered using the default Opti
clustering method in MOTHUR at 97% similarity to produce
Operational Taxonomic Units (OTUs). A “blank” sample of
reaction buffers was also sequenced and OTUs present in the
control (predominantly Clostridium_XlVa) were removed from
all other samples. Also, OTUs represented by a single sequence
and/or not present in at least three samples were removed.
The remaining OTUs were classified using the SILVA taxonomy
database method = wang (cutoff probability value = 80; Wang
et al., 2007; Quast et al., 2013) and OTUs identified as chloroplast,
mitochondria or algae (12.4% of total sequences) were removed.
The most abundant unclassified OTUs were using megablast
against the nucleotide database (nr/nt) using the NBCI (National
Center for Biotechnology Information, U.S. National Library of
Medicine) web portal2 to assign them a taxonomy using the best
blast hit.

Statistical Analyses
Data visualisation and statistical analyses were performed in
R (version 4.0.2) (R Core Team, 2020) using the phyloseq
(McMurdie and Holmes, 2013), ggplot2 (Wickham, 2016) and
vegan (v 2.5–6; Oksanen et al., 2019) packages. Considering the
number of reads (or number of sequences) per sample for a

1http://www.mothur.org/
2https://blast.ncbi.nlm.nih.gov/Blast.cgi
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specific taxon as a proxy of its abundance (Calle, 2019), OTUs
with a relative abundance across the full dataset of <1% were
removed from the analyses to eliminate the influence of possible
sequencing artefacts. A final number of 710 taxa (OTUs) from
the six seagrass microenvironments (i.e., five types of tissue –
leaf, root, flower, fruit, seed – and sediment) were kept for
downstream analyses.

Bacterial diversity within samples (alpha diversity) was
estimated using richness (number of observed OTUs) and
Shannon’s diversity (Shannon and Weaver, 1964). Analysis of
Variance (ANOVA) was performed to test hypotheses about
differences in diversity between seagrass microenvironments and
sampling occasions. A Tukey’s Honest Significant Difference
(HSD) test was used (Tukey, 1953; Kramer, 1956, 1957) to
identify which pairwise comparisons were significant.

Principal coordinate analysis (PCoA) was used to visualise
patterns in the microbial assemblage (i.e., beta diversity)
among the seagrass microenvironments, based on Bray-
Curtis dissimilarities (Bray and Curtis, 1957) calculated from
log10-transformed OTU abundances. To test hypotheses
about differences in the bacterial assemblage among
microenvironments, a permutational multivariate analysis
of variance (PERMANOVA) was performed using the adonis
function from the vegan package in R with 999 permutations
(Anderson, 2017).

To explore which taxa most contributed to patterns, we used
similarity percentage analysis (SIMPER, 999 permutations, log10
+1 transformed abundance; Clarke, 1993) to. The first two
OTUs with the highest contribution to the dissimilarity between
pairwise tests were extracted and fitted onto the PCoA with the
function envfit from the package vegan (Oksanen et al., 2019).

To explore the possible role of bacteria within the seagrass
holobiont, we were able to assign a function to 247 taxa
based on their family or species taxonomic identity using
the database FAPROTAX (Louca et al., 2016) and literature
search (Supplementary Table 1). The two major limitations in
applying FAPROTAX or other trait databases, are (1) databases
are limited/incomplete in terms of their ability to capture all
organisms. They are biased toward more heavily studied and
cultured organisms, and (2) the assumption that if cultured
bacterial species are able to perform a particular function, then
all members of the same taxon also share and exhibit this
phenotype. Despite these limitations, we were able to identify
in this analysis bacteria involved in nitrogen cycling (nitrogen
fixing, nitrifying, and denitrifying bacteria), sulphur cycling
(sulphide-oxidising and sulphur-reducing bacteria) and/or with
known plant growth promoting properties (PGPB: bacteria able
to produce phytohormones).

Stable associations between H. ovalis and specific taxa
were investigated through an exploratory analysis of the core
microbiome. OTUs present (relative abundance >0%) in all
samples of each microenvironment were considered part of their
core microbiome. Moreover, we tested for the presence of a
seagrass core microbiome present across samples of vegetative
tissues (i.e., leaves and roots) and among reproductive parts
(flowers, fruits and seeds), the latter to show which OTUs were
conserved from the flower to the seed stage.

RESULTS AND DISCUSSION

Components of the Bacterial Community
Seven hundred and ten OTUs were identified from high quality
16S rRNA gene sequences of the 45 samples. The majority
of these OTUs (426 out 710, Figure 1A) belonged to the
phylum Proteobacteria which was the dominant lineage within
all six microenvironments, representing 87%, 84%, 83%, 83%,
78%, and 63% of the OTUs within seed, fruit, leaf, root,
flower, and sediment, respectively (Supplementary Table 2).
Gamma-, Delta-, and Alpha-proteobacteria were the dominant
proteobacterial classes (97, 131, and 173 OTUs, respectively),
compared to Oligoflexia and Beta- and Epsilon-proteobacteria (3,
9, and 13 OTUs, respectively).

With 140 unique OTUs, the Bacteroides phylum contained
the second highest number of OTUs associated with H. ovalis
microenvironments (Figure 1A and Supplementary Table 2).
Bacteroides represented from 8 to 14% of the bacterial
community in different microenvironments. Flavobacteriia
(phylum Bacteroides) was the most relatively abundant
Bacteroides class, being relatively prevalent in flowers
(11%), sediment (8%) and leaves (6%, Figure 1B), while
Sphingobacteriia, the second most abundant Bacteroides class,
was most relatively abundant in sediment (3.5%). The remaining
phyla were less relatively abundant, but they showed a clear
association with specific seagrass microenvironments. For
example, Acidobacteria (31 unique OTUs) and Actinobacteria
(46 unique OTUs) were mainly present in the rhizosphere and
almost absent in seagrass tissues (Figure 1B).

Differences in Diversity and Richness
Between Microenvironments
Alpha diversity (based on a total number of 1565233 sequences,
Supplementary Figure 1) measured as Shannon’s diversity
index and observed OTUs, varied significantly between
seagrass microenvironments (ANOVA, pobserved < 0.0001,
MSobserved = 3.7, Fobserved = 27.7; pshannon < 0.0001,
MSshannon = 71418, Fshannon = 34.6). However, alpha diversity
did not vary substantially among the two sampling occasions
(ANOVA, pobserved = 0.8375, pshannon = 0.8752) and so this
was excluded from further statistical analyses. In general,
diversity and richness within seeds was lower than all other
microenvironments. Sediment was characterised by the highest
diversity and richness among microenvironments and was
significantly different from H. ovalis tissues, except for fruits and
flowers (Supplementary Figure 1 and Supplementary Table 3).
Bacterial community diversity and richness of roots, flowers,
leaves and fruits were not significantly different although these
parameters tended to be smaller for the leaf bacterial community.

Microenvironment-Specific Halophila
ovalis Microbiomes
The first two axes of a PCoA comparison of bacterial
diversity explaining 55% of bacterial variability among
microenvironments. Clear partitioning of the communities
belonging to the leaves, roots and sediment and a less accentuated
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FIGURE 1 | Relative abundance of OTUs aggregated by phylum (A) and class (B) in six H. ovalis microenvironments (rhizospheric sediment, roots, leaves, flowers,
fruits, and seed). Numbers are presented in percentage.

separation for flowers, fruits and seeds was evident (Figure 2A).
These patterns of differences in bacterial community structure
according to the plant microenvironment was also supported

by PERMANOVA, (p < 0.0001, Supplementary Table 4),
where all bacterial communities were significantly different
from each other. The different physical and chemical conditions
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FIGURE 2 | (A) Principal coordinates analysis (PCoA) of microbial communities associated with H. ovalis rhizospheric sediment, roots, leaves, flowers, fruits, and
seeds. The percentages in parentheses refer to the proportions of variation explained by each ordination axis. The confidence ellipses (with a 95% confidence level)
corresponding to each microenvironment are shown (B) PCoA with envfit object displaying the first two OTUs with the highest contribution to the dissimilarity
between pairwise tests from SIMPER. OTUs identity is reported below the PCoA. OTU 2, 12, and 252 are unclassified Gammaproteobacteria.

within discrete seagrass microenvironments are likely to favour
microscale heterogeneity in bacterial diversity and community
structure (Borum et al., 2007; Ettinger et al., 2017; Brodersen
et al., 2018; Hurtado-McCormick et al., 2019).

A Distinctive Rhizosphere Community
The bacterial assemblage inhabiting H. ovalis rhizosphere
represented a clearly distinguished cluster from the other
microenvironments (Figure 2A). The bacterial community
found in this microenvironment was, on average, the richer
(400.6 ± 6.56 total number of OTUs) and more diverse than
those associated with H. ovalis tissues. This is not surprising
since in terrestrial systems, the rhizosphere is characterised by
an increased diversity compared to host-associated communities
(Edwards et al., 2015) and our study is consistent with many

studies of seagrass microbial diversity (Jensen et al., 2007; Mejia
et al., 2016; Fahimipour et al., 2017; Martin et al., 2018, 2020).

The main driver of the clustering of the rhizospheric
bacterial community was the high abundance of
Desulfobacterales (especially Desulfosarcina sp.) and
Chromatiales (Chromatiaceae) which accounted for 17%,
and 17.5% of rhizospheric sequences, respectively (Figure 2B
and Supplementary Table 5). Members of these two taxa have
been shown to dominate the rhizosphere of seagrasses (Sun et al.,
2015; Ettinger et al., 2017; Cúcio et al., 2018) and salt marsh
plants (Thomas et al., 2014), where they influence sulphur and
nitrogen cycling (Cúcio et al., 2016). Actinobacteria was the third
most relatively abundant phylum in sediment (17%), represented
by the classes Actinobacteria (9%) and Acidimicrobiia (7%),
while its average abundance was less than 6.5% of sequences
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within H. ovalis tissues. In general, within the oxygenic sediment
layer and/or at the root-sediment interface, members of the
Actinobacteria, Flavobacteriales, and Myxococcales, can play a
prominent role in degrading organic substrates (Lu et al., 2006;
Bowman et al., 2012; Větrovský et al., 2014; Lasa et al., 2019).
For example, bacteria belonging to the genera Eudoraea and
Maribacter (Flavobacteriaceae) found in the present study, can
grow aerobically utilising several organic substrates (e.g., organic
acids, amino acids, and carbohydrates; Alain et al., 2008; Handley
and Lloyd, 2013). On the contrary, within the anoxic layers
of seagrass sediment, decomposing processes can be based on
the activity of obligate fermentative Clostridium species, which
provide substrates to other organisms, such as sulphate-reducing
bacteria (SRB; Küsel et al., 1999).

Sulphate reduction is one of the main processes in marine
sediments related to the anoxic mineralisation of organic matter
(Jørgensen, 1982) and it is reported as high in seagrass meadows,
where it is fuelled by organic exudates from the plant roots
(Isaksen and Finster, 1996; Holmer and Nielsen, 1997; Hansen
et al., 2000; Cúcio et al., 2016). This process it also likely to
be significant in eutrophic environments such as the Swan-
Canning Estuary, where sediments have been characterised by
nutrient and organic matter enrichment (Kelsey and Western
Australia, Department of Water, 2010). SRB gain energy for
cell synthesis and growth by coupling the oxidation of organic
compounds to the reduction of different sulphate/sulphur
molecules to hydrogen sulphide (H2S, HS−; Dworkin et al.,
2006; Camacho, 2009). H. ovalis rhizospheric sediment contained
a diverse assemblage of OTUs belonging to Desulfobacterales,
Desulfovibrionales and Desulfuromonadales known to reduce
elemental sulphur to H2S (Muyzer and Stams, 2008; Varon-Lopez
et al., 2014). Among them Desulfosarcina sp. was associated
only with the sediment community in our study (Figure 2B).
However, sulphides that are produced from the reduction of
sulphur, in particular H2S, are toxic to plants (Koch and Erskine,
2001; Borum et al., 2005; Lamers et al., 2013). Several studies have
described that the association of seagrass below-ground parts
with sulphide-oxidising bacteria (SOB) can release the marine
plants from sulphide toxic stress (van der Heide et al., 2012;
Fahimipour et al., 2017; Martin et al., 2019; Van Der Geest et al.,
2020). In fact, SOB by using H2S for their metabolism demand
could help to reduce sulphide concentration, as suggested for
Zostera species (Hansen et al., 2000; Nielsen et al., 2001; van der
Heide et al., 2012; Brodersen et al., 2018). In our study, four
rhizospheric OTUs (relative abundance of 0.15) were putatively
involved in the oxidisation of sulphides such as Rhodovulum sp.,
(Rhodobacterales) and Thiohalocapsa sp. (Chromatiales) which is
able to oxidize both sulphide and elemental sulphur (Straub et al.,
1999; Hamilton et al., 2014).

Microbially mediated denitrification is a key ecosystem
service provided by seagrass associated bacteria (Reynolds
et al., 2016), which acts to remove the excess of nitrogen
from eutrophic systems (Stohr and Ullrich, 2002). This may
be especially important in estuarine systems which usually
present high concentrations of nutrients. For example, Caldithrix
sp. (Deferribacterales) is an anaerobic nitrate reducer, and
Saccharospirillum sp. (Oceanospirillales) is able to catalyse the

three steps of the denitrification process (Miroshnichenko et al.,
2003; Zhang et al., 2019). OTUs affiliated with Ignavibacterium
sp. were mostly present in sediment samples; Ignavibacterium
species are able to reduce ammonium to dinitrogen gas (N2)
that could be used by nitrogen fixing bacteria present within
the seagrass ecosystem. While organic nitrogen recycling in the
rhizospheric sediments can provide a large proportion of the
plant’s nitrogen demand, it may be insufficient to meet the annual
N requirement of the plant, due to the limited nutrient diffusion
and root uptake rates (Lepoint et al., 2002). Nitrogen fixation
might represent another important source of nitrogen used by
seagrasses and high rates of nitrogen fixation have been recorded
in sediments colonised by diverse seagrass species (Welsh, 2000;
Bagwell et al., 2002). Some members of Desulfobulbaceae and
Desulfobulbacteraceae could be involved in anaerobic nitrogen
fixation (Herbert, 1999; Sun et al., 2015) as well as Cohaesibacter
sp. which has already been found associated with H. ovalis
roots in the Swan River Estuary (Martin et al., 2020). Finally,
Nitrosococcus sp. (Chromatiales), oxidises nitrites (Bock and
Wagner, 2013), which are toxic to plant tissues, to nitrates which
can be up taken by seagrass roots and translocated to leaves for
storage in vacuoles (Touchette and Burkholder, 2000).

Halophila Ovalis Root Microbiome
Bacterial assemblages characterised from roots were distinct
from those of other microenvironments (Figure 2A).
Nonetheless, bacterial diversity was comparable to that of
reproductive tissues and leaves, consistent with results found
for Zostera marina (Ettinger et al., 2017). The root bacterial
community mainly constituted Proteobacteria, in which
Gamma- and Deltaproteobacteria were highly abundant (52%
and 15.5% of the sequences, respectively). Thiotrichales,
Vibrionales (Gammaproteobacteria), Campylobacterales
(Epsilonproteobacteria), and Clostridiales (Firmicutes),
were highly abundant in roots and reproductive tissues, but
absent or almost absent in leaves and sediment (Figure 2B).
Desulfobacterales were abundant in roots and sediment, but
not in other tissues while Fibrobacterales were only present
within the roots.

A number of studies have shown that the order Clostridiales is
often part of the microbiome of seagrass species (e.g., Z. marina,
Halodule wrightii; Küsel et al., 1999; Cúcio et al., 2016; Garcias-
Bonet et al., 2020). This association between Clostridiales and
seagrasses could be a potential aid for seagrass health, since
some members of this order can be involved in nitrogen fixation
(Minamisawa et al., 2004), fermentation (Cato et al., 1986), as
well as sulphate reduction (Widdel, 2006). As for the sediment
community, an ability to reduce sulphate and sulphur was a
common feature of a high proportion of root-associated bacteria,
in particular Desulfobacterales (13.5%; Supplementary Table 5).
Interestingly, some genera within the family Desulfobacteraceae
are also able to oxidize alcohols. During the night cycle, the
lack of oxygen around the roots leads seagrass root tissues to
switch to fermentation, which causes the release of ethanol to
the rhizosphere (Smith et al., 1988). Cúcio et al. (2016) suggested
that this association might represent a fair trade between host
and microbes, where bacteria use ethanol as an electron donor at
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night and remove the alcohol from the surrounding of the roots
(Kuever et al., 2005).

However, reduction of sulphur and sulphate may be toxic
to plants and, in the case of seagrass roots, Campylobacterales
may serve as detoxicant. In the present study, the families
Campylobacteraceae and Helicobacteraceae were part of the
root community (nine OTUs with a relative abundance of
5%; Figure 2B). Helicobacter sp. as well as Arcobacter sp. and
Sulfurimonas sp. are important SOB commonly found within
below-ground parts of several seagrasses (i.e., Z. marina and
H. ovalis, Küsel et al., 2006; Jensen et al., 2007; Lu et al., 2020;
Martin et al., 2020); the high relative abundance of Helicobacter
sp. OTUs contributed to the distinct clustering of the root
community. Moreover, some SOB may be involved in the
recycling of nitrogen in seagrass beds. For example, one OTU
from our study matched at 99% with Arcobacter nitrofigilis, a
nitrogen fixing bacterium isolated from the roots of the salt
marsh Spartina alterniflora (McClung et al., 1983). Likewise,
some Sulfurimonas species are able to use nitrate and/or nitrite as
electron acceptors (Han and Perner, 2014). Other SOB associated
with H. ovalis roots belonged to Thiotrichales and were relatively
abundant (5.5%). Thiotrichales are filamentous sulphur oxidising
bacteria (Garrity et al., 2005) which have been found abundant in
the rhizosphere of seagrasses from Portugal (Cúcio et al., 2016)
and Z. marina leaves (Ettinger et al., 2017).

Operational Taxonomic Units from Vibrionales that were
present in the roots (6%) were almost completely absent in
the sediment and phyllosphere (0.5 and 0.6%, respectively) and
contributed to the clustering of the root community (Figure 2B).
Members of the Vibrionales have been found within seagrass
sediments (Enhalus acoroide and Thalassia hemprichii; Liu et al.,
2018) or associated with seagrass roots (Martin et al., 2020).
Although the role of Vibrionales within the seagrass microbiome
is not clear and our OTUs may be simply related to potential
pathogenic species (e.g., Vibrio sp.; Blazer et al., 1988; Liu et al.,
2018), some members might be involved in nitrous oxide (N2O)
reduction (Hanke et al., 2016). Bacteria from the Fibrobacterales
(Fibrobacter sp.) which have been found associated with the
roots of H. wrightii, but not with the surrounding sediment
(Stuij, 2018), were also only found in root samples in the
present study. They are cellulolytic bacteria that can degrade
lignocellulose and this capability has been hypothesised to be
an essential feature related to the ability of those bacteria to
colonise plant roots (Jose et al., 2014; Kandel et al., 2017;
Liu et al., 2017).

Halophila ovalis Leaf Microbiome
The bacterial community in H. ovalis leaves was significantly
different from the microbiomes associated with the rhizospheric
sediment and seagrass reproductive tissues (Figure 2A).
Alphaproteobacteria were the most abundant bacterial phylum
in leaf samples. Some of these, such as Caulobacterales
and Sphingomonadales, were almost absent from the
other microenvironments, while others were present more
generally in the plant (e.g., Rhodobacterales; Figure 2B and
Supplementary Table 5).

The family Rhodobacteraceae (Rhodobacterales) has been
associated with the phyllosphere of several seagrass species
(Z. muelleri and Thalassia hemprichii; Jiang et al., 2015; Hurtado-
McCormick et al., 2019; Rotini et al., 2020) and comprises
photosynthetic purple non-sulphur bacteria which are primary
surface colonizers in marine habitats (Palacios and Newton,
2005; Dang et al., 2008). Interestingly, the ability of colonising
and growing on surfaces may be linked to their capacity to
produce antibacterial compounds which could prevent other
bacteria/pathogens from colonising the surface and/or form a
biofilm, therefore protecting their host (Dang et al., 2008). Some
members of Rhodobacterales are also able to denitrify. For
example, Labrenzia sp. found in the present study, which has
been previously isolated among epiphytes of P. oceanica leaves
and endophytes of H. ovalis roots, is involved in conversion of
N2O to N2 (Blanchet et al., 2017; Martin et al., 2020). Species
of Labrenzia are also known to be plant growth promoters in
terrestrial environments because they can produce auxin which
might be of a particular importance for supporting plant growth
(Liu et al., 2014; Fidalgo et al., 2016).

Other bacteria involved in nitrogen cycling were present
within the leaf endophyte community. For example,
Filomicrobium sp. (Rhizobiales) is able to utilize organic
molecules (e.g., ammonia) as the N source for growth (Wu
et al., 2009). Flavobacteriales (phylum Bacteroidetes) such as
Muricauda sp. Aquimarina sp. and Maribacter sp. may detoxify
seagrasses from N2O through its reduction to N2 (Xu et al.,
2015; Nakagawa et al., 2019). Finally, five OTUs belonged to
Sphingomonadales and Caulobacterales. Among them, one
OTU matching with Altererythrobacter sp. is able to resist metal
contamination (Wu et al., 2014), a trait that could be useful in
the phyllosphere of H. ovalis since high metal concentrations in
Swan-Canning River have been detected (Kelsey and Western
Australia, Department of Water, 2010).

Alteromonadales and Chromatiales (Gammaproteobacteria)
were also relatively abundant within leaves compared to
the other seagrass tissues and seemed to be of particular
importance for the clustering of leaf community in our study
(Figure 2B). Granulosicoccus sp. and Ruegeria sp., harbour many
genes involved in sulphur metabolism comprising a gene for
dimethylsulfoniopropionate (DMSP) demethylase (Kang et al.,
2018; Wirth et al., 2020). DMSP can be produced by macroalgae
and higher plants as osmoregulator, herbivore deterrent and
antioxidant against reactive oxygen species (Jonkers et al., 2000;
Husband et al., 2012) and represent an important source of
reduced carbon and sulphur for marine bacteria (Wirth et al.,
2020). Genetic evidence indicates that several bacteria commonly
found within seagrass leaves share the capacity to utilise DMSP
that may represent a trait characteristic of seagrass leaf associated
bacteria (Crump and Koch, 2008; Lucas-Elío et al., 2012).

Flower and Fruit Microbiomes
Flower and fruit communities were mainly composed by bacteria
from the phyla Proteobacteria and Bacteroidetes. Although
fundamental knowledge of flower-associated microbiota remains
largely unknown, when Shade et al. (2013) studied the
microbiome of apple flowers they found diverse taxa affiliated
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to Proteobacteria, Actinobacteria, and Bacteroidetes. In the
present study, the Proteobacterial families Piscirickettsiaceae
(Methylophaga sp.), Campylobacteraceae, Helicobacteraceae, and
Methylophilaceae were highly represented in these tissues.
Methylophaga species have been isolated from diverse marine
environments (Janvier et al., 1985; Doronina et al., 2007) where
they are likely involved in denitrification processes (Auclair
et al., 2010). Also, nitrogen fixation is likely to occur in
those communities, since Campylobacterales were identified as
nitrogen fixers when isolated from Spartina sp. roots (McClung
and Patriquin, 1980). Marinomonas sp. (Oceanospirillaceae),
a plant growth promoting bacteria found associated with
flower and fruit microbiomes is known to play a key role in
P. oceanica seedling growth (Celdrán et al., 2012). Alteromonas
sp., associated with the flower community, but not the fruits, can
have algicidal proprieties (Sakami et al., 2017) and associations
between seagrass and algicidal bacteria have already been
reported (Inaba et al., 2017). Finally, Diskin et al. (2017)
reported the family Chitinophagaceae (Bacteroidetes) to be the
most abundant one within the mango fruit microbiome. Some
species from this family degrade chitin, while others hydrolyse
cellulose (Rosenberg, 2014). In our study one OTU belonged
to Chitinophagaceae and it was found only in fruits and seeds
but not in flowers.

Bacteria belonging to Deinococcus-Thermus and TM7 phyla
were also members of the apple flower microbiome, although
they were not as abundant as in the present study. This
discrepancy may be link to a different abundance of those
phyla related to the age of flowers. For example, TM7 taxa are
contenders for colonisation of closed flowers, where they survive
but do not grow until flowers open and then grow rapidly and
competitively on open flowers (Shade et al., 2013). Interestingly,
Truepera sp. (Deinococcus-Thermus) found in this study, is also
associated with apple flowers (Shade et al., 2013), which may
suggest a possible important role within the flower microbiome.
Truepera sp. seems to possess important adaptations to different
environmental stress, such as resistance to desiccation, ultraviolet
radiation, high salinity, and high temperature (Blasius et al.,
2008), which can be experience in the Swan River during summer
time when H. ovalis meadows became exposed to air and water
temperatures can raise up to 30◦C in the hottest months (Kelsey
and Western Australia, Department of Water, 2010).

Seed Microbiome
Seed endophytes have intensively been study in terrestrial
plants, in particular crops (Johnston-Monje and Raizada, 2011;
Adam et al., 2018; Chen et al., 2020), since they can assist
seedling germination and cope with environmental stresses, such
as drought or salinity (Truyens et al., 2015; Nelson, 2018).
H. ovalis seeds were characterised by the lowest number of
OTUs compared to the other microenvironments, and were
mainly composed of Gammaproteobacteria. A similar pattern
in terms of OTU abundance and diversity has been found for
the seeds of the pumpkin Cucurbita pepo (Adam et al., 2018)
and the spinach Spinacia oleracea (Lopez-Velasco et al., 2013).
Three OTU belonged to the genus Marinomonas (Figure 2B
and Supplementary Table 5); M. posidonica may enhance

the growth of P. oceanica seedlings, induce changes in the
epiphytic bacterial community and have a regulatory effect on
macro-epiphyte structure (Celdrán et al., 2012). Two OTUs
were related to M. communis which exhibits grow-promoting
traits when found in plants (Mesa et al., 2015). Another OTU
belonged to the genus Mangrovibacterium (Bacteroidales), a
nitrogen-fixing bacterium isolated previously from mangrove
sediment (Huang et al., 2014). Moreover, members of the
family Pseudoalteromonodaceae were more abundant in the
seed bacterial community compared to other tissues. Species of
the genus Pseudoalteromonas are common within the marine
environment and have been found associated with corals,
sponges, seagrass surface and within molluscs (Romanenko
et al., 2008). P. luteoviolacea (found in this study) is a globally
distributed marine bacterium that can induce the metamorphosis
of tubeworm and coral larvae (Alker et al., 2020) Finally, one
OTU matching with Methylophaga thiooxydans was found in the
present study within the seed microenvironments. Methanol-
consuming bacteria are common in marine environments and
include members of the genera Methylophaga and Methylobacter.
Angiosperms, and so seagrasses, produce methanol as a by-
product of cell-wall synthesis (Nemecek-Marshall et al., 1995),
yet it has been reported that methanol could inhibit germination
and/or negatively affect the growth of angiosperm seedlings
(Abanda-Nkpwatt et al., 2006). In strawberry plants, this negative
effect may be mitigated by methanol-consuming bacteria (e.g.,
Methylobacterium extorquens; Abanda-Nkpwatt et al., 2006;
Kurilenko et al., 2010). Moreover, Methylophaga species isolated
from rhizospheric sediments are also capable of producing
auxins and therefore may be able to boost the seedling growth.
However, more studies related to seagrass seed-borne bacteria
are needed to understand how seagrass seed acquire bacteria,
the diversity of seed-borne bacteria and potential role in seedling
germination and growth.

Core Microbiome
The number of taxa in core microbiomes varied substantially
between microenvironments, ranging from 10 OTUs for seeds,
up to 238 OTUs for rhizospheric sediment (Figure 3). Although
our criterion was quite strict (i.e., OTUs present in 100% of
samples from a microenvironment), the number of OTUs was
high relative to those found in Zostera muelleri (i.e., 102 OTUs
in sediment, 61 OTUs in roots, two OTUs in leaves; Hurtado-
McCormick et al., 2019). However, it needs to be taken in
consideration that previously works have investigated seagrass
core microbiomes at a species level rather than population, thus
environmental variability across sampling sites could reflect the
high variability of bacterial microbiomes. For example, Martin
et al. (2020) found out that the root microbiomes of H. ovalis
plants sampled in different locations within the Swan River
presented a greater divergence of microbial communities than
populations sampled around the Leschenault Peninsula. For the
present study, the core microbiome of the six microenvironments
included 63 families from 44 bacterial orders, across 10 phyla
(Supplementary Table 6). Only one OTU, belonging to the family
Methylophilaceae, was observed in all 45 samples, indicating that
the seagrass microenvironments represent markedly different
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FIGURE 3 | Core microbiome composition varies depending on H. ovalis microenvironment. Pie charts show the relative abundances of the major bacterial orders
that are detected within the core microbiome of the rhizospheric sediment, rhizosphere, root, leaf, flower, fruit, and seed. Only orders that represented >0.1% of the
total population are included. In the centre of the pie charts is reported the number of OTUs present in the core microbiome of each microenvironment.

microbial niches. Our results provide evidence of a clear
differentiation of core bacterial communities across the different
microenvironments within the seagrass, instead of a unified
seagrass core microbiome. The existence of discrete core

microbiomes across the different H. ovalis microenvironments
is consistent with patterns found in terrestrial plants, for which
the rhizosphere, the phyllosphere and the root endospheres host
communities that are both distinct from each other and the
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surrounding soils (Coleman-Derr et al., 2016; Fonseca-García
et al., 2016; Maggini et al., 2019). The patterns observed here are
also consistent with other benthic marine organisms including
corals, where distinct microbial communities colonize different
microenvironments within the coral colony, coral polyps and
coral tissue (Sweet et al., 2011).

The rhizospheric sediment core microbiome (238 OTUs;
Figure 3) displayed the greatest abundance of OTUs. The
most abundant order was represented by Chromatiales (19%),
although a relatively high number of OTUs was unclassified
(12%). Desulfobacterales was the second most abundant
(17.5%) order present in the sediment core microbiome and
it was primarily composed of Desulfobacteraceae (54%) and
Desulfobulbaceae (46%).

One hundred and forty OTUs were present across all ten
root replicates and were mainly related to Desulfobacterales
(13.5%, comprising Desulfobacteraceae and Desulfobulbaceae),
and Chromatiales. Likewise, Gamma- and Deltaproteobacteria
have previously been found to be among the most abundant
members of the core microbiome of below-ground structures
in the seagrass H. stipulacea (Mejia et al., 2016) and several
others seagrasses (Cúcio et al., 2016). 96 OTUs were shared
between all the root and sediment replicates and belonged
mainly to Desulfobacterales, followed by Acidimicrobiales,
Flavobacteriales, and Rhodobacterales.

Those core microbiomes are likely to be involved in sulphur
processes and nitrogen cycle in the core seagrass rhizobiome that
influence the decomposition of organic material and ultimately
the health of the host (Varon-Lopez et al., 2014; Lehnen et al.,
2016).

The leaf core microbiome mainly consisted of Alpha- and
Gamma- Proteobacteria (Figure 3), which is also consistent
with previous studies (Hurtado-McCormick et al., 2019). Almost
half of the 110 OTUs constituting the leaf core microbiome
belonged to the Rhodobacteraceae (Rhodobacterales, 49%). The
Chromatiales was second most represented in the H. ovalis
leaf core microbiome (13.5%) and the family Chromatiaceae
(11.5%) was the most abundant within Chromatiales. Members
of the Rhodobacteraceae, and Chromatiaceae may favour
inhabiting the H. ovalis phyllosphere, where they exploit the
oxic conditions and high levels of dissolved organic carbon on
the leaf surface (McRoy and Goering, 1974; Rotini et al., 2017;
Trevathan-Tackett et al., 2020).

121 OTUs comprised the flower core microbiome and
belonged mainly to the Piscirickettsiaceae (Thiotrichales, 21.5%).
Rhodobacteraceae (Rhodobacterales, 11%) and Flavobacteriaceae
(Flavobacteriales, 11%) were the two other families abundant
in the flower core microbiome (Supplementary Table 6). As
discussed above, they could be involved in nitrogen cycle (Jones
et al., 2008; Nakagawa et al., 2019) and Rhodobacteraceae
has been described as colonizers in marine habitats (Palacios
and Newton, 2005; Dang et al., 2008). Although, fruits
and flowers were likely to have similarities in bacterial
community composition, the fruit core microbiome showed a
high abundance of unclassified Gammaproteobacteria as well
as Oceanospirillaceae, which contain plant growth promoting
bacteria and Rhodobacteraceae.

The fruit core microbiome (151 OTUs) comprised
bacteria belonging to Oceanospirillaceae (Oceanospirillales,
12.5%), Rhodobacteraceae (Rhodobacterales, 12%) and
Methylophilaceae (Methylophilales, 9%). However, the most
abundant bacteria were unclassified Gammaproteobacteria
(20.5%) to which we were unable to assign taxonomy even after
blasting and literature searching.

Finally, the 10 OTUs found in the seed core microbiome
belonged mainly to Oceanospirillaceae (Oceanospirillales, 55.5%)
and Helicobacteraceae (Campylobacterales, 17.5%; Figure 3).
Interestingly, the seed core microbiome was composed of OTUs
belonging to the genera Marinomonas and Mangrovibacterium.
Moreover, one OTU belonging to Labrenzia sp. was found
across the five replicates from seed microenvironment and is
known to have plant growth promoting activities. The persistence
of the association between endophytic bacteria that display
plant growth promoting traits and H. ovalis seeds highlight the
potential critical function performed by those bacteria in seedling
development (Puente et al., 2009; Verma et al., 2017).

Samples of all three reproductive microenvironments
combined (i.e., flowers, fruits, and seeds) contained 7 OTUs.
This suggests the possibility that these taxa might be passed
from the flowers through fruits and into seeds. Three of these
OTUs were unclassified and four belonged to Labrenzia sp.,
Marinomonas sp., Amphritea sp. and Helicobacter sp. Excluding
seeds (which contained the fewest taxa), flower and fruit
core microbiomes shared 70 OTUs. The existence of complex
mechanisms of bacterial transmission from flower to fruit and
then to seeds appears likely and warrants further investigation.
Recent studies from the terrestrial environment have shown
that endophytic bacteria associated with flowers may colonize
developing ovules and ultimately end up in fruits and seeds.
Compant et al. (2011) demonstrated that several Pseudomonas
and Bacillus species that were present in flowers and inside
the xylem vessels of ovaries were also present within seeds.
Furthermore, the inoculation of flowers with known bacteria
resulted in significant levels of those strains within seeds (Dutta
et al., 2014; Mitter et al., 2017).

CONCLUSION

Microbial assemblages in six discrete microenvironments
associated with Halophila ovalis plants were distinct and the taxa
present within the microenvironments were related to those
that are likely involved in ecologically important processes that
benefit plants. Although the specific mechanisms of interaction
between bacterial endophytes and the host remain unknown
in seagrasses, bacteria previously associated with plant growth
promoting characteristics (e.g., ability to produce auxin and
cytoxin), were mainly found within reproductive tissues. Seagrass
seed-borne bacteria that exhibit growth promoting traits, the
ability to fix nitrogen and anti-pathogenic potential activity, may
play a pivotal role in seed survival, as is common for terrestrial
plants. Therefore, our findings are consistent with research
performed on terrestrial plants and highlight the potential
beneficial role of seagrass associated bacteria.
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