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Pangolins (Class Mammalia, Order Pholidota) have drawn 
increasing global attention in terms of their public health 
importance since the discovery of SARS-CoV-2-related coro-

naviruses in Malayan pangolins (Manis javanica)1–4. Consumer 
demand for pangolin meat and scales has led to pangolins becom-
ing the world’s most trafficked wild mammal5. More than one mil-
lion pangolins have been poached in the past ten years, with an 
estimated 195,000 pangolins traded in 2019 for their scales alone, 
according to the World Wildlife Fund6. Global trade of pangolins 
undoubtedly increases the risks of transmission of any viruses that 
they harbour. Although some studies have detected several viruses 
in a few smuggled, or rescued, pangolins, the general potential risk 
of viral zoonoses from pangolins remains unclear7–12. Furthermore, 
the interferon epsilon (IFNE) gene, which is part of the innate 
immune defence in most placental mammals, is pseudogenized in 
pangolins, suggesting that resistance of pangolins to infection may 
be reduced13.

To evaluate the potential role of pangolins in the emergence of 
viral pathogens of humans and animals, we carried out a compre-
hensive investigation of the viromes of 161 pangolins smuggled into 
China from Southeast Asia.

Results
Characteristics of pangolin samples. We previously identified 
SARS-CoV-2-related coronaviruses from Malayan pangolins (Manis 

javanica)1. Here we expanded our analysis to a set of 161 pangolins 
smuggled from Southeast Asia into China in 2018–2019, that were 
confiscated by Customs officials. These pangolins were most prob-
ably trafficked for consumption as ‘game meat’. We used previously 
developed specific reverse transcription polymerase chain reaction 
(RT-PCR) primers to test for SARS-CoV-2-related coronaviruses1, 
and found that all 161 pangolins were negative for SARS-CoV-2 
viruses. We managed to collect all the leftovers of archived tissue 
samples. Only limited amount of muscle, lung, intestine, spleen, 
liver, heart and kidney tissues were available from different pango-
lins, hence we pooled the tissues from each individual pangolin into 
a single sample. Next, we prepared libraries for all 161 pangolins 
and sequenced the meta-transcriptomes (see Supplementary Table 1  
for detailed information about each library). Unfortunately, only 
archived tissue samples were available, so it was not possible for us 
to identify the pangolin species through traditional morphological 
classification. We therefore identified pangolin species on the basis 
of mitochondrial contigs present in the meta-transcriptome data, 
and found that all 161 pangolins were Manis javanica.

Diversity in Malayan pangolin viromes. We generated 1.9 × 1010 
meta-transcriptome reads, which were assembled and annotated 
for virus identification and characterization. After quality control, 
we identified 12.7 M viral reads, representing 0.07% of the total 
reads, through DIAMOND blastx14 comparison against the NCBI 
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non-redundant database. Viral reads were subsequently classified 
into 42 families, each of which was highly variable in terms of preva-
lence and abundance (Fig. 1a). Vertebrate- and bacteria-associated 
virus families had higher abundance and prevalence than other 
families.

We performed phylogenetic analyses on the basis of the amino 
acid (aa) of the most conserved RNA-dependent RNA polymerase 
(RdRp) protein for RNA viruses, and capsid protein for DNA viruses. 
Since some of the newly identified viruses could not be easily cat-
egorized according to the current scheme of virus classification15, 
we used a previously adopted tactic and incorporated currently 
defined virus orders, families and floating genera into ‘superclades’  
(Fig. 1b)16. We identified sequences of three unclassified viruses, which 
fell outside known vertebrate-associated viral families and were dis-
tinct from well-defined viral families in Bunyavirales-Arenaviridae 
and Picornavirales-Caliciviridae superclades, showing only 28.1%–
67.6% aa identities of RdRp with the most closely related viruses 
(Fig. 1b). Despite being present in pangolin libraries, virus sequences 
that are probably associated with diet or gut microbiome, including 
bacteriophages, as well as eukaryote-related viruses specific to fungi 
and plants were excluded and are not discussed further. This left 
28 distinct vertebrate-associated viruses that are closely related to 
virus families or genera well-known to infect vertebrates, with 21 
viruses being newly identified in this study (Supplementary Table 
2). We then designed specific primers according to assembled 
virus sequences (Extended Data Fig. 1) and performed RT-PCR 
(Extended Data Fig. 2) to confirm the presence of viruses identi-
fied using the MGISEQ-2000 sequencing platform (Supplementary 
Table 1), followed by Sanger sequencing (Supplementary Fig. 1). We 
obtained 94 complete or nearly complete viral genomes of 24 virus 
species in total.

Previously unidentified pangolin-associated viruses. The 
sequences of 16 viruses in the Hunnivirus, Pestivirus and 
Copiparvovirus genera formed separate clusters in the phylogenetic 
tree of each genus and were distinct from other known vertebrate 
viruses reported previously (Fig. 2), suggesting that they might have 
circulated within pangolins for extended periods of time. We provi-
sionally named them pangolin-associated viruses.

Five pangolin-associated viruses (named Pangolin hunnivirus 
BIME 1–5) had only 62.3%–69.4% aa identity of RdRp with the 
closest species (Fig. 2a), which was isolated from a rat in the United 
States (GenBank accession no. NC_025675.1)18 and was from the 
Hunnivirus genus in the Picornaviridae family. Many hunniviruses 
cause mucocutaneous, encephalic, cardiac, hepatic, neurological or 
respiratory diseases in a wide range of vertebrates17. Phylogenetic 
analyses based on the polyprotein revealed that the 10 hunniviral 
sequences from the 5 viruses identified in this study formed a clus-
ter distinct from previously known Hunnivirus isolates (Fig. 2a and 
Extended Data Fig. 3a).

Seven whole genome sequences of the viruses (except for one 
Pangolin hunnivirus BIME 2, one Pangolin hunnivirus BIME 3 
and one Pangolin hunnivirus BIME 4, which were incomplete due 
to a relatively low abundance of viral reads) were obtained, these 
sequences sharing 73.0%–77.0% nucleotide (nt) identities with each 
other and only 60.5%–61.7% nt identities with the most closely 
related sequence from the US rat18. A phylogenetic tree based on 
the whole genome sequence as well as sequences of various proteins 
had topological structures similar to that based on the polyprotein 
(Extended Data Fig. 4), which confirmed that these seven genomes 
represented new members of the Hunnivirus genus.

Next, we analysed genomic structures and found that all 
seven hunniviral genomes from pangolins had lost the l-protein  
(Fig. 2b). The l-protein is known to play an important role in 
interferon antagonism during early viral infection according to an 
in vivo experiment19. Considering the pangolin as an IFNE-deficient 

animal13, loss of l-protein suggests that these viruses might have 
adapted to pangolin hosts. In addition, a series of three deletions 
with a total of 82–85 aa were detected in 2B protein (Fig. 2c), which 
has known functions in membrane permeability, cell death and host 
immune responses20. The large fragment deletion in 2B protein will 
most probably influence these functions and subsequently change 
viral infectivity or pathogenicity through viral evasion of the host 
immune response.

Sequences of nine distinct virus species were newly identified 
in the genus Pestivirus of family Flaviviridae, members of which 
are known to cause asymptomatic infection or produce a range of 
clinical conditions such as acute diarrhoea, acute haemorrhagic 
syndrome, acute fatal disease, and a wasting disease in pigs and 
ruminants21,22. In the phylogenetic tree (Fig. 2d and Extended Data 
Fig. 3b), the newly identified pangolin pestiviruses (Pangolin pes-
tivirus BIME 1–9) were clustered with Dongyang pangolin virus7, 
although they only had 69.6%–88.8% aa identities with each other 
in RdRp. Whole genomes of the nine viruses were assembled from 
22 pangolin samples, indicating richness of these viruses in pango-
lins (Extended Data Fig. 5a). The high prevalence and abundance 
of pestivirus genomes in our samples may suggest that pangolins 
are a favoured host. Indeed, Dongyang pangolin virus was previ-
ously detected in pangolins that died from a haemorrhagic disease7, 
suggesting that the pestiviruses we detected might be pathogenic. 
Furthermore, we observed that the genome identity of the pan-
golin pestiviruses varied greatly across their 11 encoded proteins 
(Supplementary Table 3). Capsid proteins had the highest aa iden-
tity (64.9%–76.6%), while p7 proteins exhibited the lowest degree 
of conservation (20.0%–30.0%) compared with porcine pestivirus 
from Australia (GenBank accession no. NC_023176.1).

We detected sequences of two viruses in the Copiparvovirus 
genus (Parvoviridae family), which contains diverse viruses capable 
of infecting a wide range of vertebrates23. A phylogenetic tree based 
on capsid protein showed that the two viruses detected in eight 
pangolins were clustered in a separate clade in the Copiparvovirus 
genus (Fig. 2e and Extended Data Fig. 3c) and were most closely 
related to a horse parvovirus isolated in the United States (GenBank 
accession no. KR902500.1). We assembled six full genomes that 
shared 80.4%–81.4% identities with each other and 49.5%–50.4% 
identities with genomes of viruses previously reported in this genus 
(Extended Data Fig. 5b).

Human-associated viruses detected in pangolins. Sequences of 
four viruses associated with human infections were detected in 
pangolins. Human respiratory syncytial virus subtype A (RSV-A) 
within the genus Orthopneumovirus of family Pneumoviridae—the 
common pathogen that causes severe respiratory disease in children 
under two years of age and older people24,25—was found in two pan-
golin samples. Phylogenetic analysis revealed that the two RSV-As 
from pangolins clustered with human RSV-As identified around 
the world and with pangolin RSV-As detected in another batch of 
pangolin samples26 (Fig. 3a and Extended Data Fig. 3d). The whole 
genome sequences of the two RSV-As had 100% nt identity with 
each other, 99.98%–100% identity with previously reported pango-
lin RSV-As and 99.40%–99.64% identity with their closest human 
RSV-A from Australia in 201727. RSV was first identified in chim-
panzees and later documented to be a mainly human pathogen28. 
The identical RSV-A sequences suggest that the two pangolins might 
be infected from the same infected person or transmitted virus from 
each other. In addition to RSV-As, we also found a new species of 
the genus Orthopneumovirus (Orthopneumovirus BIME 1), which 
formed a lineage separated from the RSV-A clade and shared only a 
65.6% aa identity with RSV-As in RdRp. The newly identified pan-
golin orthopneumovirus related to human RSVs raises an important 
question for future research: are pangolins intermediate or reservoir 
hosts of human RSVs?
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Fig. 1 | Diverse viromes of pangolins. a, Virus abundance profile across pangolin samples. Each cell in the heat map represents the normalized number 
of reads belonging to the given virus order and family according to blastx comparison. Viruses were grouped according to host category, including 
vertebrates, other eukaryotes, bacteria and unclassified. For viral families with multiple host categories, the host category of each viral read was inferred 
on the basis of the host of the genus assigned by blastx with E-value <1 × 10−5. b, Phylogenetic trees were constructed on the basis of RdRp protein amino 
acid for RNA viruses and capsid protein for DNA viruses. Viruses discovered in this study are labelled with solid circles: red, newly identified viruses; blue, 
known viruses; green, unclassified viruses. Vertebrate-associated viruses are shaded in light blue. Families without assembled contigs containing the RdRp 
domain were not displayed in Fig. 1b, although the viral reads were detected in Fig. 1a.
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Rotavirus A within the genus Rotavirus of family Reoviridae, 
which causes diarrhoea in children and animals29, was detected 
in seven pangolin samples. Phylogenetic analysis based on RdRp 
revealed that the sequences of pangolin rotavirus A formed two 
close clusters (Fig. 3b and Extended Data Fig. 3e). Within each clus-
ter, the sequences were nearly identical, suggesting that the viruses 
might have come from the same pangolin cage or the same wet 
market during the smuggling and illegal trade. Of the 11 genomic 
segments, assembled viral sequences of the same segment showed 
93.37%–100% nt identities and 52.0%–87.7% nt identities with the 
known strains. Notably, the sequences of five segments (that is, 

VP2, VP4, NSP1, VP6 and NSP5/NSP6) in pangolin rotavirus A 
were distinct from established genotypes and were classified as new 
genotypes according to the criteria recommended by the Rotavirus 
Classification Working Group30 (Supplementary Table 4). These 
findings suggest either that Rotavirus A may have associated with 
pangolin for an extensive period of time, or that we failed to cover 
the diversity gap between pangolin rotaviruses and those identified 
from other mammalian hosts.

In addition, the sequence of a Mammalian orthoreovirus within 
the genus Orthoreovirus of family Reoviridae was also obtained from 
a pangolin sample. Phylogenetic analysis based on RdRp showed 
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Fig. 2 | Analyses of pangolin-associated virus sequences. a, Phylogeny of viruses in the genus Hunnivirus based on the amino acid of polyprotein.  
b, Genome organization of Pangolin hunnivirus in comparison with two closest related species. The loss of the l-protein gene is indicated by a red rectangle 
with diagonal line, and large sequence deletion is marked by a red box. c, Sequence deletion in l-protein and 2B protein of Pangolin hunnivirus. d, Phylogeny 
of viruses in the genus Pestivirus based on polyprotein. e, Phylogeny of viruses in the genus Copiparvovirus based on capsid protein. Tree tips are coloured 
according to host type: blue, pangolins; green, other mammals; brown, arthropods. Viruses identified in this study are marked by solid blue circles. The tree 
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Fig. 3 | Analyses of human-associated virus sequences. a, Phylogeny of viruses in the genus Orthopneumovirus based on RdRp protein. b, Phylogeny of 
Rotavirus A based on the VP1 (that is, RdRp) gene. c, Phylogeny of Mammalian orthoreovirus based on the RdRp gene. Tree tips are coloured according to 
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that the Pangolin orthoreovirus clustered with a bat (Plecotus auri-
tus) strain from Germany with 97.7% nt identity (GenBank acces-
sion no. JQ412755.1)31, which was phylogenetically close to the 
Mammalian orthoreovirus from a human in Switzerland (Fig. 3c 
and Extended Data Fig. 3f). Interestingly, we observed the signals 
of reassortment between the pangolin orthoreovirus strain and 
other strains from a masked palm civet (Paguma larvata)32, a pig 
in China33, a bat (Plecotus auritus) in Germany31 and a tree shrew 
(Tupaia belangeri) in China (GenBank accession no. MG451071.1) 
(Fig. 3d), suggesting cross-species transmission and co-infection of 
orthoreoviruses among multiple animal hosts. Phylogenetic analy-
ses revealed discrepancies in the clustering of the seven segments 
between Pangolin orthoreovirus and the strains from other hosts. 
Pangolin orthoreovirus clustered with the bat strain in the L1, L2 
and S4 segments, with the civet and pig strains in the M3 and S2 
segments, and with the tree shrew strain in the M2 and S3 segments 
(Fig. 3e). Reassortment has been frequently observed in segmented 
virus and is considered as a primary mechanism for interspecies 
transmission and the emergence of novel strains34. A cross-family 
recombinant from orthoreovirus and coronavirus has been reported 
in bats35, suggesting that distinct recombination events might occur 
in orthoreovirus and increase the potential for spillover.

Animal-associated viruses detected in pangolins. We obtained the 
sequence of an HKU4 coronavirus strain P251T, which had 96.7% 
aa identity in RdRp with Tylonycteris-bat-CoV-HKU4 from lesser 
bamboo bats36. Pangolin-CoV-HKU4-P251T was located at the root 
of bat HKU4 coronavirus clade (Fig. 4a and Extended Data Fig. 3g). 
Considering that Tylonycteris-bat-CoV-HKU4 possesses a spike 
(S) protein capable of utilizing the MERS-CoV receptor human 
dipeptidyl-peptidase-4 (hDPP4)37, we assessed the receptor binding 
domain (RBD) similarity of MERS-CoV-related coronaviruses. Both 
pangolin-CoV-HKU4-P251T and Tylonycteris-bat-CoV-HKU4 
shared 4 of 10 key residues in the RBD of MERS-CoV38 (Extended 
Data Fig. 6a). Although pangolin-CoV-HKU4-P251T was dis-
tantly related to MERS-CoV for most of the genome, their relation-
ship was much closer in the RBD region (Extended Data Fig. 6b).  
In terms of hosts, pangolin DPP4 showed higher aa similar-
ity with human DPP4 (89.0%–89.3%) than bat DPP4 (82.4%–
83.2%), suggesting a risk for a more probable spillover event of 
pangolin-CoV-HKU4-P251T through the utilization of human 
DPP4. Another bat-associated virus, a novel species of the genus 
Shanbavirus of family Piconaviridae, was first recognized in pango-
lins. Phylogenetic analysis showed that it was most closely related to 
Shanbavirus A obtained from bent-winged bat (Miniopterus fuligi-
nosus) in China39, with only 62.2% aa identity in RdRp (Fig. 4b and 
Extended Data Fig. 3h).

Besides bat-associated virus sequences, we obtained the 
sequences of other mammal-associated viruses including rodent- 
and canine-associated viruses. Four sequences of a virus in the 
genus Respirovirus of family Paramyxoviridae were detected, these 
sequences clustering in the same lineage as a previously reported 
pangolin respirovirus and Sendai virus circulating in mice from 
Asia (Fig. 4c and Extended Data Fig. 3i). Its genome shared high 
similarity with that of a respirovirus previously reported in pango-
lin (93.1%) and Sendai virus (89.2%)8. Another rodent-associated 
virus was a new species (Pangolin chaphamaparvovirus BIME 1) 
in the genus Chaphamaparvovirus of family Parvoviridae. It had 
only 65.9% aa identity of capsid protein with the closest Rat par-
vovirus 2 from a rat in China40, although they were in the same 
lineage (Fig. 4d and Extended Data Fig. 3j). Lastly, whole genome 
sequences of pangolin protoparvovirus in the Protoparvoirus genus 
of Parvoviridae family were identified in 23 pangolin samples. They 
were nearly identical to each other and to canine parvovirus from 
dogs in China (Fig. 4e and Extended Data Fig. 3k)41, with a genomic 
identity >99.0%. These sequences of diverse mammal-associated 

viruses suggest that multiple cross-species transmission events have 
occurred between pangolins and other mammals.

We identified sequences of three virus species related to 
tick-associated viruses in pangolins, although they were detected 
from a couple of samples. Malayan pangolins were previously 
reported to be heavily infested with ticks and subsequently became 
infected by tick-borne agents42. The genomes of viruses in the genus 
Phlebovirus of family Phenuiviridae, which includes well-known 
tick-borne viruses from around the world43, were detected in two 
pangolins. In the phylogenetic tree, the Pangolin phlebovirus BIME 
1 in this study was in the same branch as two similar viruses in ticks 
from Japan44 (Fig. 4f and Extended Data Fig. 3l). The L, M and S seg-
ments of the two strains of phlebovirus had 98.8%–99.2% nt identity 
with each other, and 63.2%–74.0% identities with the tick-associated 
viruses in Japan (GenBank accession no. LC133178.1).

Another virus species in the genus Orthonairovirus of family 
Nairoviridae clustered with tick-associated viruses such as Wenzhou 
tick virus and Songling virus, which were recently proven to be associ-
ated with human febrile illness45 (Fig. 4g and Extended Data Fig. 3m).  
The nt identities of the L, M and S segments were 67.5%, 61.1% and 
64.4%, respectively, between the Pangolin orthonairovirus BIME 1 
and the closest Wenzhou tick virus46. We also detected a sequence 
of Lishui pangolin virus in the genus Coltivirus of family Reoviridae, 
which was recently reported in a pangolin with fatal disease7. In the 
phylogenetic tree based on RdRp, the virus identified in this study 
formed a distinct lineage together with previously reported Lishui 
pangolin virus and Shelly headland virus detected in ticks (Ixodes 
holocyclus) collected from bandicoot (Bandicota bengalensis) in 
Australia (Fig. 4h and Extended Data Fig. 3n)47. The presence of 
tick-associated virus sequences in pangolins reveals risks for trans-
mission of pangolin viruses to vertebrates via tick bites.

Viral diversity in pangolins. Because all the Malayan pangolins 
were smuggled to China with no information about their original 
habitats, we carried out phylogeographic analyses based on pan-
golin mitochondrial variant sequences to infer population groups. 
After excluding samples with poor quality sequencing data, 129 
Malayan pangolins from our study, together with 12 Malayan pan-
golins with known geographic origins or population groups48, were 
included. We found that pangolins could be classified into five dis-
tinct population groups (Fig. 5a). Pangolins in groups 1–3 clustered 
with samples from Southeast Asian islands, while group 4 con-
tained samples from inland Asia (Yunnan Province of China and 
Myanmar). Group 5, which comprised only three samples, formed a 
distant lineage of Malayan pangolins with no known origin.

To investigate virus diversity in relation to these population 
groups of Malayan pangolins, we plotted the presence and normal-
ized abundance of each identified virus in each pangolin (Fig. 5b). 
A water control with sequencing reagents was included on the same 
run with the sequenced samples to validate the viral abundance esti-
mation (Supplementary Fig. 2). Overall, population groups 1–4 had 
many pangolin-associated viruses in the genera Pestivirus (46.0%) 
and Copiparvovirus (24.6%), followed by mammal-associated 
viruses in the genus Protoparvovirus (23.0%). Malayan pangolins in 
group 3 had significantly higher viral diversity than those in group 1 
(two-sided Wilcoxon rank-sum test, P = 0.006) (Fig. 5c). There was 
no significant difference in virus diversity between pangolins that 
were possibly from Southeast Asian islands (including groups 1, 2 
and 3) and those possibly from inland Asia (group 4).

Discussion
We carried out an analysis of viruses that can infect wild pangolins 
and identified diverse sequences of known and unknown viruses, 
including pangolin-, human-, mammal- and tick-associated 
viruses. Currently, Malayan pangolins are designated ‘critically 
endangered’ by the International Union for the Conservation of 
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Fig. 5 | Virus diversity in pangolin population groups. a, Phylogenetic tree of pangolin population based on mitochondrial variants. Samples collected in this 
study are indicated by solid circles, and samples with known geographical locations or population groups from public datasets are labelled with open circles.  
b, Viral abundance. Each cell in the heat map represents the normalized number of reads belonging to the given virus and the pangolin sample in the 
phylogenetic tree. The blank lines in the heat map indicate the samples from public datasets. c, Shannon index of viruses in the pangolin population groups 1–4 
(ngroup1 = 46, ngroup2 = 16, ngroup3 = 30, ngroup4 = 34). Boxplot elements: centre line, median; box limits, upper and lower quartiles; whiskers (error bars), the highest 
and lowest points within 1.5 interquartile range of the upper and lower quartiles. The P value was calculated using a two-sided Wilcoxon rank-sum test.
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Nature Red List49. We obtained a substantial number of Malayan 
pangolin samples in this study, made possible only because these 
endangered animals were trafficked and seized by customs officials. 
Meta-transcriptome data enabled us to learn more about pangolins 
as virus hosts, and provided a more complete view of the potential 
for pangolins to contribute emerging and re-emerging viruses. To 
better evaluate the viral composition and potential risks to public 
health from pangolin smuggling, we propose that samples be rou-
tinely collected when animals are recovered by customs agents.

Sequences of 16 pangolin-associated virus species belonged to 
three genera (that is, Hunnivirus, Pestivirus and Copiparvovirus), 
with high genetic diversity in each genus. These viruses were preva-
lent in our pangolin cohort. Furthermore, genomes of viruses in 
the genus Hunnivirus identified in these pangolins have all lost the 
l-protein region, suggesting that these viruses might have evolu-
tionarily adapted to pangolins. We hypothesize that pangolins may 
be natural reservoir hosts of hunniviruses.

The sequences of the other 12 virus species identified in pango-
lins are human-associated, mammal-associated and tick-associated, 
which are phylogenetically related to those of viruses from humans, 
various animals such as civets, bats, rodents and dogs, as well as 
ticks. Because IFNE that can establish a first line of defence against 
pathogens in other placental mammals is pseudogenized in pango-
lins13, the IFNE-deficient animal might be more susceptible to infec-
tions and easily infected by various pathogens from other animals 
or humans, especially under the cramped conditions of illegal trade. 
For instance, an individual pangolin sample (P251T) contained 
sequences of Rotavirus A, Malayan-CoV-HKU4, Shannbavirus and 
Protoparvovirus, further supporting the notion of susceptibility of 
pangolins to viruses and possible complex exposure networks of 
pangolins to various animals50. The presence of diverse viruses in 
smuggled pangolins suggests that the conditions of wildlife trans-
portation and sale may facilitate cross-species transmission of these 
viruses and might result in viral emergence from captured wildlife 
or wet markets.

One limitation of our study is the pooling of different tissues 
of a single pangolin into one sequencing library, which means that 
the distribution of viruses in different organs or tissues cannot be 
determined. We also recovered unclassified viral contigs that do not 
belong to any known viral family, and future work will be needed to 
identify these possible new viruses. Finally, because only archived 
samples were available from the confiscated pangolins, accurate 
ecological information and trade routes of smuggled pangolins are 
unknown, hence we cannot trace where and when pangolins were 
originally infected with these viruses.

The diverse virus sequences identified in our study imply that 
pangolins are important in both public and veterinary health. 
Trading of live pangolins, or products derived from their scales or 
flesh, will undoubtedly increase the risk of cross-species transmis-
sion of viral infections. People need to be made aware of the poten-
tial for viruses in pangolins to emerge as human pathogens, and 
must be prohibited from capturing and eating them.

Methods
Sample collection. The pangolins sampled in this study were intercepted by 
Guangxi Customs during anti-smuggling operations. Samples were collected 
between 2018 and 2019. The archived tissue samples, including muscle, lung, 
intestine, liver, spleen, heart and kidney (Supplementary Table 1), were collected 
and kept in a −80 °C freezer for further processing.

RNA extraction, library preparation and sequencing. Available tissues from 
the same pangolin were pooled as a single sample and homogenized in PBS 
solution, and the supernatant was filtered through a 0.45 μM filter column. For 
the MGISEQ-2000 high-throughput sequencing, total RNA was extracted using a 
High Pure viral RNA kit (Roche Diagnostics, 11858882001), and viral RNA was 
then enriched by a Nucleic Acid Microbes purification kit (BGI PathoGenesis 
Pharmaceutical Technology). Reverse transcription and second-strand synthesis 
were performed using the PrimeScript double strand cDNA synthesis kit 

(Takara Biotechnology, 6111A). A sequencing library was constructed using the 
QIAGEN QIAseq FX DNA library kit (Qiagen, 180477). The RNA quantity of 
each constructed library was measured using a Qubit 4.0 fluorometer. The library 
fragment length was estimated using Qsep-100 (Hangzhou Houze Biotechnology, 
Qseq100-a). After circularization and generation of DNA nanoballs, paired-end 
sequencing (2 × 150 bp) of the resulting libraries was performed on the 
MGISEQ-2000 platform (MGI). To identify and eliminate possible sequencing or 
reagent contaminants, we included sterile water as well as reagent mix as controls51. 
The controls were sequenced in the same chip with the libraries of pangolin 
samples. For the Illumina next-generation sequencing, the sequencing library was 
constructed using NEBNext Ultra II Directional RNA library preparation kit for 
Illumina. Paired-end (2 × 150 bp) sequencing of the RNA library was performed 
on an Illumina Novaseq 6000 platform at Annoroad Gene Technology Beijing. 
Supplementary Table 1 provides detailed information about each library of the 161 
pangolin samples.

Viral contig assembly and annotation. Adaptor sequences and low-quality bases 
were removed from raw sequencing reads by the fastp programme (v0.21.0)52. 
The resulting reads were subsequently de novo assembled into contigs using the 
MEGAHIT programme (v1.2.9)53 with default parameters. These contigs were 
then compared to the non-redundant protein database using the DIAMOND 
blastx programme (v0.9.21)14 with an E-value cut-off of 1 × 10−5. To identify viral 
sequences, taxonomic lineage information was obtained for the top blast hit 
of each contig, and those annotated under the kingdom ‘Viruses’ were initially 
identified as potential virus-associated sequences. To exclude false positives, these 
potential viral contigs were subjected to blastn comparisons against non-redundant 
nucleotide databases to distinguish viral sequences from non-viral host sequences, 
endogenous viral elements and artificial vector sequences. The resulting complete 
and nearly complete viral genome sequences were further subjected to manual 
validation by inspecting the mapped reads against the corresponding genomes. 
The assembled viral genomes were annotated using Geneious (version 2021.2.2)54. 
Species assignment of these confirmed viral genomic sequences was carried out 
following the International Committee on Taxonomy of Viruses (ICTV) species 
demarcation criteria of each genus15. ICTV species demarcation criteria of each 
genus are listed in Supplementary Table 5. If ICTV lacks clear criteria in the 
genera, we used a threshold of amino acid identity of 90% for the viral RdRp 
(RNA viruses) or conserved replication-associated proteins (DNA viruses)55,56. If a 
detected virus sequence was below the 90% identity threshold, it was designated as 
a newly identified virus species.

Quantification of virus abundance. Two approaches were used to estimate 
virus abundance at family and species levels. First, quality-controlled reads were 
compared with the SILIVA database (v138.1, www.arb-silva.de)57 and pangolin 
genomes (GCF_014570555.1 and GCF_014570535.1) to filter reads associated 
with ribosomal RNA and host genomes, respectively, using Bowtie2 (v2.3.4.2)58. 
To estimate virus abundance at family level, the remaining reads were compared 
to the non-redundant protein database using the DIAMOND blastx programme 
(v0.9.21)14 with an E-value cut-off of 1 × 10−5. Potential viral reads were inferred 
on the basis of taxonomic lineage information of the top blast hit. To exclude false 
positives, these potential viral reads were then subjected to blastn comparisons 
against non-redundant nucleotide databases to exclude non-viral host sequences, 
endogenous viral elements and artificial vector sequences. The abundance of each 
virus family was quantified as the number of identified reads per million total 
filtered reads (RPM) in the library. To estimate the abundance of each new virus 
species, a read mapping approach was used. The remaining reads after rRNA 
and host genome filtering were mapped to assembled viral contigs, and then the 
abundance of each virus was quantified as RPM. To minimize false positives, we 
applied threshold criteria on the basis of RPM ≥1 and number of identified reads 
≥10 for detected viruses. The Shannon index of vertebrate-associated viruses was 
calculated using the vegan package (v2.5-7)59.

We compared the presence of viral sequences and their abundance across 
sequencing libraries. In case identical or near-identical viral sequences were 
observed in multiple libraries, we used the following steps to rule out possible 
contamination. We first estimated the read ratio between the highest abundance 
library and other lower abundance libraries in the same chip. If the ratio was 
below the index-hopping rate of the sequencing platforms, the reads in the 
low abundance library were considered as cross-contamination during library 
preparation and were excluded from further analysis51. To eliminate possible 
index-hopping, we chose the highest index-hopping rate of 0.1% as the 
threshold60,61 in the study.

Confirming the presence of detected viruses by RT–PCR followed by Sanger 
sequencing. To further verify the presence of identified virus sequences rather 
than from contamination, we performed RT-PCR assays of the available samples 
of the detected viruses in meta-transcriptome sequencing. The specific RT-PCR 
primers were designed according to assembled virus sequences (Extended 
Data Fig. 1). The target RT-PCR products were validated by Sanger sequencing 
(Supplementary Fig. 1). For Mammalian orthoreovirus, RT-PCR was also 
performed to fill gaps in the L1 segment that contains the RdRp gene.
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Phylogenetic analysis. We first categorized the viral sequences into major viral 
clades on the basis of the DIAMOND blastx14 results. Phylogenetic trees were 
constructed for each of the viral clades on the basis of conserved viral proteins 
for more accurate taxonomic assignment of the newly identified viruses. For this 
purpose, sequences were first aligned with related viral sequences within the clade 
using the programme MAFFT (v7.475)62. The ambiguously aligned regions were 
trimmed using TrimAl (v1.4.rev22)63 and manually edited. Maximum likelihood 
trees were subsequently reconstructed on the basis of sequence alignment using 
the PhyML v3.1 programme64, employing an LG amino acid substitution model 
and GTR+gamma nucleotide substitution model with 1,000 bootstrap replicates. 
To further confirm the topology of the phylogenetic tree of each virus genus, 
phylogenetic analyses were performed using MrBayes (v3.2.7)65 (10 million 
generations) with the same models, using the maximum likelihood method. The 
MrBayes trees are provided in Extended Data Fig. 3. Sequence similarity analysis 
was performed using SimPlot (v3.5.1)66.

Identification of population groups of pangolins based on mitochondrial 
sequences. For each sample, we compared assembled contigs against a database of 
available pangolin mitochondrial sequences (Supplementary Table 6) using blastn 
in BLAST software (v2.3.0 + )67 with an E-value <1 × 10−5. Pangolin species were 
inferred on the basis of the top hits. We further included external sequencing data 
of pangolins (SRR9018586, SRR9018599, SRR9018623, SRR9018628, SRR9018633, 
SRR9018647, SRR9018652, SRR9018656, SRR9018658, SRR9018665, SRR9018673 
and SRR9018674) with known geographical location or population groups48. We 
then called variants on mitochondrial genome using the GATK4 (v4.1.2.0) joint 
genotype pipeline68. Variants with read depth ≥3 and quality ≥30, and individuals 
with genotype rate >0.9 were included to obtain mitochondrial consensus 
sequence of each sample using bcftools (v1.9)69. Sequences were then aligned using 
MAFFT (v7.475)62 and the phylogenetic tree was built using IQTREE (v1.6.10)70 
with the best-fit substitution model and ultrafast bootstrap of 1,000 replicates.

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The sequencing reads of 161 pangolins after quality control have been deposited 
in the NCBI Sequence Read Archive (SRA) database under BioProject accession 
number PRJNA845961. Pangolin mitochondrial sequences and viral sequences 
assembled in this study were deposited in GenBank and accession numbers are 
listed in Supplementary Tables 1 and 2. We have provided the GenBank accession 
numbers of each reference sequence in phylogenetic tree files (newick format) and 
associated sequence alignments (fasta format) available at https://doi.org/10.6084/
m9.figshare.19499030. Source data are provided with this paper.
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Extended Data Fig. 1 | The specific RT-PCR primers designed according to assembled virus sequences in meta-transcriptome data.
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | The electrophoretograms of RT-PCR products amplified from pangolin samples. Each virus identified by MGISEQ-2000 
sequencing in this study was tested by a specific RT-PCR assay in the original sample. Pangolin coronavirus HKU4 and Pangolin shanbavirus BIME1 were 
tested by specific RT-PCR three times. The primers used for the RT-PCR tests are listed in Extended Data Fig. 1. To confirm the RT-PCR amplification, all the 
RT-PCR products were sequenced by Sanger sequencing method. The sequencing diagram for each product is provided in Supplementary Fig. 1.
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Extended Data Fig. 3 | Phylogeny of viruses identified in pangolins using the MrBayes. Phylogenetic analyses by MrBayes use the same sequences and 
models with the maximum likelihood method.
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Extended Data Fig. 4 | Phylogeny of viruses in the Hunnivirus genus. The phylogenetic trees were constructed based on either nucleotide sequences of 
whole genome or amino acid of 11 regions.
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Extended Data Fig. 5 | Phylogeny of viruses in the Pestivirus and Copiparvovirus genera based on complete genome sequences. a, Phylogeny of viruses in 
the Pestivirus genus. b, Phylogeny of viruses in the Copiparvovirus genus.
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Extended Data Fig. 6 | Receptor binding domain (RBD) region of Pangolin coronavirus HKU4. a, Sequence alignment of the RBD of viruses in subgenus 
Merbecovirus. The critical residues of RBD are shaded in colors. b, Phylogeny of viruses in subgenus Merbecovirus based on entire RBD sequences. Tree tips 
are colored according to host type, using red for humans, blue for pangolins, orange for bats and green for other mammals.
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The sequencing reads of 161 pangolins after quality control have been deposited in the NCBI Sequence Read Archive database under the BioProject accession 
number PRJNA845961. Pangolin mitochondrial sequences and viral sequences assembled in this study were deposited in the GenBank (OM009282-
OM009284,OM037454, ON024072-ON024140, ON059801-ON059909, ON166559-ON166563, ON045154-ON045314). We have provided the GenBank accession 
numbers of each reference sequence in phylogenetic trees files (newick format) and associated sequence alignments (fasta format) available at https://
doi.org/10.6084/m9.figshare.19499030.
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Sample size No sample size calculation was performed. We collected available archived samples of pangolins smuggled from Southeast Asia to China and 
confiscated by Customs during 2018-2019. Available tissues (including muscle, lung, intestine, spleen, liver, heart and kidney) of each pangolin 
were pooled into a single sample. Libraries of 161 pangolin samples were successfully constructed for meta-transcriptome sequencing.

Data exclusions No data were excluded.

Replication We designed specific primers according to assembled virus sequences (Extended Data Fig. 1), and performed RT-PCR to confirm the presence 
of viruses identified by MGISEQ-2000 sequencing platform (Supplementary Table 1) followed by Sanger sequencing (Supplementary Fig. 1).  
All the PCR experiments were successful. Viruses identified by NovaSeq 6000 platform were not included in RT-PCR due to lack of sufficient 
original tissue samples.

Randomization There was no separation of experimental groups in the study, hence no randomization.
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