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Bacterial spot disease of pepper and tomato is caused by four distinct Xanthomonas
species and is a severely limiting factor on fruit yield in these crops. The genetic diversity
and the type III effector repertoires of a large sampling of field strains for this disease have
yet to be explored on a genomic scale, limiting our understanding of pathogen evolution
in an agricultural setting. Genomes of 67 Xanthomonas euvesicatoria (Xe), Xanthomonas
perforans (Xp), and Xanthomonas gardneri (Xg) strains isolated from diseased pepper
and tomato fields in the southeastern and midwestern United States were sequenced
in order to determine the genetic diversity in field strains. Type III effector repertoires
were computationally predicted for each strain, and multiple methods of constructing
phylogenies were employed to understand better the genetic relationship of strains in
the collection. A division in the Xp population was detected based on core genome
phylogeny, supporting a model whereby the host-range expansion of Xp field strains
on pepper is due, in part, to a loss of the effector AvrBsT. Xp-host compatibility was
further studied with the observation that a double deletion of AvrBsT and XopQ allows
a host range expansion for Nicotiana benthamiana. Extensive sampling of field strains
and an improved understanding of effector content will aid in efforts to design disease
resistance strategies targeted against highly conserved core effectors.
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Introduction

Species ofXanthomonas cause bacterial spot disease on cultivated
pepper (Capsicum annuum) and tomato (Solanum lycopersicum)
and are the most devastating to crops grown in warm, humid
climates such as in the southeastern and midwestern United
States (Obradovic et al., 2008). Once considered a single species,
Xanthomonas vesicatoria infecting pepper and tomato has been
reclassified several times (Stall et al., 1994; Vauterin et al., 1995;
Jones and Stall, 2000), but was most recently separated into
four distinct species: X. euvesicatoria (Xe), X. vesicatoria (Xv), X.
perforans (Xp), and X. gardneri (Xg) (Jones et al., 2004). While
Xe, Xg, and Xv infect both pepper and tomato, Xp has only been
reported on tomato. Although the four pathogens are present
and destructive on a global scale (Jones et al., 1998a; Timilsina
et al., 2015), the history and distribution of Xe, Xp, and Xg has
changed dramatically in the United States, particularly with the
emergence of Xp as the dominant tomato pathogen over Xe in
Florida beginning in the early 1990’s (Jones et al., 1998b; Tudor-
Nelson et al., 2003; Hert et al., 2005; Stall et al., 2009; Horvath
et al., 2012) and Xg as a major tomato pathogen in Ohio and
Michigan beginning in 2009 (Ma et al., 2011). Outbreaks of Xv
have not been reported in the United States (Timilsina et al.,
2015).

Different phylogenetic analyses found a close evolutionary
relationship between Xe and Xp in comparison to Xg and Xv
(Young et al., 2008; Parkinson et al., 2009; Almeida et al.,
2010; Hamza et al., 2010; Midha and Patil, 2014). Comparative
genomics of reference strains Xe85-10 (Thieme et al., 2005) with
Xp91-118, Xg101, and Xv1111 (Potnis et al., 2011) provided the
first insights into the shared and unique virulence factors of
these pepper and tomato pathogens. A major factor contributing
to the virulence and host specificity of these pathogens is the
repertoire of effectors secreted into the host plant cell via the
type III secretion system (Grant et al., 2006). Xanthomonads
have evolved effectors with diverse mechanisms to promote
virulence, even adopting processes specific to eukaryotes (Kay
and Bonas, 2009). The recognition of specific effector proteins by
specific cognate resistance (R) proteins leads to defense responses
that have been termed Effector Triggered Immunity (ETI),
which is accompanied by localized cell death, associated tissue
collapse known as the hypersensitive response (HR) at the site of
infection, and limited spread of the pathogen (Jones and Dangl,
2006). Several type III effectors are conserved across multiple
species and referred to here as core effectors. An additional
variable set of effectors may provide specialization to specific
hosts and cultivars (Hajri et al., 2009).

The deployment of R proteins in crops that can recognize
and respond to core effectors is a potentially durable disease
resistance strategy, depending on the evolutionary stability
of the targeted cognate effector (Boyd et al., 2013). Because
xanthomonads display relatively high genome plasticity, a more
comprehensive understanding of the genetic diversity of pepper
and tomato pathogens, with specific emphasis on effectors, is
necessary for designing informed disease resistance strategies
for agricultural areas afflicted by bacterial spot disease (Thieme
et al., 2005; Potnis et al., 2011; Timilsina et al., 2015). A

comparative genomic analysis considering many strains from a
given geographic region over time will provide a representative
view of the effectors present in the regional bacterial population
and add insight into the evolutionary trends of effectors, and
thus their potential usefulness as targets for R-gene mediated
resistance strategies.

To this end we sequenced the genomes of 32 Xp, 25 Xe, and
10 Xg field strains that were collected from diseased peppers
and tomatoes in the southeastern and midwestern United States.
Here we describe the genetic diversity within and between species
using core protein-coding genome phylogeny and whole genome
single nucleotide polymorphism (SNP) analysis and present the
computationally predicted type III effector repertoires of strains
in our collection. The role played by the effectors AvrBsT and
XopQ as host specificity determinants for Xp infecting pepper
and Nicotiana benthamiana was also characterized.

Materials and Methods

Xanthomonas Strain Collection
Xe, Xp, and Xg strains were collected from diseased tomatoes and
peppers in the United States (Table 1). Xp strains were collected
between 1998 and 2013 in Florida and Georgia. Xg strains were
collected in Ohio and Michigan between 2010 and 2012. Xe
strains were collected between 1994 and 2012 in Florida, North
Carolina, Georgia, and Kentucky.

Genome Sequencing and Effector Predictions
Bacterial genome sequencing and effector prediction were
completed as previously described (Bart et al., 2012). Briefly,
genomic DNA was isolated with a modified CTAB protocol
and prepared for library construction and sequencing on the
Illumina platforms. Ten Xg libraries were pooled into a single
lane of MiSeq (PE250). Xe and the Xp strains from 2006 were
sequenced by multiplexing 48 libraries per lane on an Illumina
HiSeq 2000 sequencer (PE100). The Xp strains from 2012 were
sequenced by multiplexing 20 libraries per lane on an Illumina
MiSeq (PE150). Genomic de novo assemblies were constructed
using CLC Genomics Workbench using a length fraction of 0.9
and a similarity of 1.0. Potential effectors were identified by an in-
house Python script utilizing BLAST against a database of known
effectors, using a filter of greater than 45% amino acid similarity
over 80% of the length of the target sequence (Bart et al., 2012).

Phylogenomic Inference Using Core
Protein-coding Genes
All genomes sequenced in this study were annotated using
the National Center for Biotechnology Information Prokaryotic
Genome Annotation Pipeline (PGAP) (http://www.ncbi.nlm.
nih.gov/books/NBK174280). Ortholog families were determined
using the GET_HOMOLOGUES package (Contreras-Moreira
and Vinuesa, 2013), which includes a step of all-against-all
BlastP (Altschul et al., 1997) followed by clustering based on
OrthoMCL to yield homologous gene clusters (Li et al., 2003).
This result was filtered using compare_cluster.pl (a script in the
GET_HOMOLOGUES package) with option "-t n," where n is
the number of genomes, keeping only the gene families that have
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TABLE 1 | Summary of Xanthomonas field strains sequenced in this paper.

Species Strain name Origin in US Host isolated Year isolated Isolation ID Collector

X. euvesicatoria Xe073 North Carolina P 1994 181 DR

Xe074 Raleigh, NC P 1994 199 DR

Xe075 Soutwest FL P 1995 206 DR

Xe076 Naples, FL P 1995 259 DR

Xe077 Kentucky P 1996 315 DR

Xe078 Clewiston, FL P 1997 329 DR

Xe079 Jupiter, FL P 1998 354 DR

Xe081 Ft. Pierce, FL P 1995 376 DR

Xe082 Southeast FL P 1998 455 DR

Xe083 Belle Glade, FL P 1999 490 DR

Xe085 Boynton Beach, FL P 1999 515 DR

Xe086 Delray Beach, FL P 2000 526 DR

Xe091 Boca Raton, FL P 2003 586 DR

Xe101 Sampson Co., NC P 2008 678 DR

Xe102 Manetee, FL P 2008 679 DR

Xe103 Pender Co., NC P 2009 681 DR

Xe104 Sampson Co., NC P 2010 683 DR

Xe105 Granville, NC P 2010 684 DR

Xe106 Granville, NC P 2010 685 DR

Xe107 Granville, NC P 2011 689 DR

Xe108 Pender Co., NC P 2012 695 DR

Xe109 Cook Co., GA P 2004 F4-2 DR

Xe110 Tift Co. GA P 2004 G4-1 DR

Xe111 Colquitte Co., GA P 2004 H3-2 DR

Xe112 Brooks Co., GA P 2004 L3-2 DR

X. perforans Xp4B Citra, FL T 1998 Xp4B JJ

Xp2010 Hendry County, FL P 2010 Xp2010 JJ

TB6 Hillsborough, FL T 2013 TB6 JJ

TB9 Hillsborough, FL T 2013 TB9 JJ

TB15 Hillsborough, FL T 2013 TB15 JJ

Xp3-15 Decatur Co., GA T 2006 Xp3-15 JJ

Xp4-20 Decatur Co., GA T 2006 Xp4-20 JJ

Xp5-6 Decatur Co., GA T 2006 Xp5-6 JJ

Xp7-12 Manatee Co., FL T 2006 Xp7-12 JJ

Xp8-16 Manatee Co., FL T 2006 Xp8-16 JJ

Xp9-5 Manatee Co., FL T 2006 Xp9-5 JJ

Xp10-13 Manatee Co., FL T 2006 Xp10-13 JJ

Xp11-2 Palm Beach Co, FL T 2006 Xp11-2 JJ

Xp15-11 Miami-Dade Co., FL T 2006 Xp15-11 JJ

Xp17-12 Collier Co., FL T 2006 Xp17-12 JJ

Xp18-15 Collier Co., FL T 2006 Xp18-15 JJ

GEV839 Hardee Co., FL T 2012 GEV839 JJ

GEV872 Immokalee, FL T 2012 GEV872 JJ

GEV893 Collier Co. T 2012 GEV893 JJ

GEV904 Hillsborough, FL T 2012 GEV904 JJ

GEV909 Collier Co. T 2012 GEV909 JJ

GEV915 Hillsborough, FL T 2012 GEV915 JJ

GEV917 Hillsborough, FL T 2012 GEV917 JJ

GEV936 Lee, FL T 2012 GEV936 JJ

GEV940 GCREC, FL T 2012 GEV940 JJ

(Continued)
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TABLE 1 | Continued

Species Strain name Origin in US Host isolated Year isolated Isolation ID Collector

GEV968 Manatee Co., FL T 2012 GEV968 JJ

GEV993 Hendry Co., FL T 2012 GEV993 JJ

GEV1001 Quincy, FL T 2012 GEV1001 JJ

GEV1026 West Coast, FL T 2012 GEV1026 JJ

GEV1044 Collier Co., FL T 2012 GEV1044 JJ

GEV1054 Manatee Co., FL T 2012 GEV1054 JJ

GEV1063 Collier Co., FL T 2012 GEV1063 JJ

X. gardneri Xg153 Gibsonburg, OH T 2010 SM194-10 SM

Xg156 Blissfield, MI T 2010 SM177-10 SM

Xg157 Blissfield, MI T 2010 SM182-10 SM

Xg159 Blissfield, MI T 2010 SM220-10 SM

Xg160 Blissfield, MI T 2010 SM234-10 SM

Xg164 Ottawa, OH T 2011 SM406-11 SM

Xg165 Ottawa, OH T 2011 SM413-11 SM

Xg173 Unknown, OH T 2011 SM605-11 SM

Xg174 Wayne Co., OH T 2012 SM775-12 SM

Xg177 Sandusky Co., OH T 2012 SM795-12 SM

Year, host, location, and isolation source are described. DR, David Ritchie; JJ, Jeffrey Jones; SM, Sally Miller.

exactly one representative from each genome considered; the
protein-coding genes in these families were considered the “core
genome” of these species.

Accuracy checking of each individual gene alignment (using
nucleotide sequences) was performed by Guidance (Penn et al.,
2010) using the Mafft algorithm (Katoh et al., 2002) anchored
by codons with default options, followed by the removal
of low-accuracy alignment sites. All edited alignments were
concatenated by FASconCAT yielding a nucleotide supermatrix
(Kück and Meusemann, 2010). The best partitioning scheme
and evolutionary model for each partition were calculated by
PartitionFinder (Lanfear et al., 2012),which tests all available
models under the Bayesian Information Criterion (BIC) selection
procedure (Lanfear et al., 2014). Maximum likelihood (ML)
analysis for phylogeny construction was performed using
IQTree v.1.1.5 assuming the best partitioning and respective
models according to the previous step (Nguyen et al., 2015).
A total of 1000 bootstrap pseudoreplicates were performed to
assess clade support. Additional taxa included to strengthen
the confidence in the phylogenetic relationships are as follows:
Xanthomonas fragariae (XfrLMG25863, RefSeq PRJNA80793:
Vandroemme et al., 2013), Xanthomonas arboricola pv.
corylina (XacNCCB100457, RefSeq PRJNA193452: Ibarra
Caballero et al., 2013), Xanthomonas campestris pv. musacearum
(XcmNCPB4384, RefSeq PRJNA73881: Wasukira et al., 2012),
Xanthomonas axonopodis pv. citrumelo F1 (XalfaF1, RefSeq
PRJNA73179: Jalan et al., 2011), Xanthomonas oryzae pv.
oryzae (XooKACC10331, RefSeq PRJNA12931: Lee et al., 2005),
Xanthomonas campestris pv. campestris (XccATCC33913, RefSeq
PRJNA57887: da Silva et al., 2002), Xanthomonas euvesicatoria
(also Xanthomonas campestris pv. vesicatoria, Xe85-10, RefSeq
PRJNA58321: Thieme et al., 2005).

Whole Genome SNP Analysis
Illumina reads were trimmed using Trimmomatic version
0.32 (Bolger et al., 2014) and were then mapped to the
reference genome Xanthomonas axonopodis pv. citri strain 306
(Xac306, NC_003919: da Silva et al., 2002) using bowtie2
version 2.1.0 (Langmead and Salzberg, 2012). The Best
Practices guidelines of the Broad Institute for variant calling
were followed (https://www.broadinstitute.org/gatk/guide/best-
practices). MarkDuplicates from Picard Tools version 1.118
was used to mark duplicate reads. RealignerTargetCreator and
IndelRealigner from GenomeAnalysisToolkit (GATK) version
3.3-0 were used to verify reads were aligned properly (McKenna
et al., 2010). HaplotypeCaller from GATK was used to discover
variants. SNPs were concatenated as previously described
(Bart et al., 2012). A ML phylogenetic tree with bootstrap
values was created using RAxML version 8.0 (Stamatakis,
2014).

Effector Allele Analysis
Effectors were compared within each species at the amino acid
sequence level for Xp and the nucleotide level for Xe and
Xg, and each distinct allele was assigned a number. Neighbor-
joining trees were constructed to visualize differences in effector
profiles among strains in each species. Simple genetic distances
among strains in their effector profiles were calculated for all
pairwise comparisons within each species, such that a difference
at one effector between two strains equaled a distance of 1.0
and a difference at five effectors equaled a distance of 5.0.
Xp calculations included an outgroup profile from Xe85-10.
Distance was calculated using GenAlEx 6.501. Distance matrices
were exported to MEGA format and trees were constructed in
MEGA 6.06 (Tamura et al., 2013).
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Confirmation of the TAL Effector AvrHah1 in Xg
Xg strains were infiltrated into pepper cv. ECW30R at OD600 =
0.3 in order to determine if activation of the Bs3 resistance
gene occurs in response to AvrHah1. Negative and positive
controls for AvrHah1 inXg are strain 1782 and 04T5, respectively
(Schornack et al., 2008). Pictures were taken 48 h post-infiltration
(hpi). For Southern blot analysis, 5µg of Xg DNA (extracted as
described above) was restriction digested for 2 h with BamHI
and run on a 0.7% agarose gel. DNA was transferred overnight
to a Hybond-N+ membrane and hybridized overnight with
a P32-labeled probe for the first 705bp of AvrHah1. The
size of the predicted BamHI-digested AvrHah1 fragment is
2964bp.

Effector Deletion
Insertion mutants in Xp strains (�avrBsT) were constructed
using site-directed homologous recombination of a partial
fragment linked to a gene for antibiotic resistance. Intragenetic
partial fragments (approximately 500 bp) of each targeted gene
were PCR amplified and cloned into the pCR2.1 TOPO-vector
using the TA cloning method (Invitrogen). Positive clones were
confirmed by Sanger sequencing. The plasmids were introduced
into competent cells of Xp recipient strains by electroporation,
and transformed cells were selected for kanamycin resistance
(kanR). Single homologous recombination events (due to the
integration of the TOPO plasmid containing a portion of the
respective gene) disrupted the gene of interest (Sugio et al., 2005).
Mutations were confirmed by PCR using a primer flanking the
upstream region of the targeted gene and the M13 Forward
primer (pCR2.1 TOPO internal primer), followed by Sanger
sequencing.

Whole gene knockout strains Xe85-10�XopQ, Xg153�hrcV,
Xp4B�AvrBsT, and Xp4B�XopQ�AvrBsT were constructed
using the suicide vector pLVC18 containing the contiguous 1kb
upstream and 1kb downstream fragments flanking the targeted
gene (Lindgren et al., 1986). Double homologous recombination
events resulting in markerless deletions were confirmed by PCR
or southern blot. Gene deletions were complemented back by
conjugation of the stable broad host range plasmid pVSP61
(kanR) containing the native promoter and the open reading
frame of each respective gene.

Inoculation Conditions
Xanthomonas strains were grown on nutrient yeast glycerol
agar (NYGA) supplemented, as appropriate, with 100µg/ml
rifampicin (wild type and deletion strains) and 25µg/ml
kanamycin. Strains were incubated at 28◦C for 48–72 h. Cells
were washed from agar plates with 10mM MgCl2, and the
concentration was adjusted as necessary. For growth assays,
leaves were syringe-infiltrated with bacterial suspensions of 105
CFU/mL. For virulence scoring, leaves were syringe infiltrated
at 108 CFU/mL and pictures were taken 48 h post-infiltration
(hpi) after submerging leaves in water for 10min to enhance
any water-soaked phenotypes. For lesions assays, leaves were
syringe infiltrated at 104 CFU/mL and pictures were taken 8–10
days post-infiltration (dpi) after submerging leaves in water for
10min.

Results

Genome Submission
Draft genome sequences of 32 Xp, 25 Xe and 10 Xg
field strains, respectively, from diseased peppers and
tomatoes in the United States were obtained by Illumina
sequencing (Table 1). Genome assembly statistics for each
strain and average de novo assembly statistics for Xe, Xp,
and Xg are presented in Supplemental Tables 1 and 2,
respectively. Draft genome sequences have been deposited
in the National Center for Biotechnology (Supplemental
Table 1).

Core Genome Phylogenetic Analysis Identifies a
Division in the Xp Population
The core genome for all three species was identified by sequence
similarity, yielding 1152 protein-coding gene families, of which
1017 were considered bona fide orthologs; 135 families were
discarded as spurious alignments by the program Guidance.
The 1017 families were concatenated, yielding a supermatrix
of 916,326 sites. The best partitioning scheme chosen was by
codon position in which first, second and third positions are set
as separated partitions. The best evolutionary models for each
partition were respectively GTR+I+G for the first and second
partitions, and TVM+I+G for the third partition.

The Maximum Likelihood (ML) phylogeny based on core
genome orthologs displays Xe, Xp, and Xg behaving as separate
monophyletic groups (Figure 1). Our results mirrored previous
studies, Xe and Xp being closely related, and Xg more distant
phylogenetically, with all three species forming monophyletic
groups. For Xp strains, this analysis showed a division, which
we define here as Group 1—further divided into Group 1A and
1B—and Group 2. Group 1A comprises 11 strains (out of 16)
from 2012 that form a monophyletic clade (branches in purple).
Other strains belonging to Group 1 are defined here as Group 1B
(branches in orange), which includes the reference strain Xp91-
118, Xp4B (isolated in 1998), and six strains isolated in 2006.
Group 1B does not contain any strains isolated in 2012.We define
14 strains as Group 2 (branches in green) which includes five
strains from 2006, the single strain from 2010, five strains from
2012, and all three 2013 strains.

Whole Genome SNP Analysis Resolves Genetic
Differences among Closely Related Strains
A total of 225,284 SNPs were identified between the Xe, Xg and
Xp genomes compared to the reference Xac306, ranging from
22,105 (Xg164) to 142,272 (GEV1063) (Supplemental Table 3).
Average SNPs (± standard deviations) between Xac306 and Xe,
Xp and Xg field strains are 128,376 ± 3024, 136,673 ± 3402,
and 30,462 ± 8015, respectively. Although the majority of Xp
strains carry more SNPs between Xac306 than Xe strains, two
Xp field strains (TB6 and TB9) show a number of SNPs within
the Xe range. SNPs were concatenated and used to build a
combined species ML tree (Figure 2). We note that differences
in sequencing technology used, genome coverage and large
deletions or insertions could potentially skew this analysis and
therefore conclusions about branch length between the different
species should be avoided. The Xp Group 1A clade is retained in
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FIGURE 1 | Core genome phylogenetic analysis. Phylogenetic trees
obtained by ML (IQTree) analysis, based on partitioned analysis (by codon
position) of a total of 916,326 sites (1017 genes families). Branch support

values are shown for each tree, consisting of relative bootstrap proportions.
Brackets to indicate Xp group designations are colored as follows: Group 1A,
purple; Group 1B, orange; Group 2, green.

the ML SNP phylogeny (branches marked in purple). However,
Group 2 (green branches) is interrupted by Group 1B strains
(orange branches).

Effector Predictions For Xanthomonas Field
Strains Identifies Differences in Effector Content
Compared to Reference Genomes
Type III effector repertoires from Xe, Xp, and Xg field strains
were compared to the appropriate reference strains Xe85-10,
Xp91-118, and Xg101 in order to determine if effector repertoires
differed between strains with respect to the presence or absence
of whole effectors, mutations rendering effectors inactive, or
alternate alleles of effectors (Thieme et al., 2005; Potnis et al.,
2011).

Xe
Several differences were found in the effector content of Xe field
strains compared to the reference Xe85-10 (Supplemental Table
4). Firstly, Xe85-10 does not have the effector XopAE, which
is a translational fusion of the hrp cluster members hpaG and
hpaF as seen in Xp91-118 (Potnis et al., 2011). Similar to Xe85-
10, field strains isolated before 1997 have separate hpaG and
hpaF genes, whereas Xe field strains isolated after 1997 possess
the predicted hpaG/hpaF translational fusion XopAE. Secondly,
strains collected after 1997 possess a XopAF-like effector. The
effector has 31% amino acid identity to XopAF of Xp91-118, 80%
amino acid identity to X. fuscans XopAF (WP_022560489.1) and
is identical to an effector of X. citri pv. citri (WP_015472934.1)
except for an in-frame internal 12 amino acid deletion. Similarly,
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FIGURE 2 | Phylogeny based on whole genome SNP analysis.
Sequencing reads were mapped to Xanthomonas axonopodis pv. citri (Xac)
reference number NC_003919 and bootstrap values are displayed. Scale bar

corresponds to the number of nucleotide substitutions per site. Branches for
Xp strains are colored to indicate group designations as in Figure 1: Group
1A, purple; Group 1B, orange; Group 2, green.

the Xe strains isolated after 1997 possess XopE3, which shares
97% amino acid identity with XopE3 from X. arboricola pv. pruni
(WP_014125894.1). All field strains of Xe but one lack XopG,
which is carried by the reference strain Xe85-10. A predicted
protein-tyrosine phosphatase (abbreviated PTP) was detected in
Xe075 that is not present in any other Xe strains. Twelve effectors
present in all Xe strains isolated between 1985 and 2012 have
no nucleotide polymorphisms (Table 2). Xe field strains in our
collection isolated after 1997 did not contain polymorphisms in
xopAA, xopF1, xopN, and xopO. Except for Xe85-10 and Xe075,

all Xe strains have identical sequences for effectors xopAI, xopQ
and xopV.

The neighbor-joining tree of the effector alleles displays a
grouping of the seven Xe strains isolated before 1997, and a clade
of 11 strains with nearly identical allele profiles isolated from
2004 to 2012 (Figure 3B). Although Xe111 and Xe112 group with
the clade of 11 strains and were isolated in Georgia in 2004,
two other Georgia 2004 strains, Xe109 and Xe110, are separated
from this clade due to differences in avrBs2, xopE2, and xopO.
Interestingly, Xe082 was isolated in 1998 but has an effector allele
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FIGURE 3 | Neighbor-joining trees of effector allele profiles.
Neighbor-joining trees for Xp (A), Xe (B), and Xg (C) field strains were
constructed using nucleotide (Xe and Xg) and amino acid (Xp) pairwise allele

differences between strains. Effector allele designations can be found in
Tables 2–4. A difference at one effector between two strains equals a
distance of 1.0.

profile similar to the 11-member clademade up of strains isolated
between 2004 and 2012.

Xp
A shift in pathogen populations from tomato race 3 to tomato
race 4 has been observed in Florida (Horvath et al., 2012).
All the strains sequenced here (with isolation years spanning
from 1998 to 2013 in Florida) are tomato race 4 strains
and contain null mutations in the xopAF/avrXv3 gene of the
reference strain Xp91-118 (Supplemental Table 5). All strains
possess XopJ4/AvrXv4 with the exception of the pepper strain
Xp2010. Another effector, AvrBsT, which has been associated
with hypersensitive response (HR) on pepper (Minsavage et al.,
1990), has not been previously reported in Xp. Xp4B, which was
isolated in 1998, has AvrBsT and is non-pathogenic on pepper
(Supplemental Figures 2, 3). AvrBsT is also present in nine
strains (out of 11) that were isolated in 2006, in all 16 strains
collected in 2012, and in one of the three strains collected in
2013. Interestingly, strain Xp17-12 (isolated in 2006) contains
two effectors, XopF2 and XopV, that have sequences identical to

the corresponding Xe85-10 effector sequence (Table 3). Effectors
XopD and XopAD exhibit different alleles in the strains isolated
in 2012. All strains have XopE2, which was absent in the reference
strain Xp91-118. XopE2 is also present in all Xe and Xg field and
reference strains. A subset of theXp 2006 population have XopE4,
which had been reported only in X. fuscans pv. aurantifolii
(Moreira et al., 2010). However, XopE4 is not present in any
strains from 2010, 2012, or 2013. Interestingly, strains belonging
to Xp Group 2 possess a XopQ identical to the allele from Xe85-
10. The neighbor-joining tree based on effector alleles shows the
conservation of Group 1A, but Group 1B and Group 2 strains
were intertwined (Figure 3A).

Xg
The collection of Xg field isolates spans 3 years and covers
two states (Ohio and Michigan). Effector predictions in Xg field
strains from this period revealed the presence of four potential
effectors that are not present in the reference strain Xg101, which
was isolated in the southeastern Europe in 1953 (Supplemental
Table 6). Xg field strains possess a XopJ1 that is identical to
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the allele in Xe85-10 and a type III effector protein (T3EP) that
has 78% amino acid identity to a predicted Ralstonia peptidase
effector (WP_014619440.1). A predicted effector of theXg strains
shares 65% amino acid similarity to a X. campestris pv. campestris
PTP type III effector (WP_011345706.1). Two copies of XopE2
are present in 7 out of 10 Xg field strains, while the remaining
three and the reference strain Xg101 have only one XopE2. Two
field strains carry the effector AvrBs7 (Potnis et al., 2012). Because
the repetitive nature of TAL effector genes renders them difficult
to assemble from short reads, Southern blot analysis was used
to identify potential family members (Supplemental Figure 3A).
In addition, the ability of each strain to induce a HR on pepper
cv. ECW30R, which contains the cognate R gene Bs3 to the
TAL effector AvrHah1 was tested (Supplemental Figure 3B). All
field strains of Xg contained a single TAL effector, an apparent
AvrHah1, on the basis of band size and activity.

Although the Xg strains were isolated within a 3-year
period, only three Xg field strains (Xg164, Xg165, and Xg167)
have identical effector allele profiles at the nucleotide level
(Figure 3C). Three effectors are highly polymorphic: the avrBs1-
class effector, of which three alleles were detected, and the
two xopE2 effectors, of which five and three alleles were
detected (Table 4). Two alleles of xopAD are present at equal
frequencies in the Xg field strains, with both alleles present in
field strains isolated in the same year in the same state (e.g.,
Xg165 and Xg173, Ohio 2011) and in the same year in different
states (e.g., Xg153 and Xg156, Ohio and Michigan, respectively,
2010).

Common Effectors between Species
Effector predictions of the field strains has identified two new
common putative effectors to add to the previously described
list of 11 effectors shared between Xe, Xp, and Xg (Potnis et al.,
2011). XopE2 was identified in all Xp field strains and, while
not in the reference Xp91-118, should, therefore, be considered
a commonly shared effector with Xe and Xg. The identification
of AvrBsT in the majority of Xp field strains and an identical
copy of Xe XopJ1 in Xg field strains indicates the presence of
a more broadly defined YopJ-family effector to the commonly
shared effector list.

Association of AvrBsT presence or Absence in
Host Range Expansion of Xp on Pepper
Xp has previously been considered restricted to tomato as a
host. In 2010, we isolated a strain from a greenhouse-grown
diseased pepper plant. This strain was confirmed as X. perforans
based on 16S rRNA sequencing and multilocus sequence analysis
(MLSA) (Timilsina et al., 2015), and is designated here as strain
Xp2010. Xp2010 does not induce a hypersensitive response (HR)
on pepper cv. Early CalWonder (ECW) and is able to create foliar
disease lesions (Supplemental Figure 1). Effector predictions for
Xp2010 indicated that the absence of AvrBsT, which induces HR
on pepper (Kim et al., 2010), may be responsible for its pepper
host expansion. We were curious to see if other Xp strains in
our collection displayed host expansions to pepper similar to
Xp2010 and if this could be explained solely by the absence of
AvrBsT. We used PCR to confirm the effector prediction results

for the presence or absence of AvrBsT in the Xp field strains
and inoculated pepper cv. ECW with a high inoculum (108
CFU/ml) to determine which strains induce HR (Supplemental
Table 7). We confirmed that four additional field strains, Xp5-
6, Xp17-12, TB9, and TB15 do not possess AvrBsT and also fail
to induce HR. Xp17-12, TB9, and TB15 but not Xp5-6 are able
to cause disease lesions on pepper cv. ECW when infiltrated at a
low inoculum (104 CFU/ml) (Supplemental Figure 7), indicating
that additional factors restrict the host range of Xp5-6 on
pepper.

Three of the newly identified pepper pathogens (Xp2010,
TB9, and TB15) belong to Group 2. We observed no HR but
differences in pathogenicity and lesion development for the two
Group 1B strains that lack AvrBsT (Xp5-6 and Xp17-12). Strain
Xp5-6 showed a phenotype similar to Xp91-118�avrXv3, which
is unable to cause lesions on pepper (Supplemental Figure 1).
We hypothesized that Group 2 strains carrying mutations in
AvrBsT would exhibit in planta growth and virulence similar
to that of virulent strains from pepper in our collection. At
the same time, strains belonging to Group 1 and carrying
mutations in AvrBsT would be non-pathogenic on pepper,
similar to Xp91-118�avrXv3 (Astua-Monge et al., 2000). To test
this hypothesis, AvrBsT insertion mutants were introduced into
two Group 2 strains, GEV839 and GEV1001, and two Group 1A
strains, GEV872 and GEV909. Indeed, XpGEV839�avrBsT and
XpGEV1001�avrBsT from Group 2 lose ability to elicit HR in
pepper and are virulent similar to TB15 (Figure 4). In planta
population levels for these two mutants were not significantly
different from TB15 at Days 4 and 8 post-infiltration, indicating
that AvrBsT is the lone factor restricting these two strains on
pepper. Also as predicted, insertion mutants of avrBsT in Group
1A strains GEV872 and GEV909 lose the ability to induce HR on
pepper but do not grow to the same extent as TB15. In planta
populations of XpGEV872�avrBsT and XpGEV909�avrBsT
were 100-fold higher compared to 91-118�avrXv3 but 20–50-
fold lower compared to pepper pathogens XpGEV839�avrBsT,
XpGEV1001�avrBsT and TB15, indicating the existence of
additional factors restricting the virulence of Group 1A strains
on pepper.

Loss of XopQ and AvrBsT Expands the Host
Range of Xp to Nicotiana benthamiana
Members of both the XopQ and AvrBsT effector families are
known to induce a HR in N. benthamiana (Wei et al., 2007; Kim
et al., 2010). Family members of XopQ occur in Xe, Xp and Xg.
It has previously been shown that a Pseudomonas syringae pv.
tomatoDC3000mutant deficient for the XopQ homolog HopQ1-
1 causes disease in N. benthamiana (Wei et al., 2007). Xe85-10 is
not pathogenic onN. benthamiana, causing a weakHR (Figure 5,
Xe85-10�XopQ). A deletion of XopQ in strain Xe85-10 results
in a strain that causes water soaking, disease lesions, and
grows to a high titer after 6 days on N. benthamiana (Figure 5,
Xe85-10�XopQ). Complementation of the deletion with plasmid
pVSP61 carrying the Xe85-10 allele of XopQ restored the original
phenotype of low virulence and enhanced the HR phenotype
of the complemented strain (Figure 5, Xe85-10�XopQ
cXopQ).
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TABLE 4 | Xanthomonas gardneri nucleotide type III effector alleles.

Type III effector Year 1953 2010 2011 2012

State O M M M M O O O O O

S
tr
ai
n

X
g
10

1

X
g
15

3

X
g
15

6

X
g
15

7

X
g
15

9

X
g
16

0

X
g
16

4

X
g
16

5

X
g
17

3

X
g
17

4

X
g
17

7

AvrBs1 class 1 2 3 3 3 3 2 2 3 2 2

AvrBs2 1 1 1 1 1 1 1 1 1 1 1

AvrBs7 0 0 1 0 0 0 0 0 1 0 0

AvrHah1 na na na na na na na na na na na

AvrXccA1 1 1 1 1 1 1 1 1 1 1 1

XopAD 1 1 2 2 2 2 1 1 2 1 1

XopAM 1 1 1 1 1 1 1 1 1 1 1

XopAO 1 1 1 1 1 1 1 1 1 1 1

XopAQ 1 1 0 0 1 1 1 1 1 1 1

XopAS 1 1 1 1 1 1 1 1 1 1 1

XopB 1 1 1 1 1 1 1 1 1 1 1

XopD 1 1 1 1 1 1 1 1 1 1 1

XopE2_0 1 1 4 5 3 1 5 5 4 2 5

XopE2_1 0 1 1 3 2 1 0 0 1 1 0

XopF1 1 1 1 1 1 1 1 1 1 1 1

XopG 1 FS 1 1 1 1 1 1 1 1 1

XopJ1 0 1 1 1 1 1 1 1 1 1 1

XopK 1 1 1 1 1 1 1 1 1 1 1

XopL 1 1 1 1 1 1 1 1 1 1 1

XopN 1 1 1 1 1 1 1 1 1 1 1

XopQ 1 1 1 1 1 1 1 1 1 1 1

XopR 1 1 1 1 1 1 1 1 1 1 1

XopX 1 1 1 1 1 1 1 1 1 1 1

ZopZ2 1 1 1 2 1 1 1 1CTG 1 1 1

PTP 0 1 1 1 1 1 1 1 1 1 1

T3EP 0 1 1 1 1 1 1 1 1 1 1

Each distinct nucleotide allele was assigned an arbitrary number. The number 0 indicates the effector is missing from genomic assemblies. PTP, protein tyrosine phosphatase; T3EP,
type III effector protein. The TAL effector AvrHah1 could not be assembled (na, not assembled). Superscripts are as follows: CTG, contig break in assembly unable to be confirmed via
Sanger Sequencing; FS, a frame shift mutation.

All Xp field strains contain XopQ and the majority of Xp
strains contain AvrBsT. Therefore, Xp derivative strains in
Xp4B were constructed with single gene deletions of XopQ
and AvrBsT, and deletions of both XopQ and AvrBsT. Single
knockouts for XopQ andAvrBsT in Xp4B remained incompatible
on N. benthamiana (HR, low growth, no lesions, Figure 5),
although Xp4B�AvrBsT experienced reduced growth compared
to Xp4B and Xp4B�XopQ that was complemented back by
the addition of AvrBsT. The double effector deletion mutant
Xp4B�XopQ�AvrBsT gave disease lesions at a low inoculum,
showed water soaking at a high inoculum, and grew to levels
comparable with Xe85-10�XopQ and Xg153 after 6 days on N.
benthamiana (Figure 5). Consistent with the low virulence gain
on pepper by Group 1A AvrBsT mutants, Xp4B�AvrBsT was
able to induce weak lesions on pepper cv. ECW (Supplemental
Figure 1), but did not grow to comparable population
levels of pepper pathogens Xe85-10 or Xg153 (Supplemental
Figure 2).

Discussion

The population dynamics of Xanthomonas-infecting pepper and
tomato has shifted in the United States over the past 25 years.
Prior to 1991, Xe was the prevalent species and the only species
in tomato fields in Florida. Xp tomato race 3 was identified first
in 1991 and eventually replaced the Xe population in tomato
fields, a process attributed to the ability of Xp race 3 to produce
bacteriocins against Xe strains (Tudor-Nelson et al., 2003; Hert
et al., 2005). Xp4B, a tomato race 4 strain identified in 1998,
carries a mutation in the avrXv3 gene. Field surveys thereafter
in 2006 and 2012 recovered a majority of race 4 strains carrying
either frameshift mutations or transposon insertions in avrXv3
(Horvath et al., 2012). The first reports of Xg in the United States
occurred in Ohio and Michigan during a bacterial spot outbreak
on tomato in 2009 (Ma et al., 2011).

Here, we sequenced Xe, Xp, and Xg strains isolated
in different years, from different fields/transplant houses
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FIGURE 4 | Role of avrBsT as host range determinant on pepper cv.
Early CalWonder. In planta growth of X. perforans strains and avrBsT
insertion mutants was measured at different time points (days 0, 4, and 8)

after infiltration of leaves of pepper cv. Early CalWonder (ECW) using an
inoculum concentration of 105 CFU/ml. Group designations are marked in
white over Day 8 growth.

FIGURE 5 | Host expansion of Xanthomonas spp. on Nicotiana
benthamiana. In planta growth of X. perforans and AvrBsT and
XopQ deletion mutants measured at Days 0 and 6 with a
starting inoculum of 105 CFU/mL after infiltration of leaves of
Nicotiana benthamiana. Infiltrations on N. benthamiana were

performed at 104 CFU/ml to display lesions and photographed 8
days post-infiltration (8 dpi). High inoculum infiltrated spots were
performed at 108 CFU/ml to show HR or water soaking and
photographed 2 dpi. This experiment was repeated three times
with similar results.

throughout southeastern andmidwestern United States.We have
also sequenced strains collected during the same season from
the same field. Following typical population genomic studies,
we have taken three components into consideration; location,

time and niche (Monteil et al., 2013). Combining genomic data
with metadata such as plant host source, year and location of
isolation provides inference of population structure and clues to
host adaptation. We have computationally predicted the type III
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effector repertories for each strain, and have used two different
methods in order to infer evolutionary relationships of strains
based on whole genome data. Phylogeny based on the core
genome considers orthologous genes among the set of genomes
considered. Phylogeny based on whole genome SNPs included
core as well as variable regions of the genome, and thus provides
an additional method to describe the genetic diversity within
field strains. Phenotypic data, in particular, host range, was then
correlated with the whole genome phylogenies.

MLSA studies showed the presence of two distinct groups
of Xp populations that appeared to be clonal within the lineage
(Timilsina et al., 2015). However, these studies were based
on 6 genes out of 5000 genes. In our study, core ortholog
gene phylogeny also revealed two distinct groups among Xp
populations (Groups 1 and 2), although we were able to further
separate Group 1 into Group 1A and 1B. Group 1A contains 11
strains isolated in 2012, whereas Group 1B contains six strains
isolated in 2006 in addition to Xp4B and the reference strain
Xp91-118, isolated in 1998 and 1991, respectively. Group 2
comprises five strains from 2006, the single strain from 2010,
five strains from 2012, and all three 2013 strains. Additionally,
we detected genetic diversity among strains that appeared to be
clonal from MLSA in previous work (Timilsina et al., 2015),
particularly evident in Xp Group 1A. In our study, the Xp 2006
population was more diverse than the 2012 population, possibly
due to the fact that sampling in 2006 was carried out in a broader
geographic range in Florida and Georgia. The diversity within
the 2006 population is evident from the core genome and SNP
phylogenies.

This study re-emphasizes the role of population genomics for
identification of elements involved in host-pathogen arms race.
The data revealed the emergence of tomato race 4 strains of Xp
carrying mutations (either frameshift/transposon insertion) in
avrXv3. Strain Xp91-118 isolated in 1991 was non-pathogenic
on pepper even when mutated in avrXv3 (Astua-Monge et al.,
2000), indicating the existence of other factors that restrict its
host range on pepper. Themajority ofXp strains in our collection,
isolated after 1998, have acquired AvrBsT, an avirulence protein
responsible for restricting host range on pepper. AvrBsT has
been shown to be a virulence factor by suppressing defense
responses in tomato (Kim et al., 2010), possibly conferring
a competitive advantage to pathogens in tomato fields. Four
of the five Xp strains isolated after 1998 that do not possess
AvrBsT are pathogenic on pepper. Interestingly, mutation in
avrBsT results in differences in the in planta populations in
pepper when compared between Group 1A and Group 2. avrBsT
mutants in Group 2 experience a full virulence gain on pepper,
whereas avrBsT mutants in Group 1A acquire only a partial
growth benefit, indicating that additional factors restrict the
host expansion of Group 1A strains onto pepper. Phenotypic
characterization, including pepper pathogenicity tests of avrBsT
mutants, will need to be conducted on other strains in Groups 1
and 2 to support more definitive conclusions.

At the whole genome level, horizontal gene transfer (HGT) of
genes that determine phenotypic differences might have occurred
frequently enough during evolution to explain the differing
degree of pepper pathogenicity between strains belonging to

Group 1B. Two Xp strains in Group 1B, Xp17-12, and Xp5-
6, do not have AvrBsT and do not induce HR on pepper
cv. ECW. However, Xp17-12 is able to induce water-soaked
disease lesions on pepper when infiltrated into pepper leaves
at a low inoculum (104 CFU/mL) whereas Xp5-6 induces only
weak lesions. Similar to Xp5-6, an avrBsT deletion in the
Group 1B strain Xp4B (Xp4B�AvrBsT) induces weak disease
lesions on pepper and acquires only a partial in planta growth
increase. Incongruence in degree of pathogenicity and clade
could partly be due to the loss or gain of effectors through
HGT. Xp17-12 contains effector alleles for XopF2 and XopAD
that match those found in Xe85-10 but not those of any other
Xp strain analyzed here, suggesting the occurrence of HGT
events that may have contributed to its ability to infect pepper.
Xp5-6 does not share any common effector alleles with Xe85-
10. Interestingly, all Group 2 strains contain a XopQ allele
identical to XopQ in Xe85-10, while Xp strains in Group 1
have a different allele. Previous MLSA analysis also showed
evidence for recombination events resulting in haplotypes for
two housekeeping genes (gapA and gyrB) in Xp Group 2 strains
identical to that found in Xe85-10 (Timilsina et al., 2015).
Because mutation in avrBsT in the tested Group 2 strains
results in complete virulence on pepper, Group 2 strains may
have emerged from populations that underwent recombination
with an Xe85-10-related strain, acquiring new virulence genes
for pepper pathogenicity. Homologous recombination between
chromosomal DNA of different Xanthomonas species by
conjugation in planta has been previously observed (Basim et al.,
1999), while HGT of virulence-associated genes between different
lineages within X. axonopodis strains has contributed to host
range (Mhedbi-Hajri et al., 2013).

Field strain genomic analysis presents an efficient method for
deriving the diversity of type III effector repertories. Knowledge
of the effector load in the population will inform strategies
for achieving broad durable resistance strategies based on R
gene deployment. Within each species, we identified several
differences in the effector repertoires of Xe, Xp, and Xg field
strains, including the gain or loss of effector genes, null
mutations, and the presence of alternate alleles. We predicted
three effector additions to the overall Xe field strain repertoire
(XopE3, XopAF-like, and XopAE) and one removal (XopG)
in comparison to the reference strain Xe85-10. The most
polymorphic effector in Xe is avrBs2, a phenomenon perhaps
explained by the selective pressures of the pepper Bs2 resistance
gene deployed in the early 1990’s. Several of the previously
reported mutations in avrBs2 are represented here, with no
novel polymorphisms detected (Swords et al., 1996; Wichmann
et al., 2005). Generally, the effector predictions for Xe field
strains isolated between 1994 and 2004 show increased effector
polymorphisms compared to strains isolated between 2004 and
2012, indicating that the effector repertoires have stabilized over
time in our sampling population. Xp field strains have evolved
their repertoires by losing/gaining effectors (XopE2, XopE4,
AvrBsT), through allelic exchange (as seen with XopQ in Group
2 strains) and by frameshift mutations/transposon insertions (in
avrXv3). Diversity in effector repertoires is seen even in strains
collected from the same field during a single growing season.
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Strains TB6 and TB15 possess identical type III effector profiles
and appear clonal based on core genome phylogeny except for
the absence of AvrBsT in TB15. However, this difference has
expanded the host range of TB15 to include pepper while TB6
is restricted to tomato. Similar to TB15, TB9 does not possess
AvrBsT but has different alleles of XopD and XopE1 compared to
TB6 and TB15. We predicted four additions to the Xg field strain
effector repertoire including a second copy of XopE2 and a XopJ1
identical to Xe strains. We also detected allele differences in an
AvrBs1-like effector, XopAD, and XopE2. Through this analysis
two additional effectors can be added to the previous list of 11
commonly shared effectors between Xe, Xp, and Xg (Potnis et al.,
2011): XopE2 and a YopJ-family member (AvrBsT in Xp, XopJ1
in Xg and Xe).

In addition to strain-level variation, allelic diversification in
type III effectors was observed at the species level across Xe,
Xp, and Xg. Because type III effector repertoires are proposed
to be a major factor determining host range (Hajri et al., 2009),
it is important to understand the diversity of effectors present
in different species that infect common hosts. Although Xe, Xp,
and Xg share thirteen core effectors, effector alleles between these
three species may be considerably different. For example, the
effector AvrBs2 protein sequence shares 99% identity between
reference strains Xp91-118 and Xe85-10, but 77% identity to
the AvrBs2 in Xg101. Similarly, the XopQ alleles of Xp91-118
and Xe85-10 share 99% identity at the amino acid level, but
58% identity to XopQ from Xg101. Sampling of a genetically
diverse population can be informative to reveal the dominant
effector alleles in a specific geographical region, which would be
the most appropriate alleles to screen for R protein resistance
strategies.

Curiously, we discovered a spectrum of host expansion
for Nicotiana benthamiana involving the effectors XopQ and
AvrBsT. While wild type Xg is virulent on N. benthamiana,
a XopQ deletion in Xe85-10 (Xe85-10�XopQ) and a double
deletion of XopQ and AvrBsT in Xp4B (Xp4B�XopQ�AvrBsT)
results in a N. benthamiana host gain. Reducted in planta
growth of Xp4B�AvrBsT compared to Xp4B and Xp4B�XopQ
indicates that AvrBsT may play an important virulence role in
N. benthamiana. Because the XopQ alleles in Xe and Xp are
relatively similar and stable over time in field strains, the potential
R protein “R-XopQ” in N. benthamiana would be a promising
candidate as a resistance tool against Xe and Xp in pepper and
tomato.

The increased speed and dropping cost of DNA sequencing
technology combined with the use of genome editing techniques
are providing new opportunities for designing resistance
strategies against specific pathogens in various crop species.
The spread of agricultural pathogens into new niches, either
by increasing global movement of food or the emergence
of new niches from climate change, makes the continued
genomic surveillance of agricultural pathogens a top priority

for food security and resistance strategies. Of particular
importance are tracking shifts in dominant species and changes
in effector repertoires and alleles. Effector maintenance and
stability is a key consideration for the future design of
durable resistance strategies using R-gene employment into
crops.
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