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Traditional tumor vaccination approaches mostly focus on activating dendritic cells (DCs)

by providing themwith a source of tumor antigens and/or adjuvants, which in turn activate

tumor-reactive T cells. Novel biomaterial-based cancer immunotherapeutic strategies

focus on directly activating and stimulating T cells through molecular cues presented

on synthetic constructs with the aim of improving T cell survival, more precisely steer

T cell activation and direct T cell differentiation. Synthetic artificial antigen presenting

cells (aAPCs) decorated with T cell-activating ligands are being developed to induce

robust tumor-specific T cell responses, essentially bypassing DCs. In this perspective,

we approach these promising new technologies from an immunological angle, first by

identifying the CD4+ and CD8+ T cell subtypes that are imperative for robust anti-cancer

immunity and subsequently discussing the molecular cues needed to induce these

cells types. We will elaborate on how biomaterials can be applied to stimulate T cells

in vitro and in vivo to improve their survival, activation and function. Scaffold-based

methods can also be used as delivery vehicles for adoptive transfer of T cells, including

tumor-infiltrating lymphocytes (TILs) and chimeric antigen receptor expressing (CAR) T

cells, while simultaneously stimulating these cells. Finally, we provide suggestions on how

these insights could advance the field of biomaterial-based activation and expansion of

tumor-specific T cells in the future.

Keywords: cancer immunotherapy, biomaterials, T cells, artificial antigen-presenting cells, scaffold, anti-tumor

immune response, synthetic immune niche, molecular cues

INTRODUCTION

Immunotherapy provides a revolutionary treatment modality for cancer. A variety of strategies
have been developed to improve the clinical outcome of patients by generating long-term
anti-tumor immune responses. The development of therapeutic monoclonal antibodies that block
co-inhibitory receptors on T cells, such as cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4)
and programmed death 1 (PD-1), has shown exceptional clinical benefit in cancer patients and is
seen as a crucial breakthrough in the cancer immunotherapy field (1).

Apart from relieving suppression in pre-existing T cells, other immunotherapeutic strategies
focus on increasing the number of tumor-reactive T lymphocytes that recognize either
tumor-specific antigens, tumor-associated antigens, cancer-testis antigens or neo-antigens.
Dendritic cell (DC) vaccination targets antigen-presenting DCs, which are capable of priming
T cells by capturing, processing and presenting antigens to naïve T cells together with

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2019.00931
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2019.00931&domain=pdf&date_stamp=2019-05-03
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:martijn.verdoes@radboudumc.nl
mailto:jorieke.weiden@radboudumc.nl
https://doi.org/10.3389/fimmu.2019.00931
https://www.frontiersin.org/articles/10.3389/fimmu.2019.00931/full
http://loop.frontiersin.org/people/642941/overview
http://loop.frontiersin.org/people/569916/overview
http://loop.frontiersin.org/people/598407/overview
http://loop.frontiersin.org/people/124029/overview
http://loop.frontiersin.org/people/533680/overview


Schluck et al. Biomaterial-Based T Cell Activation

co-stimulatory cues (2). To generate DC vaccines, patient-
derived DCs are cultured ex vivo, maturated and loaded
with antigens, after which they are infused back into the
patient where they activate tumor-reactive T cells (3). Increased
overall survival, functional tumor-specific immune responses
and low toxicities have been observed with this strategy (4, 5).
Other cell-based therapies attempt to increase the number of
circulating tumor-specific T cells by reinfusing autologous ex
vivo-expanded T cells derived from tumors (tumor-infiltrating
lymphocytes, TIL) or genetically engineering them to confer
tumor reactivity using high affinity T-cell receptors (TCR) or
chimeric antigen receptors (CAR) (6). Promising preclinical
data have been obtained with these adoptive T-cell therapies
(1, 7, 8). The prominent immunotherapeutic strategies described
above all focus on generating robust tumor-directed T cell
responses, which is crucial to inducing effective and long-
lasting anti-tumor immunity, as there is a strong correlation
between tumor-infiltrating CD8+ T cells and patient survival
in virtually all cancer types (9). In addition, antigen-specific
CD4+ T helper cells are believed to be critically involved
in the induction of optimal anti-tumor responses (10, 11).
It is therefore evident that T cells play a central role in
cancer immunotherapy.

Although current cancer immune therapies have shown
promising preclinical and clinical results, challenges remain that
may limit therapeutic benefit. To improve on this and to design
new therapeutic strategies, interest in the field of biomaterial
engineering has grown. Biomaterials have proven valuable in
reducing systemic toxicities, enhancing accumulation in tumors,
improving pharmacokinetics and ensuring sustained release
by controlled (targeted) drug delivery (12, 13). Biomaterial-
based immunotherapeutic strategies led to the development of
nanoparticles for the targeted delivery of cargo to immune
cells in vivo, such as cytokines, DC-activating agents or small
inhibitors (13–15). Careful design can be applied to tune the
delivery of DC-targeted vaccines using materials responsive
to temperature (16) or pH (17, 18). Other biomaterial-based
approaches focus on improving ex vivo immune cell expansion
or on supporting immune cells after adoptive transfer (13, 14).
Furthermore, there has been a rise in the development of
synthetic, acellular artificial antigen presenting cells (aAPCs)
that can target and activate T cells directly (19, 20), thereby
bypassing the need for DC activation. By presenting molecular
cues on synthetic constructs based on biomaterials, specific
signals are transmitted to T cells in a well-defined context
and controlled manner to support T cell viability, activation
and differentiation.

In this perspective, we will detail what T cell subtypes
are imperative for robust anti-cancer immunity and which
molecular cues are needed to induce these T cells. Next, we
will elaborate on how these molecular cues can be presented
by biomaterials for direct activation and expansion of T
cells. The use of biomaterials to aid the adoptive transfer of
T cells will also be discussed. Finally, we will illustrate in
which direction the field of biomaterial engineering for cancer
immunotherapy should go for the next generation of biomaterial-
based cancer immunotherapies.

T CELL SUBSETS IN CANCER
IMMUNOTHERAPY

To generate durable anti-tumor immune responses that have
a beneficial impact on the clinical outcome of cancer patients,
potent CD8+ and CD4+ T cell responses are crucial (9–11).
Here, we will discuss the roles of different T cell subtypes in
cancer-specific immune responses and we will highlight the
cellular and molecular characteristics of these T cells (Figure 1).

Upon interaction with their cognate antigen in the context
of major histocompatibility complex class I (MHC I) and
co-stimulatory cues, CD8+ T cells will undergo extensive
proliferative expansion to create a large population of short-lived
effector cytotoxic T lymphocytes (CTLs) that have tumor-killing
capacities. The CTL population comprises functionally distinct
subsets (21). For instance, expression of CX3CR1 on CTLs
is associated with their ability to generate memory subsets
and serves as a predictor for CX3CR1 expression on the
generated memory cells, which is associated with robust
cytotoxic effector functions (22, 23). CXCR5-expressing CTLs
are involved in chronic viral infections and show reduced
susceptibility to exhaustion (24). Additional heterogeneity may
exist regarding cytokine production and the (co-)expression
of perforin and various granzymes (25). In addition to these
short-lived CTLs, the formation of CD8+ memory T cells is
required to support long-term anti-tumor immunity. Following
a progressive differentiation model, primed naive CD8+ T cells
(Tn) will progress into different memory T cell populations
[T stem cell memory (Tscm), T central memory (Tcm), T
effector memory (Tem)] (21, 22, 25–27). The Tscm subset
displays increased anti-tumor activity, enhanced proliferation,
increased survival capacities and multipotency (27, 28). The
Tcm generally have higher proliferative abilities while Tem are
more cytotoxic (22). In contrast to circulating memory T cells,
there is also a population of non-circulating memory T cells,
tissue resident memory T cells (Trm). These Trm cells were
shown to be superior in providing rapid long-term protection
against recurrent infections (29). Inducing a broad repertoire of
potent CTLs together with CD8+ memory T cells will be highly
beneficial for robust anti-tumor immunity (Figure 1A).

CD4+ T cell help is imperative for potent CD8+ T
cell activation by supplying cytokines and co-stimulation,
by enhancing persistence and migration, and by reactivating
memory CD8+ T cells (30–32). Recently, it has been reported that
CD4+ T cells are also dependent on CD8+ T cells, underlining
the mutual dependence of CD4+ and CD8+ T cell responses
(10). Furthermore, a RNA vaccination study clearly showed
the importance of CD4+ T cell neo-epitopes in controlling
murine tumors (11). The CD4+ T cell population can be
subdivided into specific subsets, each having their own signature
cytokine repertoire (33, 34). The T helper 1 (Th1) subset is
strongly associated with better prognosis, improved survival,
low incidence of tumor recurrence and prolonged disease-free
survival in cancer immunology (35). This is in part due to
their supportive role in cellular immunity, the cytokines they
produce [including interferon-γ (IFN-γ)] (35), and their role
in inducing immunological memory (36). In addition, notable
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FIGURE 1 | Molecular cues involved in CD8+ and CD4+ T cell activation and differentiation. (A) CD8+ T cells can be subdivided in cytoxic T lymphocytes (CTLs) and

memory subsets [memory stem cells (Tscm), central memory (Tcm), effector memory (Tem) and tissue-resident memory (Trm)] that all have specific functionalities. To

stimulate antigen-specific CTLs, biomaterials should present peptide MHC (pMHC) class I, agonistic antibodies that trigger co-stimulatory receptors for signal 2 and

cytokines as signal 3 as depicted. (B) To trigger differentiation of CD4+ T cells into T helper 1 (Th1) and Th17 cells, biomaterials need to present pMHC class II

together with co-stimulatory signals and different combinations of cytokines. As an alternative to agonistic antibodies to trigger co-stimulatory signaling pathways,

natural ligands of co-stimulatory receptors can be used.

results of a mouse melanoma study showed that the T helper
17 (Th17) subset producing IL-17 was involved in B16 tumor
rejection (37). Other studies have also indicated a positive role
for Th17 cells in the development of long-term anti-tumor
immunity and their help in CTL activation and recruitment to
the tumor (38, 39). Besides providing support to CTLs, CD4+

T cells can also contribute to the anti-tumor immune response
independent of CD8+ T cells (30, 40, 41) by acquiring cytotoxic
activity and executing a direct anti-tumor effect (36, 40). Finally,
CD4+ T regulatory cells (Tregs) mainly encompass the immune
inhibitory subset, which is important in physiological settings
to prevent autoimmunity (35). Due to their immune inhibitory
profile, Tregs can prevent tumor clearance by inhibiting CTL
functions (42).

The generation of the various CD4+ T cell subsets in vitro is
mainly determined by the cytokine profile present during T cell
receptor-mediated activation (34). The presence of interleukin-
12 (IL-12) and IFN-γ will skew CD4+ T cells toward a Th1
profile, while the presence of TGF-β, IL-6 and IL-21 will drive
the differentiation toward a Th17 profile (34) (Figure 1B).

Besides inducing Th1 differentiation, IL-12 also enhances the
proliferation of activated T cells and induces cell-mediated
immunity (43). In addition, IL-1 is able to directly act on CD4+ T
cells, especially IL-17 producing cells, increasing antigen-specific
T cell expansion and enhancing survival (Figure 1B) (44).

Taken together, these studies emphasize the importance of
inducing potent CTL and stimulatory CD4+ T helper cell subsets
(in particular Th1 and Th17 cells) to induce potent anti-tumor
responses, but they also highlight the need for differentiation of
the effector subsets into memory cells to help prevent relapse.
Insight into the molecular cues that can optimize the design of
biomaterial strategies to gain control over the repertoire of T cells
that is induced is therefore pivotal.

MOLECULAR CUES TO ACTIVATE AND
EXPAND T CELLS

To provide T cells with the signals that are required for
activation and differentiation, inspiration could be sought in the
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mechanism of action of natural antigen-presenting cells (APCs)
for T cell priming, thereby creating aAPCs. Three fundamental
signals for T cell activation are (i) triggering TCR signaling; (ii)
adequate co-stimulation, e.g., through the CD28 signaling axis;
and (iii) the availability of cytokines to direct T cell differentiation
(45, 46). TCR engagement can be mimicked by agonistic αCD3
antibodies for polyclonal T cell expansion or recombinant MHC
peptide complexes (pMHC) for antigen-specific T cell expansion.
Artificial co-stimulation can be provided using agonistic αCD28
antibodies or recombinant natural ligands CD80 (B7.1) and
CD86 (B7.2). Recombinant cytokines that provide signal 3 are
widely available and are typically presented in soluble form.

Various biomaterial designs have been synthesized to mimic
DCs which vary in their shape, the signals they present
and the method of administration (19, 47) (Figure 2A).
Traditionally, soluble polymers or polymeric beads presenting
agonistic αCD3/αCD28 antibodies to T cells are used to
induce vigorous polyclonal expansion. Besides CD28, co-
stimulatory signals belonging to the tumor necrosis factor
receptor superfamily (TNFRSF), such as OX-40, 4-1BB, CD27,
and LIGHT, are also potentially interesting to steer T cell
activation (56, 57). Though OX-40, 4-1BB and CD27 can
perform co-stimulation for both CD4+ and CD8+ T cells,
OX-40 was shown to predominantly act as a co-stimulatory
molecule for CD4+ T cells (58–61). Engagement of 4-
1BB and CD27 were more prone to induce potent CD8+

activation. An aAPC design presenting αCD3 antibodies with
α4-1BB antibodies as the co-stimulatory cue was reported
to preferentially expand memory cells and induce enhanced
cytolytic activity compared to aAPCs presenting αCD3 and
αCD28 (62). CD27 co-stimulation enhances activation and
survival of CD8+ T cells (60, 61), prevents activation-induced
cell death (60) and supports the presence of tumor-specific CD8+

T cells residing within established melanoma (63). Expression
of LIGHT in the tumor microenvironment of patients increases
T cell expansion, activation and infiltration and correlates
with improved clinical outcome (64, 65). Furthermore, LIGHT
signaling enhanced T cell proliferation, IFN-γ production,
tumor infiltration and regression of established tumors in a
P815 mastocytoma tumor model and a CT26 colon cancer
model (57, 64). These studies imply that careful tuning of co-
stimulatory cues presented by biomaterials can steer T cell
priming and functionality.

The third signal consisting of cytokines is especially important
for naïve CD8+ T cells to differentiate, develop their effector
functions, and form potent memory populations (66). Absence
of this third signal can result in deletion or anergy of the
activated cells (67, 68). In a normal immunological setting,
CD4+ T helper cells promote IL-12 or type I IFN production
by DCs in a CD40-dependent manner to ensure potent
CTL development (67, 68). Apart from supplying T cells
with recombinant cytokines presented by biomaterials, the
adaptor molecule Stimulator of IFN Gene (STING) could
be used to induce type I IFN production (69, 70). Besides
IL-12 and type I IFN, there are various other cytokines
involved in T cell activation and differentiation such as IL-
2, IL-7, IL-15 and IL-21 (Figure 1A) (66). IL-7, IL-15 and

IL-21 are important for CD8+ T cell memory formation
and maintenance (71), while IL-2 promotes the expansion
of both CD4+ and CD8+ T cells, thus augmenting the
effector T-cell response (72). Moreover, cytokines steer CD4+

T cell development into the different subsets (34), which
emphasizes the necessity to include these signals into a
biomaterial design.

MOLECULAR CUES TO GENERATE T
CELLS OF HIGH QUALITY

Not only the quantity of the generated T cells is important,
as the quality needs also to be considered. When T cells
reach a more differentiated state, the cell effector functions
increase while the memory functions and proliferation capacity
decrease (26). Experimental studies in mice and patients
have shown a superior role for less differentiated cells (Tscm
and Tcm) in adoptive cell transfer, as was demonstrated
by enhanced engraftment, expansion, persistence and anti-
tumor responses of these minimally differentiated T cells
in vivo (28, 73–77).

The low numbers of circulating Tscm (28) cells have resulted
in the development of in vitro culture practices where the
differentiation of naïve T cells is controlled by supplementing
culture media with IL-7 plus IL-15 or IL-21 and/or small
molecules to activate the Wnt/β-catenin pathway (71, 78). The
cells generated with these culture protocols showed increased
engraftment, expansion and higher tumor reactivity (71, 78).
In addition, longer expansion time of T cells ex vivo can also
drive T cell differentiation and negatively affect cytolytic activity,
proliferation, tumor control and T cell persistence in vivo (79).

T cell differentiation may also be influenced by T cell
metabolism. TILs cultured with a small inhibitory drug for
protein kinase B (AKT) (80), naïve T cells cultured with
an inhibitor for mammalian target of rapamycin (mTOR)
(81) and CD8+ T cells exposed to 2-hydroxyglutarate (82)
induces T cells with transcriptional and metabolic properties
characteristic of memory T cells that show increased persistence
and anti-tumor response in vivo after adoptive transfer.
These studies indicate the importance of T cell quality
and how this may affect persistence, proliferation, survival
and effector functions in vivo, and demonstrate possibilities
for improving ex vivo T cell cultures that could also be
highly relevant in designing biomaterial-based systems for T
cell expansion.

The multifunctionality of the effector T cells also influences
the quality of the generated T cells (72). T cells are considered
to be multifunctional when having two or more functions
including, but not limited to, the production of cytokines,
chemokines and/or degranulation (72). Multifunctional CD4+

and CD8+ T cells are able to secrete more IFNγ, and T cells
producing both IFNγ and TNF can mediate more efficient
killing compared to single cytokine-producing cells (72). Even
though these are illustrations from the field of infectious diseases,
multifunctional effector T cell responses could also benefit anti-
tumor immunity.
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FIGURE 2 | Overview of biomaterial design strategies for T cell activation and expansion. (A) An overview of design strategies of artificial antigen-presenting cells

(aAPCs) based on liposomes (48), nanoparticles (19) or filamentous polymers (49). aAPC designs present various molecular cues to induce T cell activation, including

pMHC or αCD3 antibodies as signal 1, αCD28 antibodies to mimic signal 2 and cytokines as signal 3. (B) Different T cell backpacking strategies for the ex vivo or in

vivo targeting of cytokine-loaded particles to T cells using antibody as targets [liposome (50) and nanogel (51)] or through chemical [binding (52) (nanoparticle)]. These

strategies ensure targeted delivery of cytokines to support persistence of adoptively transferred cells in vivo. (C) 3D scaffold-based strategies to expand T cells and to

support adoptively transferred (CAR) T cells. Designs include alginate scaffolds with stimulatory microparticles for CAR T cell expansion (53), mesoporous silica rods

for T cell activation (54) and a synthetic polyisocyanopeptide-based scaffold that disperses T cells (55).

DESIGNING BIOMATERIALS FOR OPTIMAL
TUMOR-SPECIFIC T CELL PRIMING

Biomaterials can be used to present the three imperative signals
to T cells to support activation, expansion and differentiation
in a spatiotemporally well-defined and sustained manner
(83). The defined structural nature of biomaterials enables

chemical modification to introduce desired functionalities
through standard conjugation or bio-orthogonal chemistries
such as “click chemistry” (84, 85). The characteristics of
the biomaterial, such as biodegradability, biocompatibility,
half-life and the implementation of biological targeting
moieties, but also physical properties such as shape, surface
topology and mechanical properties, can shape the interaction
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with T cells and thus alter the immune response that
is provoked (86).

The context in which molecular cues are provided can
also influence T cell responses. Immobilizing signal 1 on a
surface was reported to promote robust T cell activation (87),
because physical forces play an important role in TCR signal
transduction (88). The relevance of force upon the TCR was
interrogated in more detail by making use of materials with
different stiffness (89, 90). MHC class I molecules presented
on a softer poly(dimethylsioxane) surface led to enhanced
T cell proliferation, improved IL-2 production and increased
Th1 differentiation compared to TCR engagement using rigid
polystyrene beads (89, 90). In addition to the effect of
material stiffness, polymeric aAPC presenting T cell-stimulating
cues in a multivalent context demonstrated the importance
of multivalency for long-lasting T cell activation (91, 92).
Furthermore, superior CD8+ T cell activation was observed for
biomaterials displaying signals 1 and 2 in a pre-clustered manner
(19, 47, 93, 94), for instance on liposomes (48). Signal density also
affects T cell responses, as CD4+ T cells were reported to remain
unresponsive when signal 1 is presented in a density that is too
low (95–97). In addition to signal density, the quantity of signals
1 and 2 can also influence the effector Th1 CD4+ and effector
CD8+ T cell responses (72). Limited amounts of signal 1 or 2 were
shown to induce Th1 cells and CD8+ T cells that only secrete
IFNγ, while in the presence of increased concentrations of signal
1 or 2 cells both IFNγ and IL-2 were secreted (98, 99).

Most biomaterial designs implement cytokines (signal 3)
either in release vesicles or via adsorption (47, 54, 100), creating
a local high concentration of soluble cytokines. Robust T cell
activation can also be obtained with immobilized cytokines
and might preferentially deliver these to T cells through co-
presentation of T cell-specific antibodies (49), providing a new
range of possibilities for the addition of cytokines in biomaterial-
based immune therapies.

When using biomaterials, care must be taken to prevent the
induction of exhausted T cells due to persisting T cell stimulation,
leading to diminished cytokine production, reduced proliferative
capacity, decreased killing abilities, and high expression of co-
inhibitory molecules, such as PD-1 and CLTA-4 (101). Therefore,
one should not only focus on trying to induce a strong activation
signal, but special care should be taken to achieve appropriate
stimulation levels to ensure desired T cell activation and prevent
T cell exhaustion. To prevent or counteract the exhausted state of
T cells, the biomaterial might need to be equipped with PD-1 and
CTLA-4 blocking antibodies. Several biomaterial designs have
been tested to improve the delivery and sustained release of these
antibodies, displaying improved anti-tumor efficacy (14, 102).
An alternative strategy to prevent T cell exhaustion could be to
provide co-stimulation with an αCD2 antibody (103).

BIOMATERIALS FOR ADOPTIVE T CELL
TRANSFER

Apart from applying biomaterials to prime and expand T
cells with stimulatory cues, biomaterials are also excellent

tools to support the adoptive transfer of T cells for cancer
immunotherapeutic purposes (Figures 2B,C). Adoptive T cell
therapy (ACT) has shown promising results in inducing durable
anti-tumor immune responses (1, 7, 8). However, efficacy
generally depends on the co-administration of lymphodepleting
chemotherapy and/or high doses of IL-2 to support the
persistence of these cells in vivo (1, 104, 105). Biomaterials
have been designed to reduce toxicities seen with the systemic
administration of these adjuvants and to enhance the response
of adoptively transferred cells (51, 52) (Figure 2B). In an
elegant design of liposome-like synthetic nanoparticles that
encapsulate IL-15 superagonist and IL-21, reduced thiol groups
on the T cell surface were used to covalently bind nanoparticles
onto the cells before ACT (52). These “backpacks” resulted
in considerably more proliferation and persistence of the
transferred cells in vivo and led to complete tumor clearance
in mice bearing metastasized B16F10 melanoma. Further
development led to stimuli-responsive particles that release IL-
15 superagonist upon increased redox activity at the T cell
surface upon TCR signaling (51). To enable repeated in vivo
stimulation of adoptively transferred T cells, particles were
designed that target T cells through an αThy1.1 antibody or
IL-2 (50). To circumvent the need to culture cells ex vivo,
αCD3 antibody fragments can be used to target biodegradable
poly(β-amino ester)-based nanoparticles to T cells in vivo.
These nanoparticles contained a DNA plasmid encoding a
leukemia-specific CAR gene combined with 4-1BB and CD3ζ
cytoplasmic signaling domains. This strategy resulted in the
in vivo generation of CAR-T cells that perform comparable
to CAR-T cells generated using the conventional ex vivo
culture method (106).

Most biomaterials for T cell activation are designed to
function in soluble form or in suspension as two-dimensional
systems. Limited work has been performed using three-
dimensional (3D) scaffold-based designs for T cell activation,
whereas within the field of DC activation there are multiple
examples of 3D scaffolds to create local DC-recruiting and
activating niches. 3D scaffolds have proven advantageous
as they present DCs with activating cues in a sustained
manner at a localized site (107–109). We believe that
designing such scaffolds and thereby creating synthetic
immune niches for localized in vivo T cell activation could
contribute significantly to the current T cell mediated anti-
cancer therapies. A synthetic immune niche as a site of
T cell priming and dispersion could replace or augment
the function of tumor-draining lymph nodes, which were
shown to be key regulators in the anti-tumor immune
response (110).

One area in which 3D scaffolds have been explored for T
cell activation is in the field of ACT (Figure 2C). An alginate
implant equipped with T cell-stimulating signals (αCD3, αCD28,
α4-1BB, and IL-15 superagonist) and migration-promoting
peptides induced a substantial increase in the proliferation of
adoptively transferred T cells at the tumor resection site in a
4T1 mouse breast tumor model (100). Moreover, these cells
did not acquire an exhausted phenotype, but migrated toward
the tumor-draining lymph nodes where they differentiated into
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central memory T cells. In another alginate-based scaffold
approach, a combination of adoptive transfer of CAR-T cells
and the incorporation of a STING agonist was used to
trigger anti-tumor host immunity (53). A chitosan thermogel
has also been tested for ACT and resulted in a supportive
environment where antigen-specific T cells could proliferate
and subsequently migrate toward target cells, which were
effectively killed in vitro (111). Mesoporous silica micro-
rods with supported lipid bilayers were used to provide T
cells with either polyclonal cues (αCD3) or antigen-specific
cues (pMHC) in combination with αCD28 for co-stimulation
and adsorbed IL-2 to provide paracrine delivery of cytokines
(54). Alternatively, a fully-synthetic hydrogel composed of tri-
ethylene glycol-substituted polyisocyanopeptides functionalized
with integrin-binding motifs supported the ex vivo expansion
and survival of T cells (55). The ex vivo-stimulated T
cells could successfully egress from the hydrogel over time
when administered in vivo, identifying these hydrogels as
effective cellular delivery vehicles. Together, these studies
demonstrate proof of the concept that 3D scaffolds can be
used as a multifunctional platform to enhance polyclonal
and antigen-specific T cell expansion and cell persistence
in vivo.

The use of biomaterials for the adoptive transfer of T
cells might make ACT more efficient, as ex vivo culture
time could be reduced and be potentially superfluous. This
would make ACT more feasible and at the same time
benefit T cell functionality (105). Moreover, implementing
molecular cues like IL-7, IL-15, or IL-21 in 3D biomaterial-
based scaffolds could provide an in vivo immune niche for
the generation and support of adoptively transferred Tscm,
which in turn could improve in vivo T cell persistence,
proliferation and anti-tumor response (71, 78), underlining
the promise of biomaterial-based 3D scaffolds for T cell
activation in vivo. Careful investigation of the behavior of T
cells in response to different combinations of molecular cues is
required to create the most desirable T cell-activating synthetic
immune niche.

CONCLUDING REMARKS

Biomaterials are highly promising tools to present molecular cues
to T cells to evoke robust immune responses both in vitro and in
vivo. In this perspective, we presented an overview of molecular
cues that could be used to selectively expand T cell subsets
that are beneficial for strong anti-tumor immune responses.
Biomaterials can be exploited to control the presentation of
specific combinations of these molecular cues to T cells and
can thus be used to regulate the stimulation level and the
induction of specific T cell phenotypes. Careful consideration
of how to combine the insights on important T cell-activating
molecular cues with material-intrinsic factors is highly important
for the design of biomaterials for the expansion and activation
of tumor-specific T cells. In this respect, biomaterials could
be used as tools to delineate the molecular cues and scaffold
design parameters that dictate T cells’ responses. When designing

biomaterials for controlled activation of the immune system, it
is important to take into account the intrinsic immunogenicity
of materials and the potential change in immunomodulatory
properties after biodegradation (112, 113). In our opinion,
one of the major factors that needs to be considered is
implementing potent CD4+ T helper cues alongside CD8+ T
cell signals on biomaterials. In particular, tuning the T helper
response toward a more Th1 and/or Th17 response might have
considerable effects on clinical outcomes. Moreover, an improved
understanding of the cues essential for memory cell formation
is needed in order to develop biomaterial designs that can
elicit long-term memory and thus better protect against tumor
recurrence. It will be imperative to pursue a balanced and
controlled system in terms of number and the release kinetics
of molecular cues and the biodegradability of the biomaterial of
choice (114).

As is evident from the studies discussed above, biomaterial-
based cancer vaccines constitute a very promising field, but
a number of challenges remain, especially those related to
clinical translation. The ultimate goal is clinical application of
biomaterial-based systems to induce long-term and systemic
anti-cancer immunity in cancer patients. To ensure smooth
transition to clinical translation, it is important to recognize
key design parameters from the beginning of the design
process, such as biomaterial composition, reproducible and large-
scale production under good manufacturing practice (GMP),
in vivo behavior, degradation, toxicities and safety. This can
contribute to decreasing the time and cost of the regulatory
pathway. Cell-free biomaterials for local administration, like
3D scaffolds, typically need less extensive testing to get
approval, due to limited risks of systemic toxicities (115).
However, local toxicity and inflammation may still arise
and need to be carefully tested. The soluble biomaterial
strategies, such as the particle-based aAPCs, might be considered
as biologicals which would indicate a longer and more
expensive regulatory pathway. Moreover, modifying already
existing and approved therapeutic designs, including materials
such as poly(lactic-co-glycolic acid) (PLGA) and hyaluronic
acid, will allow for a clearer regulatory pathway (115). The
field of regenerative medicine has already contributed a
range of clinically-approved biomaterial products from which
biomaterial-based cancer immunotherapies may benefit (115,
116). Besides meeting the safety criteria, the biomaterial-based
cancer immunotherapies will need to demonstrate efficacy in
appropriate preclinical animal tumor models when compared to
current therapies (116).

The backpacking of adoptively transferred cells using
particle-based biomaterials is considered to have great clinical
promise (51, 52). In the beginning of this year, a phase 1
clinical trial with these biomaterial-based T cell backpacks
started in patients with solid tumors and lymphomas (117).
This example, together with the developments and future
directions described in this perspective, illustrates that
innovative designs of biomaterials for the direct activation
of T cells will bring clinical implementation of biomaterial-
based expansion and differentiation of tumor-reactive T
cells closer.
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