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Background: Apparent diffusion coefficients (ADCs) obtained with diffusion-weighted
imaging (DWI) are highly valuable for the detection and staging of prostate cancer and for
assessing the response to treatment. However, DWI suffers from significant anatomic
distortions and susceptibility artifacts, resulting in reduced accuracy and reproducibility of
the ADC calculations. The current methods for improving the DWI quality are heavily
dependent on software, hardware, and additional scan time. Therefore, their clinical
application is limited. An accelerated ADC generation method that maintains calculation
accuracy and repeatability without heavy dependence on magnetic resonance imaging
scanners is of great clinical value.

Objectives: We aimed to establish and evaluate a supervised learning framework for
synthesizing ADC images using generative adversarial networks.

Methods: This prospective study included 200 patients with suspected prostate cancer
(training set: 150 patients; test set #1: 50 patients) and 10 healthy volunteers (test set #2)
who underwent both full field-of-view (FOV) diffusion-weighted imaging (f-DWI) and
zoomed-FOV DWI (z-DWI) with b-values of 50, 1,000, and 1,500 s/mm2. ADC values
based on f-DWI and z-DWI (f-ADC and z-ADC) were calculated. Herein we propose an
ADC synthesis method based on generative adversarial networks that uses f-DWI with a
single b-value to generate synthesized ADC (s-ADC) values using z-ADC as a reference.
The image quality of the s-ADC sets was evaluated using the peak signal-to-noise ratio
(PSNR), root mean squared error (RMSE), structural similarity (SSIM), and feature similarity
(FSIM). The distortions of each ADC set were evaluated using the T2-weighted image
reference. The calculation reproducibility of the different ADC sets was compared using
the intraclass correlation coefficient. The tumor detection and classification abilities of
each ADC set were evaluated using a receiver operating characteristic curve analysis and
a Spearman correlation coefficient.
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Results: The s-ADCb1000 had a significantly lower RMSE score and higher PSNR, SSIM,
and FSIM scores than the s-ADCb50 and s-ADCb1500 (all P < 0.001). Both z-ADC and s-
ADCb1000 had less distortion and better quantitative ADC value reproducibility for all the
evaluated tissues, and they demonstrated better tumor detection and classification
performance than f-ADC.

Conclusion: The deep learning algorithm might be a feasible method for generating ADC
maps, as an alternative to z-ADC maps, without depending on hardware systems and
additional scan time requirements.
Keywords: apparent diffusion coefficient, diffusion magnetic resonance imaging, deep learning, prostatic
neoplasms, supervised machine learning
INTRODUCTION

Diffusion-weighted imaging (DWI) currently constitutes an
integral part of multiparametric magnetic resonance imaging
(MRI) examinations of the prostate. Apparent diffusion
coefficients (ADCs) obtained with DWI are highly valuable for
detecting and staging prostate cancer, evaluating cancer
aggressiveness (1, 2), guiding targeted biopsies, and assessing
the response to treatment (3–10). Clinically, the accuracy of the
ADC measurement depends on the quality of the DWI image.

Single-shot echo-planar imaging (SS-EPI)-based sequences are
preferred for DWI because of its ability to acquire the images rapidly
and the robustness of the technique against motion artifacts.
However, because of its high sensitivity to chemical shifts and
magnetic susceptibilities (11), conventional SS-EPI DWI suffers
from significant anatomic distortions (12) and susceptibility
artifacts, resulting in reduced ADC calculation accuracy and
reproducibility (12–14). Another limitation is the low signal-to-
noise ratios observed during DWI, which result in noise-induced
signal intensity biases (15, 16) and inaccurate ADC maps. These
drawbacks may lead to an error in judgment regarding the
condition of a patient and a potential misdiagnosis of malignant
lesions or over-treatment of benign lesions. Zoomed field-of-view
(FOV) DWI (z-DWI) is an appealing attempt to address these
limitations. This method reduces the scanning time as well as
artifacts, distortions, and blurring of images, and it also has
improved spatial resolution (17, 18). Additionally, z-DWI can
effectively improve the ADC map accuracy (17, 18); however, the
technique depends on radio frequency design and software
platforms (17–19), which can make it unaffordable for many
small- and medium-sized hospitals and their patients. Moreover,
a reduced FOV may prevent the visualization of lymph nodes (3).
Therefore, the clinical application of z-DWI is limited. A method
that can consistently generate high-quality ADC images with
reduced equipment costs will be of more benefit to patients in
clinical practice.

Recently, the advent of generative adversarial networks (GANs)
(20) has shown promise for optimizing medical image quality
without relying on software and equipment conditions (21). As a
generative model, the objective of a GAN is to learn the underlying
training data distributions to generate realistic images that are
indistinguishable from the input datasets (21). With their ability
2

to mimic data distributions, GANs have been used to translate low-
quality images into high-quality counterparts. Previous studies have
successfully used GANs to improve computed tomography (CT) or
MRI quality in terms of de-noising (22), increased resolution (23),
artifact reduction (24), and motion correction (25). Inspired by
these image optimization solutions, we hypothesized that deep
learning algorithms based on GANs might be promising for
generating ADC maps with good image quality and improved
ADC calculation accuracy. The purpose of this study was to
establish and evaluate a supervised learning framework based on
a GAN to synthesize realistic zoomed FOV ADC images using
conventional full FOV SS-EPI DWI images with a single b-value.
MATERIALS AND METHODS

Patients and Healthy Volunteers
This prospective study was approved by the local ethics committee,
and informed consent was obtained from each participant. All the
procedures involving human participants were performed in
accordance with the 1964 Helsinki Declaration and its later
amendments. A total of 200 consecutive patients underwent
preoperative MRI examinations and subsequent MRI fusion
ultrasound-guided biopsies for suspected prostate cancer (PCa)
between December 2018 and May 2020. The inclusion criteria
were as follows: patients with (1) at least one prostate lesion visible
on DWI and ADC maps and (2) complete clinical information and
pathologic examination information, including biopsy reports. Ten
healthy volunteers were also recruited for the study. The study
included four steps: (1) MRI examinations, (2) model training, (3)
image quality assessments, and (4) ADC assessments (Figure 1).

MRI Examinations and Datasets
All the patients and volunteers underwent multiparametric MRI
examinations of the prostate using a 3T MRI scanner
(MAGNETOM Skyra, Siemens Healthcare, Erlangen, Germany)
equipped with a phased-array 18-channel body coil and an
integrated 32-channel spine coil. Both a transversal single-shot
full FOV-EPI DWI (f-DWI) and a prototypic non-parallel
transmission zoomed EPI DWI (z-DWI) with b-values of 50,
1,000, and 1,500 s/mm2 were performed with the ADC
reconstruction maps (f-ADC and z-ADC) using a standard
September 2021 | Volume 11 | Article 697721
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mono-exponential with all the acquired b-values (14). Axial T2-
weighted images were obtained from all the participants, and the
total examination time was approximately 7 min and 40 s. The
detailed scan parameters are shown in Table 1.

Patient images were randomly divided into two groups
(training set: 150 patients, test set #1: 50 patients). The training
set was used to build the framework and train different models to
synthesize the ADC maps (s-ADCs). Test set #1 was used to test
the reproducibility of the s-ADC prostate lesion measurements,
along with tumor detection. The images of the healthy volunteers
were regarded as test set #2, which was used to test the
reproducibility and consistency of the normal prostate tissue s-
ADC calculations, including the peripheral zone (PZ) and the
transitional zone (TZ).

Data Pre-Processing
Before the model training could occur, image selection, cropping,
and registration were performed on f-DWI with b-values of 50,
1,000, and 1,500 s/mm2 and the z-ADC images. The first and last
Frontiers in Oncology | www.frontiersin.org 3
slices that did not cover the prostate were removed manually.
The images with severe distortion and artifacts were also
removed. Ultimately, there were between five and 20 DWI
images selected for each person. Finally, there were 2,250
images from each set for the 150 patients in the training set,
750 images from each set for the 50 patients in test set #1, and
145 images from each set for the 10 healthy volunteers in test
set #2.

Due to hardware limitations of the graphics cards and the
CPU memory, we used only axial slices of the cropped data to
train the two-dimensional generation models. The f-DWI data
had an original voxel size of 2.13 × 2.13 × 3.3 mm3 and a matrix
size of 178 ×132, whereas the z-ADC data had a voxel size of
0.95 × 0.95 × 3.3 mm3 and a matrix size of 112 × 200. The f-DWI
data were first resampled to a voxel size of 0.95 × 0.95 × 3.3 mm3

with a matrix size of 360 × 267, and both modalities were
cropped at the center to extract the relevant prostate region.
The f-DWI data were then aligned to the z-ADC data using
the affine transformation implemented by the Advanced
TABLE 1 | The magnetic resonance imaging sequence parameters.

Parameter T2-weighted imaging F-DWI Z-DWI

Field-of-view, FOV (mm2) 200 × 200 380 × 280 190 × 106
Imaging matrix 320 × 320 132 × 178 112 × 200
Thickness (mm) 3.5 3 3
Distance fact 0 10% 10%
B-value (s/mm2) n.a. 50, 1,000, 1500 50, 1,000, 1500
Echo time (ms) 101 73 76
Time to repeat (ms) 6,000 4,200 3,800
Bandwidth (Hz/pixel) 200 1,872 1,612
Scan time (min) 2:08 3:05 2:27
September 2021 | Volume 11
f-ADC, mean apparent diffusion coefficient (ADC) map derived from full FOV diffusion-weighted imaging with all available b-values (b = 50, 1,000, and 1,500 mm2/s); z-ADC, ADC map
derived from zoomed FOV diffusion-weighted imaging with all available b-values (b = 50, 1,000, and 1,500 mm2/s), n.a., no available.
FIGURE 1 | Overall study flow diagram. Step 1: All the patients and healthy volunteers underwent multiparametric magnetic resonance imaging examinations of the
prostate, including full field-of-view (FOV) diffusion-weighted imaging (f-DWI) and zoomed FOV diffusion-weighted imaging with b-values of 50, 1,000, and 1,500 s/mm2.
Step 2: The models that used full f-DWI with different b-values (f-DWIb50, f-DWIb1000, and f-DWIb1500) to synthesize the apparent diffusion coefficient (s-ADC) maps (s-
ADCb50, s-ADCb1000, and s-ADCb1500) were trained. Step 3: The image quality of s-ADCb50, s-ADCb1000, and s-ADCb1500 were evaluated using the peak signal-to-
noise ratio, root mean square error, structural similarity, and feature similarity. Step 4: An ADC assessment was performed to determine reproducibility, tumor
detection, and classification.
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Normalization Tools (https://github.com/ANTsX/ANTs). To
facilitate the model training, all the two-dimensional axial
slices were scaled to a unified resolution of 224 × 224 pixels.

To select a suitable b-value for ADC synthesis, we first used
2,250 paired f-DWI images with b-values of 50 s/mm2 and the
ground truth z-ADC maps from the training set as inputs and
references, respectively, to train our framework-based model M50 to
synthesize ADC maps (s-ADCb50). Similarly, the M1000 and M1500

models based on the f-DWI images with b-values of 1,000 and 1,500
s/mm2 were trained to synthesize ADC maps (s-ADCb1000 and
s-ADCb1500).

Model Training
We have proposed a GAN-based framework to generate realistic
z-ADC maps from f-DWI maps (Figure 2).

The generator G translates the input image (f-DWI) X into the
synthesized ADC (s-ADC) S with a quality similar to the ground
truth z-ADC, which is used as reference Y. The discriminator D
takes either the S or the Y as input and determines whether the
input is a real z-ADC map. Specifically, we used a deep residual
network structure with skip connections to construct the generator
G and a full convolution network to construct the discriminator D.
The adversarial loss of the discriminator D is formulated as follows:

LD = EY∼PY ½(D(Y) − 1)2� + ES∼PS ½(D(S))2�
The adversarial loss of the generator G is formulated as follows:

Ladv
G = ES∼PS ½(D(S) − 1)2�

Considering that the standard GAN might not adequately
preserve the tumors/lesions during image-to-image translation
(26), we introduced a multi-level verification (MLV) mechanism,
including a pre-trained recognition model C. This mechanism
promotes the generator G to better retain the features, which
helps in the diagnosis. Using C, the proposed MLV mechanism
Frontiers in Oncology | www.frontiersin.org 4
provides more details about the tumor/lesion features when they
are extracted from the input images. G represents the tumor/
lesion texture, making it better and more robust against changes
in appearance and geometric transformations (27).

We first obtained a recognition model C, which was pre-
trained on a VGG-19-based network using the processed images
from the patients and healthy volunteers with a benign or
malignant label (28). Subsequently, the multiple layers of
model C extracted the multi-level features from the fake
synthetic ADC map S and the ground truth ADC map. The
sum of the mean square errors of the features in each level layer
was used as the multi-level feature loss to supervise the
generator G.

Inspired by the current work (29) and considering the use of
multi-level features, we selected the features in the 0, 1st, 3rd, and
5th level layers. The loss of the multi-level verification
mechanism is formulated as follows:

Lmlv
G = Si=0,1,3,5qi · jjCi(S) − Ci(Y) jj22

where qi ∈ (0, 1) denotes the weight parameter for the loss (Li
mlf )

at different levels, and it is optimized in each epoch to cause a
faster decrease in the loss of the larger items. The qi in the j - th
epoch can be computed as follows:

q j
i = Sn=0,1,3,5

jjCj−1
i (S) − Cj−1

i (Y) jj22
jjCj−1

n (S) − Cj−1
n (Y) jj22

where Cj−1
i ( · ) denotes the feature of the i - th layer in the (j-1)-th

epoch, and Cj−1
n ( · ) indicates the feature of the n - th layer in the

(j-1)-th epoch. We initialized qi to 1/4. The objective function of
generator G is formulated as follows:

LG = Ladv
G + l1Lmlv

G

with g1 set to 10-1.
FIGURE 2 | Illustration of our framework. The proposed framework consists of a generator (G), which was constructed using a deep convolution network with skip
connections, and an image discriminator (D) constructed using a full convolution network. The G transforms the f-DWI into a synthesized apparent diffusion
coefficient (s-ADC) using zoomed field-of-view diffusion-weighted imaging (z-ADC) as a reference. The D takes either s-ADC or z-ADC as the input and determines
whether the input is a real z-ADC. In addition, to promote G in an effort to retain better features for diagnosis, we introduced a multi-level verification mechanism,
including a pre-trained recognition model (C), to extract the multi-level features from the s-ADC and the z-ADC.
September 2021 | Volume 11 | Article 697721
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Experimental Settings
The generator consists of three convolution layers, followed by
five residual blocks and three deconvolution layers. Each
convolution or deconvolution layer is followed by an instance-
normalization layer and a ReLu activation layer. The
discriminator consists of five convolution layers. The learning
rate was set to 0.001 for both the generator and the discriminator.
The batch size was set to 5, and the epoch was set to 50. The
details of the generator and discriminator can be found at https://
github.com/huxiaolie/ADC_generation. All the algorithms were
implemented using Python 3.6 (https://www.python.org/
downloads/release/python-362/) and Pytorch 1.6.0 (https://
pytorch.org/get-started/previous-versions/) on an Ubuntu
16.04 system with an NVIDIA TITAN XP GPU.
Image Quality Assessment
The s-ADC sets were synthesized using each model with inputs
from the f -DWI images with b-values of 50, 1,000, and 1,500 s/
mm2 for test set #1 (50 patients) and test set #2 (10 healthy
volunteers), and they were compared using peak signal-to-noise
ratios (PSNRs), root mean square errors (RMSEs), structural
similarities (SSIMs), and feature similarities (FSIMs) (30).

A radiologist with 6 years of experience with prostate MRIs
measured the anterior–posterior (AP) and left–right (LR)
diameters of each prostate on the ADC set on the slice on
which the prostate showed the greatest cross-sectional area. The
differences in the measured AP and LR diameters of the prostate
relative to the T2-weighted image (T2WI) were computed for f-
ADC, z-ADC, and s-ADC, with the best performance from the
above-mentioned quantitative evaluation.
ADC Measurement Assessment
For the patient study, two radiologists with 5 and 10 years of
experience with prostate MRIs and who were unaware of the
clinical, surgical, and histologic findings independently drew a
circular region of interest (ROI) with an area of approximately
0.5–0.8 cm2 in the center of the lesion, excluding its edges. For
the healthy volunteer study, the readers drew circular ROIs with
an area of approximately 0.5 cm2 in the peripheral and
transitional zones on the ADC maps using axial T2-weighted
images as the anatomical reference. The mean ADC values for
each ROI were recorded.

The ADC sets of all the patients and healthy volunteers were
measured twice using Image J (NIH Image, Bethesda, MD) in a
different order, with an interval of 2 weeks. The first
measurement given by the two readers showed the consistency
of the ADC measurements for each ADC set. The second
measurement showed the repeatability of the ADC values for
each ADC set.
Tumor Detection Assessment
The s-ADC set with the best image quality and ADC
measurement assessment among the three s-ADC sets was
Frontiers in Oncology | www.frontiersin.org 5
selected for tumor detection assessments. The selected s-ADC
was compared with the f-ADC and z-ADC in terms of the ability
to differentiate benign from malignant lesions. The correlation
between the ADC values in the different ADC sets and tumor
grades was also evaluated.
Statistical Analyses
Analyses of the baseline characteristics between the training
group and the test group were conducted. An independent t-
test was used to assess normally distributed continuous variables.
The Mann–Whitney U-test was used to assess non-normally
distributed continuous variables.

To assess differences in the image quality metrics (PSNR,
RMSE, SSIM, and FSIM) between any two s-ADC sets, a paired
Student’s t-test was applied. The intraclass correlation coefficient
(ICC) was used to assess the inter-and intra-reader repeatability
of the ADC measurements for each tissue (malignant lesion,
benign lesion, peripheral zone, and transitional zone) in each
ADC set (f-ADC, z-ADC, and s-ADC). The ICC was also used to
evaluate the inter-method reliability of the ADC values for each
tissue between the synthesized image (s-ADC) and the reference
image (z-ADC). A receiver operating characteristic (ROC) curve
analysis was performed to assess the ability to discriminate
between benign and malignant prostate lesions based on the
ADC values. The differences in the area under the curve (AUC)
values were tested using DeLong tests. The statistical analyses
were performed using MedCalc software. Two-tailed tests were
used to calculate all the P-values. Statistical significance was set at
P <0.05.
RESULTS

Demographic Characteristics
The patient characteristics are summarized in Table 2. There
were no significant differences in the mean ages between the
patients with and without PCa (P = 0.557). The mean prostate-
specific antigen (PSA) level was significantly higher in patients
with PCa compared to those without PCa (P < 0.001).

There were no significant differences in mean ages and mean
PSA between the training set and test set #1 (mean ages: 68 ± 10
vs. 68 ± 12 years, P = 0.974; PSA: 29.872 ± 69.461 vs. 39.296 ±
92.604, P = 0.154). The mean age of test set #2 (healthy
volunteers, 24 ± 3 years) is significantly lower than that of the
training set and test set #1 (P < 0.001).
Image Quality Assessment
Visual comparisons of the s-ADC values generated with different
b-value inputs are shown in Figure 3. We observed that the s-
ADCb50 displayed blurred images of the prostate, bladder,
rectum, pelvic floor muscles, and pubic symphysis in both the
patients and the volunteers. Compared with s-ADCb50, s-
ADCb1000 and s-ADCb1500 could delineate normal tissues and
lesions more clearly and sharply, which was in line with the
September 2021 | Volume 11 | Article 697721
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ground truth. According to the magnified images of the local
tissue structures, s-ADCb1000 provided more details than s-
ADCb1500 with reference to z-ADC.

As shown in the violin plots (Figure 4), s-ADCb1000

performed better than the other two s-ADC sets in terms of
the distribution, median, and inter-quartile ranges of the
Frontiers in Oncology | www.frontiersin.org 6
RMSE, SSIM, FSIM, and PSNR scores. The mean RMSE
scores of s-ADCb50, s-ADCb1000, and s-ADCb1500 were 4.1 ×
10-3, 2.5 × 10-3, and 3.1 × 10-3, respectively. The mean PSNR
scores of s-ADCb50, s-ADCb1000, and s-ADCb1500 were 48.0,
53.4, and 51.0, respectively. The mean SSIM scores of s-
ADCb50, s-ADCb1000, and s-ADCb1500 were 0.972, 0.986, and
TABLE 2 | The clinical characteristics of the patient cohort.

Characteristics Patients without cancer (n = 106) Patients with cancer (n = 94) P-value

Mean age (y) [range] 70 (52–87) 71 (48–88) 0.675
total PSA (ng/ml) 11.079 ± 9.013 57.002 ± 125.88 <0.001
Position, no.
Peripheral zone 44 63 <0.001
Transitional zone 62 31
Gleason score (n, %)
6 —— 8
7 —— 46
8 —— 24
9 —— 16
September 2021 | Volume 11 | Article
The data are mean ± standard deviation, unless otherwise indicated.
PSA, prostate-specific antigen.
FIGURE 3 | Comparison of the synthesized apparent diffusion coefficient (s-ADC) maps. Case 1: An 82-year-old man with prostate cancer from test set 1 who had
an initial prostate-specific antigen level of 13.04 ng/ml. Case 2: A 27-year-old healthy man from test set 2. For these two cases, both the s-ADCb1000 and
s-ADCb1500 performed well in displaying the prostate, pelvic floor muscles, pubic symphysis, and the entire cancer lesion. However, the s-ADCb50 images of these
structures are fuzzy. According to the local enlargement of the images (the images in the second and fourth lines), the s-ADCb1000 is more similar to the z-ADC than
to the s-ADCb1500, and it retains more details of the z-ADC (shown as red arrows).
697721
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0.982, respectively. The mean FSIM scores of s-ADCb50. s-
ADCb1000, and s-ADCb1500 were 0.604, 0.728, and 0.690,
respectively. s-ADCb1000 had a significantly lower RMSE
score and higher PSNR, SSIM, and FSIM scores than s-
ADCb50 and s-ADCb1500 (all P < 0.05).

To evaluate the distortion in the ADCmaps, the differences in
the AP and LR diameters of the prostate relative to T2WI were
both significantly lower for s-ADC (AP, 2.734; LR, 3.204) and
z-ADC (AP, 2.755; LR, 3.073) than for f-DWI (AP, 5.916; LR,
5.053) (all P < 0.001).
ADC Measurement Assessment
The measurements of all the ADC sets (f-ADC, z-ADC,
s-ADCb50, ADCb1000, and s-ADCb1500) on various tissues from
both readers are presented in Table 3. For all the ADC sets, the
ADC values of the TZ are significantly lower than those of the
PZ, while the ADC values of the malignant lesions are
significantly lower than those of the benign lesions (all P < 0.05).

Figure 5 presents the results of the intra-reader reproducibility
(Figures 5A, B) and inter-reader consistency (Figure 5C) analyses
for each ADC set calculation. Both readers reported that the
reproducibility of the ADC measurements for f-ADC, z-ADC, s-
ADCb1000, and s-ADCb1500 was excellent for all the tissues,
while the reliability of the ADC measurements for s-ADCb50 was
Frontiers in Oncology | www.frontiersin.org 7
good. The inter-reader consistency of all the ADC set
measurements was excellent for all the tissues. Table 4 shows
the consistency of the ADC values between the z-ADC and s-ADC
sets. The consistency of the ADC values in the transitional zone
between z-DWI and s-DWIb50 was good, and the consistency of
the ADC values between z-ADC and s-ADCb50 for the remaining
tissues was excellent. For the s-ADCb1000 and s-ADCb1500 values,
the consistency of the ADC values for z-ADC for all the tissues
was excellent.
Tumor Detection Assessment
Among the three s-ADC sets, s-ADCb1000 performed the best in
the image quality assessment and ADC evaluation. Therefore, it
was selected for further comparisons with f-ADC and z-ADC in
terms of tumor detection and classification (Figure 6). The ADC
values for patients with malignant lesions and those with benign
lesions measured by the two readers were used to compute the
ROC curves (Figure 7). The comparisons of AUCs for both
readers based on the f-ADC, z-ADC, and s-ADC sets are
summarized in Table 5. Both the z-ADC and s-ADC sets
showed significantly better predictive capabilities than the
f-ADC set (P ≤ 0.027). The differences in AUCs between s-
ADC and z-ADC were not statistically significant (reader 1: z =
0.134, P = 0.893; reader 2: z = 0.094, P = 0.925).
FIGURE 4 | Violin plots of the quantitative metric distributions of the s-ADC sets.
September 2021 | Volume 11 | Article 697721
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DISCUSSION

The main contribution of our study to the literature is the
proposed GAN-based ADC synthesis method that can be used
to generate s-ADC maps using single b-value DWIs with better
image quality and stronger ADC calculation accuracy and
reproducibility than a full FOV ADC, but without dependence
on software, hardware, and additional scanning time that
zoomed FOV ADC technology requires. A shorter scan time
will lead to better patient comfort and fewer motion artifacts due
to involuntary or autonomous motions. The high reproducibility
and accuracy of the ADC calculations may effectively reduce the
risk of delayed treatment or unnecessary overtreatment due to
the misdiagnoses of benign and malignant lesions. Therefore, the
GAN-based ADC synthesis method can increase the clinical
benefits to patients, reduce treatment times, and lower the costs
incurred by patients and hospitals.

In previous studies (31–33), GANs have been used
successfully for image-to-image transformations, such as in
generating MRI or PET images using CT images or
synthesizing CT images from MRI images, and they have
performed well in terms of the traditional pixel-wise metrics.
However, GAN-generated images do not have a physical
meaning, and they can often lead to spurious images (21). As a
result, it is difficult for GANs and their extensions to win the trust
of clinicians. Therefore, we not only compared traditional pixel-
wise metrics, including the RMSE, SSIM, FSIM, and PSNR
scores, between the s-ADC sets and reference images, but we
also compared the s-ADC and ADC values generated by
traditional methods to evaluate the clinical value of GAN-
generated images.

In the present study, we evaluated s-ADC maps that were
based on DWI inputs with different b-values and found that the
choice of b-values influenced the s-ADC values. Based on a
subjective visual evaluation, the s-ADCb1000 maps delineated
Frontiers in Oncology | www.frontiersin.org 8
normal tissues and lesions more clearly than the s-ADCb50

maps, and they provided more details for targeted images than
the s-ADCb1500 set. The quantitative evaluation results are also
consistent with the visual evaluation results. Among the three s-
ADC sets, the s-ADCb1000 set achieved a lower RMSE score and
higher SSIM, FSIM, and PSNR scores than the s-ADCb50 and s-
ADCb1500 sets, indicating that the s-ADCb1000 set is more similar
to the realistic z-ADC in terms of noise distribution, image
structure, and features. Additionally, the s-ADCb1000 set showed
better intra-reader repeatability and inter-reader consistency
than the s-ADCb50 and s-ADCb1500 sets. Moreover, the s-
ADCb1000 set showed the best ADC value inter-method
consistency with the z-ADC set, suggesting that a DWI with a
b-value of 1,000 s/mm2 might be more suitable for synthesizing
ADC maps than one with a b-value of 50 or 1,500 s/mm2. The
similarity between the target image z-DWI and s-DWI strongly
depends on how much useful information the input f-DWI can
provide to the generator for the extraction of meaningful features
to begin the mapping between f-DWI and z-ADC. Low-b-value
DWIs suffer from T2 shine-through or black-through effects,
whereas high-b-value DWIs might be affected by diffusion
kurtosis effects (34). These effects have a negative influence on
image quality and lesion information, causing a relatively lower
similarity between the s-ADCb50 and s-ADCb1500 sets and the z-
ADC set compared to the s-ADCb1000 set (3).

In our study, both the z-ADC and s-ADC sets showed less
distortion and better reproducibility of the quantitative ADC
values for all the evaluated tissues; they also showed better tumor
detection and classification capacity than the f-ADC sets. The
ADC values are generated for most of the current clinical
implementations by calculating the signal intensity decay using
two or more DWI sets with different b-values (1–5, 9–11, 13, 14).
The reproducibility and accuracy of the calculated ADC values
are affected by the choice of b-values (3, 4, 34) and the DWI
image quality (14). The application of a significant number of
TABLE 3 | The mean apparent diffusion coefficient (ADC) values (×10-3 mm2/s) of the different ADC sets.

Parameter ADC value (×10-3 mm2/s)

Peripheral zone (n = 10) Transitional zone (n = 10) Benign lesions (n = 26) Malignant lesions (n = 24)

Reader 1
f-ADC 1.90 ± 0.11 1.41 ± 0.13 1.40 ± 0.28 1.06 ± 0.25
z-ADC 1.43 ± 0.17 1.20 ± 0.16 0.98 ± 0.18 0.61 ± 0.11
s-ADCb50 1.43 ± 0.25 1.20 ± 0.18 1.09 ± 0.23 0.68 ± 0.13
s-ADCb1000 1.43 ± 0.16 1.20 ± 0.16 0.99 ± 0.18 0.61 ± 0.17
s-ADCb1500 1.46 ± 0.18 1.26 ± 0.16 1.01 ± 0.17 0.67 ± 0.18
Reader 2
f-ADC 1.94 ± 0.14 1.39 ± 0.19 1.42 ± 0.29 1.06 ± 0.25
z-ADC 1.49 ± 0.16 1.22 ± 0.14 0.98 ± 0.18 0.61 ± 0.11
s-ADCb50 1.44 ± 0.13 1.18 ± 0.14 1.02 ± 0.24 0.69 ± 0.13
s-ADCb1000 1.48 ± 0.21 1.18 ± 0.13 0.99 ± 0.16 0.61 ± 0.15
s-ADCb1500 1.45 ± 0.12 1.18 ± 0.09 1.00 ± 0.16 0.70 ± 0.10
September 2021 |
The ADC values of the lesions were calculated using images from the patients in test set 1. The ADC values of the normal prostate tissues in the peripheral and transitional zones were
calculated using images from the healthy volunteers in test set 2.
f-ADC, ADC map derived from full field-of-view (FOV) diffusion-weighted imaging (f-DWI) with all available b-values (b =50, 1,000, and 1,500 s/mm2); z-ADC, ADC map derived from the
zoomed FOV diffusion-weighted imaging and all available b-values (b = 50, 1,000, and 1,500 s/mm2); s-ADCb50, ADC map synthesized using our proposed deep learning framework with
input from the f-DWI (b = s/mm2); s-ADCb1000, ADC map synthesized using our proposed deep learning framework with input from the f-DWI (b =1,000 s/mm2); s-ADCb1500, ADC map
synthesized using our proposed deep learning framework with input from the f-DWI (b =1,500 s/mm2).
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b-values improves the reproducibility and accuracy of the
calculated ADC values, although it also increases the scanning
time (3, 35). In contrast to traditional ADC calculation methods,
our proposed method takes advantage of the ability of GAN to
simulate data distribution and synthesize ADC maps that are
highly similar to real zoomed FOV ADC maps that use a full
FOV DWI with a single b-value. Considering the excellent image
quality consistency and similar tumor detection and
Frontiers in Oncology | www.frontiersin.org 9
classification abilities between the s-ADC and z-ADC maps, we
believe that the deep learning algorithm might be a feasible
method for generating ADC maps as an alternative to z-ADC
maps without requiring a strong dependence on software,
hardware, and additional scan time (36).

Our study has several limitations. First, the s-ADCb1000 set
showed the best image quality among the s-ADC sets; however, it
remains unknown whether a DWI set with a b-value of 1,000
A B

C

FIGURE 5 | The reproducibility of the apparent diffusion coefficient (ADC) measurements as evaluated by the intraclass correlation coefficient. (A) The ADC measurement
repeatability of reader 1 and (B) reader 2, and (C) the consistency of the ADC measurements between readers 1 and 2.
TABLE 4 | Comparison between the inter-method intraclass correlation coefficients from the z-DWI and s-DWI sets.

Parameter Inter-method intraclass correlation coefficient

s-apparent diffusion coefficient (ADC)b50 vs. z-ADC s-ADCb1000 vs. z-ADC s-ADCb1500 vs. z-ADC

Reader 1
Peripheral zone (n = 10) 0.87 (0.76–0.98) 0.99 (0.99–1.00) 0.99 (0.94–1.00)
Transitional zone (n = 10) 0.78 (0.58–0.98) 0.98 (0.87–1.00) 0.95 (0.73–0.99)
Benign lesion (n = 50) 0.86 (0.74–0.99) 0.98 (0.94–1.00) 0.98 (0.95–0.99)
Malignant lesion (n = 50) 0.89 (0.76–0.95) 0.90 (0.88–0.98) 0.88 (0.74–0.95)
Reader 2
Peripheral zone (n = 10) 0.81 (0.61–0.99) 0.99 (0.97–1.00) 0.98 (0.88–1.00)
Transitional zone (n = 10) 0.78 (0.58–0.98) 0.99 (0.93–1.00) 0.97 (0.76–1.00)
Benign lesion (n = 50) 0.86 (0.73–0.99) 0.98 (0.95–0.99) 0.97 (0.93–0.99)
Malignant lesion (n = 50) 0.82 (0.70–0.94) 0.88 (0.72–0.95) 0.88 (0.72–0.95)
September 2021 | Volu
z-ADC, ADC map derived from zoomed field-of view (FOV) diffusion-weighted imaging and all the available b-values (b = 50, 1,000, and 1,500 s/mm2); s-ADCb50, ADC map
synthesized using our proposed deep learning framework with input from full FOV diffusion-weighted imaging (f-DWI) (b = 50 s/mm2); s-ADCb1000, ADC map synthesized using our
proposed deep learning framework with input from f-DWI (b = 1,000 s/mm2); s-ADCb1500, ADC map synthesized using our proposed deep learning framework with input from f-DWI
(b = 1500 s/mm2).
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FIGURE 6 | The T2-weighted image, f-ADC, z-ADC, and s-ADCb1000 of four different patients. Case 1: An 85-year-old man with prostate cancer in the right
peripheral zone and an initial prostate-specific antigen level of 0.157 ng/ml. Case 2: An 85-year-old man with prostate cancer in the central zone and an initial
prostate-specific antigen level of 21.44 ng/ml. Case 3: A 67-year-old man with an inflammatory nodule in the right peripheral zone and an initial prostate-specific
antigen level of 14.37 ng/ml. Case 4: A 77-year-old man with prostate cancer in the central zone and an initial prostate-specific antigen level of 56.62 ng/ml.
A B

FIGURE 7 | The receiver operating characteristic comparison of the diagnostic accuracy of the f-ADC, z-ADC, and s-ADCb1000 sets (A: reader 1, B: reader 2).
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s/mm2 is the most appropriate for ADC map synthesis. In future
studies, s-ADC sets generated using DWI sets with more potential
b-values should be compared. Second, as ADC values vary across
vendors, the generalizability of our model across MRI scanners
from different vendors requires multi-center verification.

In conclusion, the GAN-based ADC synthesis method can
generate s-ADCmaps using a single b-value DWI with good image
quality and high reproducibility and ADC calculation accuracy.
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