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Abstract: This study aimed to establish a rapid in vitro plant regeneration method from rhizome
buds of Kaempferia parviflora to obtain the valuable secondary metabolites with antioxidant and
enzyme inhibition properties. The disinfection effect of silver oxide nanoparticles (AgO NPs) on
rhizome and effects of plant growth regulators on shoot multiplication and subsequent rooting were
investigated. Surface sterilization of rhizome buds with sodium hypochlorite was insufficient to
control contamination. However, immersing rhizome buds in 100 mg L−1 AgO NPs for 60 min
eliminated contamination without affecting the survival of explants. The number of shoots (12.2)
produced per rhizome bud was higher in Murashige and Skoog (MS) medium containing 8 µM
of 6-Benzyladenine (6-BA) and 0.5 µM of Thidiazuron (TDZ) than other treatments. The highest
number of roots (24), with a mean root length of 7.8 cm and the maximum shoot length (9.8 cm), were
obtained on medium MS with 2 µM of Indole-3-butyric acid (IBA). A survival rate of 98% was attained
when plantlets of K. parviflora were acclimatized in a growth room. Liquid chromatography with
tandem mass spectrometry (LC-MS/MS) was used to determine the chemical profile of K. parviflora
leaf extracts. Results showed that several biologically active flavonoids reported in rhizomes were
also present in leaf tissues of both in vitro cultured and ex vitro (greenhouse-grown) plantlets of
K. parviflora. We found 40 and 36 compounds in in vitro cultured and ex vitro grown leaf samples,
respectively. Greenhouse leaves exhibited more potent antioxidant activities than leaves from
in vitro cultures. A higher acetylcholinesterase inhibitory ability was obtained for greenhouse leaves
(1.07 mg/mL). However, leaves from in vitro cultures exhibited stronger butyrylcholinesterase
inhibitory abilities. These results suggest that leaves of K. parviflora, as major byproducts of black
ginger cultivation, could be used as valuable alternative sources for extracting bioactive compounds.

Keywords: micropropagation; silver oxide nanoparticles; flavonoids; antioxidant activity; enzyme
inhibition; Kaempferia parviflora

1. Introduction

Black ginger (Kaempferia parviflora Wall. Ex Baker), a medicinal plant of the family Zin-
giberaceae, is native to Thailand. Black ginger rhizome is used in traditional medicine to cure
colic disorder, weakness, lower blood glucose, male impotence, and ulcers [1–3]. It possesses
antioxidant [4], anti-allergenic [5], anticancer [6], antimicrobial [1], anticholinesterase [7],
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anti-inflammatory [8], anti-obesity [9], and antimutagenic [10] properties. Phytochemical
analysis of black ginger rhizome extracts has confirmed the presence of flavonoids [1,11],
methoxyflavones [5,7,10,12–14], phenolic glycosides [15,16], and terpenoids [17]. Leaf extract
of Kaempferia galanga has been reported to exhibit antinociceptive, anti-inflammatory [18],
and sedative [19] properties. However, the biological activity and phytochemical profile of
K. parviflora leaves have not been reported yet.

Multiple uses of K. parviflora have necessitated its mass collection as a raw material for
pharmaceuticals purposes, leading to the depletion of this wild resource and generating
pressure on K. parviflora populations [20]. Therefore, a sustainable cultivation method
is needed to prevent the depletion of natural populations of K. parviflora and meet the
growing demand from the pharmaceutical market. K. parviflora can be propagated using
its rhizomes [20,21]. However, the availability of its rhizome is limited because of its
use for extracting commercial metabolites and for preparing K. parviflora products. In
addition, time (12 months) is required to obtain mature rhizomes [22]. Moreover, the yield
and content of bioactive metabolites in K. parviflora are often affected by climatic change,
abiotic factors, and biotic factors. In this regard, in vitro propagation technologies have
been implemented for the mass propagation of various medicinal plants [22–24]. The
establishment of efficient in vitro cell and plant regeneration techniques is essential for
genetic improvement and mass production of valuable K. parviflora metabolites. In vitro
production of biologically active phytochemicals through cell and organ culture as a reliable
method is essential for generating cultures within a short period throughout the year.

In vitro plant regeneration [20,21], microrhizome formation [20,25], and cell suspension-
based culturing [26] of K. parviflora have been reported. Axillary shoot multiplication has
been achieved using terminal shoot buds [21] or rhizomatous buds [20]. The authors used
35.52 µM of 6-BA (6-Benzyladenine) to obtain maximal shoot production [20,21]. Cell
suspension of K. parviflora can be established the best with liquid Murashige and Skoog [27]
(MS) nutrient medium containing 1.0 mg L−1 2,4-D (2,4-dichlorophenoxyacetic acid) [26].
However, the authors did not evaluate phytochemical compositions/contents or biological
activities of the shoot, callus, or cell suspension cultures of K. parviflora [20,21,26]. Sur-
face sterilization of plant materials obtained from wild-growing plants is essential before
in vitro cultivation because bacteria and fungi grow faster in culture media than isolated
explants [28]. The elimination of microorganisms attached to the surface of the rhizome
is often difficult. In the meantime, the use of multiple chemicals has adverse effects on
the survival of explants. Researchers have attempted to use nanoparticles (NPs) such as
silver (Ag NPs), zinc (Zn NPs), and titanium dioxide (TiO2 NPs) to solve the contamina-
tion issue in plant tissue culture. However, the effectiveness of NPs on the reduction or
elimination of contamination depends on their physical properties, concentrations, and
exposure time [28].

The goals of this current study were (1) to establish a rapid in vitro plant regeneration
method from rhizome buds of K. parviflora and (2) phytochemical analysis, antioxidant
studies, and enzyme inhibition studies. The disinfection effect of AgO NPs on rhizome and
effects of plant growth regulators (PGRs) on shoot multiplication and subsequent rooting
were investigated. Gradient reversed-phase ultra-high-performance liquid chromatogra-
phy (UHPLC) separations with electrospray tandem mass spectrometry (MS/MS) detection
(in both positive and negative ion modes) were used for the identification of compounds
in leaf extracts. The results showed that several biologically active flavonoids reported in
rhizomes were also present in both in vitro cultured and ex vitro (greenhouse)-grown leaf
tissues of plantlets of K. parviflora. Its leaf extracts also exhibited significant free radical
scavenging and enzyme inhibitory abilities in in vitro assays. Therefore, the leaves of
K. parviflora as major byproducts of black ginger cultivation could be used as valuable
alternative sources for extracting bioactive compounds.
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2. Results and Discussion
2.1. In Vitro Micropropagation
2.1.1. Surface Sterilization

In vitro micropropagation is an effective and applicable method for preserving biodi-
versity and mass production of important plants [29–31]. The surface disinfection of in vivo
plant materials is a prerequisite for initiating in vitro plant cultures. The initiation of sterile
culture using explants obtained from underground parts is tricky because numerous mi-
crobes are attached to the surface of explants [22,28]. Previous studies have shown that
surface disinfection of rhizome buds with mercuric chloride can reduce contamination in
Kaempferia angustifolia [32], K. galanga [23,24], K. parviflora [22], and Kaempferia rotunda [23]. In
our preliminary experiment, surface sterilization of K. parviflora rhizome buds with mercuric
chloride yielded about 65% sterile culture. However, it negatively affected the organogenesis
and viability of explants. Silver nitrate and antibiotics have been applied to eliminate contami-
nation in a plant in vitro cultures [33]. Several NPs have been reported to have excellent antimi-
crobial activities [34]. Silver NP is comparatively free of decontaminators adverse effects, with
less toxicity profile and good tissue tolerance [35]. It has been reported that Ag NPs can enter
microbial cells and induce changes in intracellular structures, nucleic acids, proteins, and lipids,
leading to cell death [36]. Recently, it has been shown that Ag NPs can reduce or eliminate
microbial contamination in a wide range of plants, such as almond × peach rootstock [35],
Araucaria excelsa [37], Capparis decidua [38], and Valeriana officinalis [39]. In this study, rhizome
buds of K. parviflora were subjected to surface disinfection using AgO NPs. Rhizome buds
treated with sodium hypochlorite served as controls. Decontamination and explant survival
rates were significantly (p = 0.001) affected by AgO NP concentration, exposure time, and
their interaction (Table 1).

Table 1. Effect of Ag nanoparticles (NPs) on decontamination and survival of rhizome bud explants
of K. parviflora after 3 weeks of incubation.

Ag NPs (mg L−1) Duration (min) Decontamination (%) Explant Survival (%)

0 (Control) 15.2 ± 3.3 j 100 ± 0.0 a
25 30 23.7 ± 4.6 i 100 ± 0.0 a
50 44.2 ± 3.3 f 100 ± 0.0 a

100 64.6 ± 4.9 c 100 ± 0.0 a
200 94.9 ± 3.1 b 73.7 ± 2.6 d
25 60 31.1 ± 4.6 h 100 ± 0.0 a
50 49.7 ± 3.9 e 100 ± 0.0 a

100 100 ± 0.0 a 100 ± 0.0 a
200 100 ± 0.0 a 65.2 ± 3.6 f
25 90 38.1 ± 3.3 g 91.7 ± 2.5 b
50 56.7 ± 4.8 d 85.2 ± 2.9 c

100 100 ± 0.0 a 67.8 ± 3.1 e
200 100 ± 0.0 a 44.3 ± 2.5 g

Mean 62.93 86.7
R-Square

Coefficient of variation
0.9896 0.9889

5.34 2.28
F-value

F-test Conc 27086.7 1775.4
Duration 251.4 1149.6

Conc * Duration 53.4 89.0
p-value

Conc 0.001 0.001
Duration 0.001 0.001

Conc * Duration 0.001 0.001
Means ± SDs, followed by the same letters within a column, were not significantly different p < 0.05 by Duncan’s
multiple range test (DMRT).
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Surface sterilization of rhizome buds with sodium hypochlorite was insufficient to con-
trol the contamination (Figure 1a). However, the soaking of predisinfected rhizome buds in
different AgO NPs significantly inhibited contaminants compared to the control. Treating
explants with 25 mg L−1 or 50 mg L−1 AgO NPs was insufficient to control surface con-
taminants (Figure 1b,c). A high level of AgO NPs (200 mg L−1) harmed explants survival
(Table 2). It is well known that doses of decontaminators and exposure period can affect the
morphogenetic potential and survival of explants [28,38]. Increasing the concentration and
duration of exposure of AgO NPs also increased the rate of decontamination. However, the
reverse was observed for the survival rate of K. parviflora explants (Table 2). With increas-
ing doses, decontamination and survival rates of explants were increased and decreased,
respectively. Among the AgO NPs treatments evaluated, immersing rhizome buds for
60 min in 100 mg L−1 AgO NPs eliminated contamination without affecting the survival of
explants (Table 1). Similar results have been reported for almond × peach rootstock [35],
A. excelsa [37], C. decidua [38], and V. officinalis [39].
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Figure 1. Photograph showing contamination in (a) sodium hypochlorite-treated explants, (b) 25 mg L−1 AgO NPs-treated
explants, and (c) 50 mg L−1 AgO NPs-treated explants. (d) Root initiation after 9 days of culture, (e) shoot induction after
17 days of culture, (f) multiple plantlets regeneration after 42 days of culture.
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Table 2. Effect of concentrations of AgO NPs and exposure time on decontamination and survival of
K. parviflora rhizome bud explants.

Factors Decontamination (%) Explant Survival (%)

25 mg L−1 30.9 d 97.2 a
50 mg L−1 50.2 c 95.1 b
100 mg L−1 88.2 b 89.3 c
200 mg L−1 98.3 a 61.1 d

LSD 1.82 1.11

30 min 56.8 c 93.4 a
60 min 70.2 b 91.3 b
90 min 73.7 a 72.3 c

LSD 1.58 0.96
Means within a column, followed by the same letters within a column, were not significantly different p < 0.05
by DMRT.

2.1.2. Shoot Multiplication

Rhizome buds of K. parviflora were cultured on MS nutrient medium containing 0–12 µM
of cytokinin for shoot multiplication (Table 3). Roots first appeared after 9 days (Figure 1d) and
shoots appeared after 17 days (Figure 1e) of cultivation. K. parviflora rhizome buds produced
multiple plantlets within 42 days (Figure 1f) of cultivation. These rhizome bud explants
(22.6%) produced shoots (1.2) and roots (2.3) together after 56 days on a PGR-free medium. The
addition of 6-BA, 6-furfuryladenine (6-KN), or Thidiazuron (TDZ) at 1–12 µM increased the
rate of regeneration, number of shoots per K. parviflora rhizome bud, and number of roots per
shoot. Cytokinins are important PGRs that can promote axillary shoot multiplication [29,31,40],
somatic embryogenesis [41], and adventitious shoot regeneration [42] in numerous plants.
However, the application of cytokinin often adversely affects in vitro rhizogenesis [31]. In this
study, simultaneous regeneration of both shoots and roots was attained using medium MS
even with a high cytokinin level. Similar results have been disclosed earlier for K. galanga [43],
K. parviflora [21], Hedychium coronarium [44,45], Globba marantina [46], and Hosta minor [40].
Cytokinin, concentration, and cytokinin × concentration interaction had significant effects
on the regeneration rate and the number of shoots. Although cytokinin had no significant
(p = 0.306) effect on the number of roots per shoot, the concentration of cytokinin (p = 0.001)
and cytokinin × concentration interaction (p = 0.028) significantly affected the induction of
roots (Table 3).

Table 3. Effect of cytokinins on shoot multiplication from rhizome bud explants of K. parviflora after 8 weeks of incubation.

Cytokinin Conc (µM) Response (%) No. of Shoots/Explant No. of Roots/Shoot

Control (MS) 0 22.6 ± 2.2 k 1.2 ± 0.4 h 2.3 ± 0.9 gh
6-BA 1 34.0 ± 3.0 i 1.4 ± 0.5 gh 4.3 ± 1.3 b–f

2 53.9 ± 2.7 f 2.6 ± 0.9 efg 5.3 ± 1.0 b
4 64.1 ± 2.9 c 4.2 ± 1.6 bc 3.6 ± 1.0 c–f
8 78.8 ± 3.1 a 6.3 ± 1.6 a 4.6 ± 1.0 bcde

12 70.2 ± 4.7 b 3.1 ± 1.1 cdef 2.9 ± 0.9 fgh
6-KN 1 23.0 ± 1.8 k 1.3 ± 0.5 h 3.2 ± 1.2 d–f

2 29.4 ± 2.9 j 2.8 ± 1.2 def 6.6 ± 1.6 a
4 46.6 ± 3.1 g 3.7 ± 1.3 bcde 4.8 ± 1.5 bc
8 57.7 ± 2.9 e 2.3 ± 1.0 fgh 3.8 ± 1.3 c–f

12 61.1 ± 3.7 d 3.4 ± 1.1 cdef 1.9 ± 0.6 h
TDZ 1 39.7 ± 2.7 h 2.9 ± 0.8 def 3.1 ± 1.5 efgh

2 67.8 ± 2.3 b 4.7 ± 1.3 b 5.0 ± 1.9 bc
4 49.2 ± 2.8 g 3.8 ± 1.0 bcd 4.7 ± 2.3 bcd
8 53.3 ± 2.7 f 3.0 ± 1.5 def 3.7 ± 1.5 c–f

12 32.7 ± 1.6 i 2.6 ± 0.5 efg 2.1 ± 1.3 h
Mean 49.0 3.08 3.87

R-Square 0.9741 0.5997 0.4839
Coefficient of variation 5.93 35.68 35.30

F-value
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Table 3. Cont.

Cytokinin Conc (µM) Response (%) No. of Shoots/Explant No. of Roots/Shoot
F-test Cyto 378.49 6.72 1.20

Conc 405.83 14.33 20.83
Cyto * Conc 192.41 10.61 2.26

p-value

Cyto 0.001 0.002 0.306
Conc 0.001 0.001 0.001

Cyto * Conc 0.001 0.001 0.028

Means ± SDs, followed by the same letters within a column, were not significantly different p < 0.05 by DMRT.

Shoot formation rate, number of shoots per rhizome bud, and number of roots per
shoot varied from 34.0% to 78.8%, 1.4 to 6.3, and 2.9 to 5.3, respectively, when the medium
MS was added with 1–12 µM of 6-BA. Rhizome buds of K. parviflora (78.8%) produced
multiple shoots (6.3) and roots (4.6) on medium MS containing 8 µM of 6-BA (Figure 2a,
Table 3). Shoots formed on medium MS added with 2 µM of 6-BA developed maximal
roots (5.3). Explant response, shoot production, and root production were decreased on
medium MS containing 12 µM of 6-BA. In contrast, terminal buds of K. parviflora produced
a maximum of 7.16 shoots on medium MS added with 35.52 µM of 6-BA [21]. Shooting
response, number of shoots per rhizome bud, and number of roots per shoot varied
from 23.0% to 61.1%, 1.3 to 3.7, and 1.9 to 6.6, respectively, when the medium MS was
added with 1–12 µM of 6-KN. The best shoot formation (61.1%), number of shoots (3.7),
and number of roots (6.6) were noticed on medium MS added with 12 µM, 4 µM, and
2 µM of 6-KN, respectively (Table 3). The response of rhizome buds, number of shoots
per rhizome bud, and number of roots per shoot varied from 32.7% to 67.8%, 2.6 to 4.7,
and 2.1 to 5.0, respectively, when the medium MS was added with 1–12 µM of TDZ.
The maximal response (67.8%), number of shoots (4.7), and number of roots (5.0) were
noticed for medium MS added with 2 µM of TDZ (Table 3). Regeneration response, shoot
production, and root production was found to be meager on medium MS added with
12 µM of TDZ. Detrimental effects of TDZ at a high dose on shoot production have also
been disclosed for K. parviflora [21]. Among the cytokinins evaluated, 6-BA yielded the
best explant response (60.2%), followed by TDZ (48.5%) and 6-KN (43.6%). Advantages
of 6-BA on plant regeneration in vitro have been disclosed for K. parviflora [20,21] and
other Zingiberaceae members such as Curcuma angustifolia [47], H. coronarium [44], and
K. galanga [43]. However, a significant difference in the number of roots was not found
among cytokinins (Table 4). Among all concentrations (1–12 µM) evaluated, 8 µM produced
a higher shooting rate (63.3%) than other levels. However, 6-BA at a concentration of 2 µM,
4 µM, or 8 µM had a similar impact (p = 0.05) on K. parviflora shoot production (Table 4).
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Figure 2. Micropropagation of Kaempferia parviflora. (a) Rhizome buds cultivated on Murashige and Skoog (MS) nutrient
medium with 8 µM 6-BA; (b) rhizome buds cultivated on MS nutrient medium with 8 µM 6-BA and 0.5 µM Thidiazuron
(TDZ); (c) rhizome buds cultivated on MS nutrient medium with 8 µM 6-BA, 0.5 µM TDZ, and 1 µM Naphthalene-1-
acetic acid (NAA); (d) well-developed plantlet cultivated on nutrient medium MS with 2 µM Indole-3-butyric acid (IBA);
(e,f) acclimatization.

Table 4. Effect of cytokinin types and their concentration on shoot multiplication from rhizome bud explants of K. parviflora.

Factors Response (%) No. of Shoots/Explant No. of Roots/Shoot

6-BA 60.2 a 3.5 a 4.13 a
6-KN 43.6 b 2.7 b 4.07 a
TDZ 48.5 c 3.4 a 3.71 a

LSD 1.23 0.47 0.58

1 µM 32.2 d 1.9 c 3.6 c
2 µM 50.4 c 3.3 ab 5.7 a
4 µM 53.3 b 3.9 a 4.3 b
8 µM 63.3 a 3.9 a 4.0 bc

12 µM 54.7 b 3.0 b 2.3 d

LSD 1.59 0.61 0.75

Means within a column, followed by the same letters within a column, were not significantly different p < 0.05 by DMRT.

Several works have shown that a combination of PGRs can boost the regeneration
of multiple shoots for Zingiberaceae members [43,44,46,47]. Chithra et al. [43] used a
combination of 11.4 µM silver nitrate, 8.8 µM 6-BA, and 2.46 µM Indole-3-butyric acid (IBA)
to induce maximal axillary buds (8.3) and roots (6.7) for K. galanga. Mohanty et al. [44]
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used a combination of 8.8 µM 6-BA and 2.7 µM NAA to obtain maximal axillary buds (3.6)
and roots (4) for H. coronarium. Parida et al. [46] used a combination of 14.1 µM 6-KN and
2.7 µM Naphthalene-1-acetic acid (NAA) to induce 9.5 axillary shoots and 4.5 roots for
G. marantina. Jena et al. [47] used 135.7 µM adenine sulfate, 13.3 µM 6-BA, and 5.7 µM
Indole-3-acetic acid (IAA) to obtain higher shoots (14.1) and roots (7.6) for C. angustifolia.
In the present study, rhizome bud explants were placed on OM (optimal medium: MS
plus 8 µM 6-BA) combined with other PGRs (Table 5) to produce roots and shoots within
14 days of cultivation. Supplementation of 2 µM and 4 µM of 6-KN to OM enhanced the
explant response (89%) and number of shoots (9.2). Similarly, supplementation of 0.5–2 µM
TDZ to OM enhanced the explant response (83.6–97.2%). The number of shoots (12.2) was
higher in OM added with 0.5 µM TDZ after 56 days (Figure 2b, Table 5). The addition of
1–4 µM of NAA to OM containing 0.5 µM TDZ resulted in the maximum explant response
(100%). However, shoot production was decreased (Figure 2c, Table 5). The number of roots
increased as NAA level increased from 1–4 µM. Prathanturarug et al. [21] also reported
that NAA and cytokinin (6-BA, TDZ) in combination cannot increase shoot regeneration
for K. parviflora.

Table 5. Effect of combinations of PGRs on shoot multiplication from rhizome bud explants of K. parviflora after 8 weeks of
incubation.

PGRs (µM) Response (%) No. of Shoots/Explant No. of Roots/Shoot
6-BA 6-KN TDZ NAA

0 0 0 0 22.6 ± 2.2 g 1.2 ± 0.4 g 2.3 ± 0.9 e
8 2 0 0 89.0 ± 3.7 c 7.8 ± 1.1 cde 5.3 ± 1.4 cd
8 4 0 0 86.1 ± 5.2 d 9.2 ± 1.3 b 4.2 ± 1.0 d
8 6 0 0 76.2 ± 2.2 f 6.2 ± 1.4 f 2.8 ± 0.7 e
8 0 0.5 0 97.2 ± 1.8 b 12.2 ± 1.8 a 4.3 ± 1.2 d
8 0 1 0 90.9 ± 2.5 c 8.1 ± 1.3 bcd 2.7 ± 1.0 e
8 0 2 0 83.6 ± 2.8 e 6.4 ± 1.7 ef 3.0 ± 1.1 e
8 0 0.5 1 100 ± 0.0 a 8.8 ± 1.6 bc 6.3 ± 1.4 c
8 0 0.5 2 100 ± 0.0 a 6.8 ± 1.5 def 8.1 ± 1.2 b
8 0 0.5 4 100 ± 0.0 a 5.9 ± 1.2 f 9.7 ± 1.4 a

Mean 84.6 7.3 4.9
R-Square 0.9878 0.8113 0.8255

Coefficient of variation 3.07 18.89 23.59
F-value 719.82 38.22 42.07

Means ± SDs, followed by the same letters within a column, were not significantly different p < 0.05 by DMRT.

2.1.3. Rooting and Acclimatization

Although rhizome buds of K. parviflora developed both shoots and roots on OM alone
or in combination with 0.5 µM TDZ, adventitious roots failed to develop lateral roots even
after 56 days of cultivation (Figure 2a,b). Several studies have shown that cytokinins have
detrimental effects on lateral root induction (reviewed by Jing and Strader [48]). In general,
auxin is often included in a rooting medium to induce rhizogenesis of cultured shoots.
IBA is a notable auxin that can stimulate rhizogenesis of diverse plant species [29,31,40].
Therefore, shoot buds (4 weeks old) were transferred to basal medium MS added with
IBA (0–12 µM) to induce and develop roots. The addition of IBA to rooting medium MS
improved the rooting quality (Figure 2d). Medium MS added with 2 µM of IBA resulted in
the highest number of roots (24) with a mean root length of 7.8 cm and the maximum shoot
length (9.8 cm) (Table 6). Shoot buds of K. parviflora on medium MS added with 4 µM of
IBA developed longer roots (8.9 cm) than those in other treatments. Plantlets of K. parviflora
were acclimatized well in a growth room, having a survival rate of 98% (Figure 2e,f).
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Table 6. Effect of IBA on in vitro rooting of K. parviflora after 6 weeks of cultivation.

IBA (µM) Number of Roots/Shoot Root Length (cm) Shoot Length (cm)

0 6.9 ± 1.5 f 4.7 ± 1.3 d 5.8 ± 0.5 c
1 11.0 ± 1.7 d 5.6 ± 0.4 c 6.1 ± 0.4 c
2 24.0 ± 2.5 a 7.8 ± 0.5 b 9.8 ± 0.5 a
4 15.8 ± 2.4 b 8.9 ± 0.5 a 6.6 ± 0.4 b
8 13.2 ± 1.5 c 5.8 ± 0.5 c 4.4 ± 0.3 e

12 8.9 ± 1.1 e 3.2 ± 0.7 e 5.3 ± 0.4 d
Mean 13.29 5.99 6.3

R-Square 0.9096 0.8911 0.9499
Coefficient of variation 14.02 11.69 6.45

F-Value 96.55 78.53 182.02

Means ± SDs, followed by the same letters within a column, were not significantly different p < 0.05 by DMRT.

2.2. Phytochemical Compositions

Phenolic compounds are considered as leading contributors to the biological activ-
ities of plant extracts. In the present study, we determined total amounts of phenolics
and flavonoids in K. parviflora extracts. Results are presented in Table 7. Leaves from
the greenhouse (18.28 mg GAE/g extract) contained higher phenolics levels than leaves
from in vitro cultures (14.07 mg GAE/g extract). However, levels of total flavonoids in
leaves from in vitro cultures (1.55 mg RE/g extract) were higher than those from green-
house ones (0.96 mg RE/g extract). These results indicate that in vitro culture condi-
tions could enhance levels of flavonoids. Previously published papers have also indi-
cated that levels of total flavonoids are changed under in vitro culture conditions [49–51].
Krongrawa et al. [52] reported that levels of total phenolics and flavonoids in K. parviflora
are 17.88–19.07 mg GAE/g and 15.90–16.68 mg QE/g, respectively, after gamma radiation.
In addition, Choi et al. [53] reported that the contents of total phenolics in different fractions
of K. parviflora are 19.48–92.26 mg GAE/g extract. These different levels of total phenolics
could be due to different factors, including in vitro culture conditions, extraction methods,
and solvents. On the other hand, spectrophotometric measurements have some drawbacks.
Most phytochemists do not use them to perform content analysis. For example, recent
papers have shown that the Folin–Ciocalteu assay measures reducing power instead of
total phenolics content [54]. To obtain more accurate levels of total phenolics, at least one
chromatographic technique has been suggested recently [55–57]. In this sense, the chemical
profile of K. parviflora extracts was identified by LC-MS/MS.

Table 7. Total phenolic and flavonoid contents in the tested extracts.

Sources of Leaves Total Phenolic Content
(mg GAE/g)

Total Flavonoid Content
(mg RE/g)

In vitro cultures 14.07 ± 0.09 1.55 ± 0.07
The greenhouse 18.28 ± 0.20 0.96 ± 0.06

Samples were analyzed by UHPLC to obtain chromatographic profiles of more polar
portions of extracts known to mainly contain phenolic and flavonoid compounds.

All characterized compounds with their chromatographic data, MS data (retention
times, protonated or deprotonated molecular ions, fragment ions), and assigned identities
are shown in Tables 8 and 9. Compounds were numbered by their elution order in a
56-day-old in vitro sample. These same numbers were used in a 90-day-old ex vitro sample.
We found 40 and 36 compounds in in vitro and in vivo samples, respectively. Both samples
showed a similar chromatographic profile. A wide range of compounds, mainly flavonoids,
were characterized.



Plants 2021, 10, 698 10 of 24

Table 8. Chemical composition of the black ginger leaves from in vitro cultures.

No. Name Formula Rt [M + H]+ [M − H]− Fragment 1 Fragment 2 Fragment 3 Fragment 4 Fragment 5 Reference

1 Caffeic acid C9H8O4 15.22 179.03444 135.0438 107.0492

2 Vicenin-2 (Apigenin-
6,8-di-C-glucoside) C27H30O15 19.39 595.16630 577.1575 559.1442 457.1131 325.0707 295.0601

3 1 Ferulic acid C10H10O4 19.94 193.05009 178.0261 149.0600 137.0226 134.0360 121.0278

4
Apigenin-C-hexoside-

C-pentoside
isomer 1

C26H28O14 20.37 565.15574 547.1459 511.1239 427.1029 409.0923 295.0602

5
Apigenin-C-hexoside-

C-pentoside
isomer 2

C26H28O14 20.77 565.15574 547.1455 511.1242 427.1030 379.0814 295.0602

6
Apigenin-C-hexoside-

C-pentoside
isomer 3

C26H28O14 21.13 565.15574 547.1458 511.1236 469.1133 379.0813 295.0602

7 1 Rutin (Quercetin-3-O-
rutinoside) C27H30O16 23.54 611.16122 465.1043 303.0499 129.0549 85.0289 71.0497 [15]

8 Lumichrome C12H10N4O2 24.45 243.08821 216.0769 200.0820 198.0665 172.0870 145.0761

9 1 Cosmosiin (Apigenin-
7-O-glucoside) C21H20O10 24.50 433.11347 271.0601 153.0185 119.0493

10
Isorhamnetin-3-O-

rutinoside
(Narcissin)

C28H32O16 25.55 623.16122 315.0513 314.0432 299.0202 271.0243 243.0300 [15]

11 Tamarixetin-3-O-
rutinoside C28H32O16 25.74 623.16122 315.0513 314.0435 299.0198 271.0250 243.0294 [16]

12 Syringetin-3-O-
rutinoside C29H34O17 25.96 653.17178 345.0616 344.0539 329.0303 315.0151 301.0363 [16]

13
Acacetin-7-O-

glucoside
(Tilianin)

C22H22O10 29.06 447.12913 285.0757 270.0523 269.0444 242.0579 [16]

14 Methoxy-
trihydroxy(iso)flavanone C16H14O6 30.20 303.08687 193.0499 167.0340 163.0390 145.0285

15 1 Apigenin (4’,5,7-
Trihydroxyflavone) C15H10O5 30.29 269.04500 225.0547 201.0548 151.0026 149.0233 117.0331

16
Isokaempferide

(3-Methoxy-4’,5,7-
trihydroxyflavone)

C16H12O6 30.97 299.05556 284.0329 256.0371 255.0297 227.0342

17 Undecanedioic acid C11H20O4 31.36 215.12834 197.1176 153.1272 125.0955 57.0331
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Table 8. Cont.

No. Name Formula Rt [M + H]+ [M − H]− Fragment 1 Fragment 2 Fragment 3 Fragment 4 Fragment 5 Reference

18

3,4’,5,7-
Tetramethoxyflavone

or 3’,4’,5,7-
Tetramethoxyflavone

C19H18O6 32.44 343.11817 328.0942 327.0862 314.0793 313.0707 285.0765 [11]

19 Pinocembrin (5,7-
Dihydroxyflavanone) C15H12O4 32.77 255.06573 213.0547 151.0023 145.0645 107.0124 83.0122

20 3,3’,4’,5,7-
Pentamethoxyflavone C20H20O7 32.92 373.12873 358.1046 357.0968 343.0810 327.0863 312.0990 [11]

21
Kaempferide

(4’-Methoxy-3,5,7-
trihydroxyflavone)

C16H12O6 33.09 299.05556 284.0328 256.0378 227.0340 151.0030

22
Dihydroxy-

methoxy(iso)flavone-
O-acetylhexoside

C24H24O11 33.21 489.13969 285.0758 270.0522 269.0442 242.0564

23 Dimethoxy-
trihydroxy(iso)flavone C17H14O7 33.35 329.06613 314.0434 299.0198 271.0249 227.0338

24 Dodecanedioic acid C12H22O4 33.81 229.14399 211.1334 167.1433

25 5,7-
Dimethoxyflavanone C17H16O4 33.82 285.11268 181.0497 166.0261 138.0317 131.0494 103.0548 [15]

26 1 Chrysin (5,7-
Dihydroxyflavone) C15H10O4 33.85 255.06573 209.0595 153.0184 129.0340 103.0547 67.0185

27 5,7-Dimethoxyflavone C17H14O4 34.13 283.09704 268.0729 267.0652 239.0703 238.0622 225.0538 [11]

28 1 Galangin (3,5,7-
Trihydroxyflavone) C15H10O5 34.75 271.06065 242.0572 215.0701 165.0181 153.0184 105.0336

29 4’,5,7-
Trimethoxyflavone C18H16O5 34.81 313.10760 298.0837 297.0761 269.0809 255.0649 227.0711 [11]

30 3,5,7-
Trimethoxyflavone C18H16O5 34.98 313.10760 298.0836 297.0758 280.0729 279.0652 252.0778 [11]

31 Dihydroxy-
methoxy(iso)flavone C16H12O5 35.05 283.06065 268.0375 267.0294 239.0344 211.0393

32
Ayanin

(3’,5-Dihydroxy-3,4’,7-
trimethoxyflavone)

C18H16O7 35.20 345.09743 330.0733 329.0661 315.0499 287.0551 259.0602 [15]

33

3,4’,5,7-
Tetramethoxyflavone

or 3’,4’,5,7-
Tetramethoxyflavone

C19H18O6 35.44 343.11817 328.0940 327.0862 310.0837 285.0760 282.0886 [11]
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Table 8. Cont.

No. Name Formula Rt [M + H]+ [M − H]− Fragment 1 Fragment 2 Fragment 3 Fragment 4 Fragment 5 Reference

34 Dihydroxy-
dimethoxy(iso)flavone C17H14O6 35.60 315.08686 300.0628 299.0548 272.0680 271.0602 257.0445

35
Retusin

(5-Hydroxy-3,3’,4’,7-
tetramethoxyflavone)

C19H18O7 37.10 359.11308 344.0890 343.0812 329.0655 301.0706 [11]

36
Pinostrobin

(5-Hydroxy-7-
methoxyflavanone)

C16H14O4 37.14 271.09704 229.0864 173.0599 167.0339 131.0494 103.0547 [15]

37
Tectochrysin

(5-Hydroxy-7-
methoxyflavone)

C16H12O4 38.08 269.08138 254.0573 226.0624 167.0338 [11]

38 4’,7-Dimethoxy-5-
hydroxyflavone C17H14O5 38.75 299.09195 284.0678 256.0728 [11]

39 5-Hydroxy-3,7-
dimethoxyflavone C17H14O5 38.94 299.09195 284.0678 283.0601 256.0728 255.0649 241.0496 [11]

40 5-Hydroxy-3,4’,7-
trimethoxyflavone C18H16O6 39.39 329.10252 314.0784 313.0707 299.0552 285.0756 271.0598 [11]

1 Confirmed by standard.

Table 9. Chemical composition of the black ginger leaves from greenhouse.

No. Name Formula Rt [M + H]+ [M − H]− Fragment 1 Fragment 2 Fragment 3 Fragment 4 Fragment 5 Reference

1 Caffeic acid C9H8O4 15.19 179.03444 135.0438 107.0488

2 Vicenin-2 (Apigenin-
6,8-di-C-glucoside) C27H30O15 19.38 595.16630 577.1556 559.1453 457.1132 325.0707 295.0602

3 1 Ferulic acid C10H10O4 19.95 193.05009 178.0261 149.0596 137.0231 134.0360 121.0278

4
Apigenin-C-hexoside-

C-pentoside
isomer 1

C26H28O14 20.43 565.15574 547.1460 511.1242 427.1027 409.0920 295.0602

5
Apigenin-C-hexoside-

C-pentoside
isomer 2

C26H28O14 20.78 565.15574 547.1451 511.1239 427.1030 379.0813 295.0601
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Table 9. Cont.

No. Name Formula Rt [M + H]+ [M − H]− Fragment 1 Fragment 2 Fragment 3 Fragment 4 Fragment 5 Reference

6
Apigenin-C-hexoside-

C-pentoside
isomer 3

C26H28O14 21.14 565.15574 547.1455 511.1245 469.1141 379.0813 295.0602

7 1 Rutin (Quercetin-3-O-
rutinoside) C27H30O16 23.53 611.16122 465.1033 303.0499 129.0549 85.0290 71.0498 [15]

8 Lumichrome C12H10N4O2 24.46 243.08821 216.0767 200.0819 198.0662 172.0869 145.0760

10
Isorhamnetin-3-O-

rutinoside
(Narcissin)

C28H32O16 25.55 623.16122 315.0512 314.0433 299.0203 271.0254 243.0298 [15]

11 Tamarixetin-3-O-
rutinoside C28H32O16 25.74 623.16122 315.0512 314.0440 299.0192 271.0250 243.0288 [16]

12 Syringetin-3-O-
rutinoside C29H34O17 25.97 653.17178 345.0618 344.0536 329.0306 315.0142 301.0355 [16]

13
Acacetin-7-O-

glucoside
(Tilianin)

C22H22O10 29.06 447.12913 285.0757 270.0522 269.0443 242.0567 [16]

15 1 Apigenin (4’,5,7-
Trihydroxyflavone) C15H10O5 30.29 269.04500 225.0555 201.0546 151.0019 149.0230 117.0330

41
Dihydroxy-

methoxy(iso)flavone
isomer 1

C16H12O5 30.85 283.06065 268.0377 240.0423 239.0346 211.0394

16
Isokaempferide

(3-Methoxy-4’,5,7-
trihydroxyflavone)

C16H12O6 30.97 299.05556 284.0328 256.0379 255.0297 227.0341

17 Undecanedioic acid C11H20O4 31.37 215.12834 197.1175 153.1272 125.0959 57.0331

18

3,4’,5,7-
Tetramethoxyflavone

or 3’,4’,5,7-
Tetramethoxyflavone

C19H18O6 32.45 343.11817 328.0943 327.0863 314.0783 313.0707 285.0760 [11]

19 Pinocembrin (5,7-
Dihydroxyflavanone) C15H12O4 32.78 255.06573 213.0556 151.0024 145.0649 107.0121 83.0123

20 3,3’,4’,5,7-
Pentamethoxyflavone C20H20O7 32.93 373.12873 358.1045 357.0966 343.0811 327.0863 312.0991 [11]

22
Dihydroxy-

methoxy(iso)flavone-
O-acetylhexoside

C24H24O11 33.20 489.13969 285.0757 270.0523 269.0440 242.0566

24 Dodecanedioic acid C12H22O4 33.81 229.14399 211.1332 167.1425
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Table 9. Cont.

No. Name Formula Rt [M + H]+ [M − H]− Fragment 1 Fragment 2 Fragment 3 Fragment 4 Fragment 5 Reference

25 5,7-
Dimethoxyflavanone C17H16O4 33.82 285.11268 181.0496 166.0258 138.0316 131.0493 103.0545 [15]

26 1 Chrysin (5,7-
Dihydroxyflavone) C15H10O4 33.85 255.06573 209.0596 153.0182 129.0341 103.0546 67.0185

27 5,7-Dimethoxyflavone C17H14O4 34.14 283.09704 268.0730 267.0650 239.0702 238.0626 225.0549 [11]

28 1 Galangin (3,5,7-
Trihydroxyflavone) C15H10O5 34.76 271.06065 242.0576 215.0700 165.0183 153.0182 105.0339

29 4’,5,7-
Trimethoxyflavone C18H16O5 34.82 313.10760 298.0836 297.0761 269.0808 255.0662 227.0694 [11]

30 3,5,7-
Trimethoxyflavone C18H16O5 35.00 313.10760 298.0839 297.0757 280.0730 279.0654 252.0782 [11]

31
Dihydroxy-

methoxy(iso)flavone
isomer 2

C16H12O5 35.03 283.06065 268.0377 267.0294 239.0345 211.0394

32
Ayanin

(3’,5-Dihydroxy-3,4’,7-
trimethoxyflavone)

C18H16O7 35.21 345.09743 330.0733 329.0653 315.0499 287.0549 259.0601 [15]

33

3,4’,5,7-
Tetramethoxyflavone

or 3’,4’,5,7-
Tetramethoxyflavone

C19H18O6 35.45 343.11817 328.0944 327.0863 310.0835 285.0754 282.0886 [11]

34 Dihydroxy-
dimethoxy(iso)flavone C17H14O6 35.60 315.08686 300.0629 299.0552 272.0679 271.0602 257.0436

35
Retusin

(5-Hydroxy-3,3’,4’,7-
tetramethoxyflavone)

C19H18O7 37.10 359.11308 344.0890 343.0815 329.0656 301.0706 [11]

36
Pinostrobin

(5-Hydroxy-7-
methoxyflavanone)

C16H14O4 37.14 271.09704 229.0859 173.0598 167.0339 131.0494 103.0546 [15]

37
Tectochrysin

(5-Hydroxy-7-
methoxyflavone)

C16H12O4 38.09 269.08138 254.0571 226.0626 167.0342 [11]

39 5-Hydroxy-3,7-
dimethoxyflavone C17H14O5 38.94 299.09195 284.0680 283.0602 256.0729 255.0650 241.0494 [11]

40 5-Hydroxy-3,4’,7-
trimethoxyflavone C18H16O6 39.38 329.10252 314.0784 313.0707 299.0550 285.0757 271.0602 [11]

1 Confirmed by standard.
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The lowest molecular mass component was caffeic acid (1) (rt: 15.19 min, MW:
180.04226). Compound 12 had the highest molecular mass. It was characterized as
syringetin-3-O-rutinoside (MW: 654.17960). Compound 2 at rt: 19.38 min was confirmed as
vicenin-2 (apigenin 6,8-di-C-glucoside). Characteristic fragments confirmed the substitu-
tion of two C-glucosides at positions 6 and 8 in compound 2. Compounds at rt: 20.46 min,
20.79 min, and 21.15 min were identified as apigenin C-hexoside-C-pentoside isomers (4–6)
with [M − H]− at m/z 563.1409, showing ion fragments at m/z 473.1089 corresponding to
[M − H-90]−, m/z 443.0974 corresponding to [M − H-120]−, m/z 383.0770 corresponding
to [M − H-180]−, and m/z 353.0669 corresponding to [M − H-120-90]− in the MS/MS
spectrum (Figure 3a,b). The positive ion mode was a powerful complementary tool of
the negative ion mode for compounds’ structural characterization by electrospray ioniza-
tion (ESI)-MS/MS. In compound 4–6, more fragment ions were detected in the positive
mode (Figure 4a,b).
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hexoside-C-pentoside isomer 1 in negative mode at a retention time of 20.52 min (56-day-old in 
vitro sample). 
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Figure 3. (a) Extracted ion chromatogram of apigenin C-hexoside-C-pentoside isomers (m/z: 563.14087)
in negative ion mode (56-day-old in vitro sample). (b) MS2 spectrum of apigenin C-hexoside-C-
pentoside isomer 1 in negative mode at a retention time of 20.52 min (56-day-old in vitro sample).
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hexoside-C-pentoside isomer 1 in positive mode at a retention time of 20.41 min (56-day-old in 
vitro sample). 
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Figure 4. (a) Extracted ion chromatogram of apigenin C-hexoside-C-pentoside isomers (m/z: 565.15574) in positive ion
mode (56-day-old in vitro sample). (b) MS2 spectrum of apigenin C-hexoside-C-pentoside isomer 1 in positive mode at a
retention time of 20.41 min (56-day-old in vitro sample).

2.3. Antioxidant Ability

To detect the antioxidant potential of K. parviflora in the present study, we used six assays.
Antioxidant compounds are closely linked to positive effects on human health. They can min-
imize the negative effects of free radicals that are instable and very active. Scavenging of free
radicals (3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) and 2,2-diphenyl-1-picrylhydrazyl
(DPPH)) was tested. Results are given as IC50 values. As shown in Table 10, K. parviflora leaf
extracts exhibited low DPPH scavenging abilities, with IC50 values >3 mg/mL. Regarding
ABTS scavenging abilities, greenhouse leaves exhibited more potent activities than leaves
from in vitro cultures. However, these tested extracts had weaker scavenging abilities com-
pared to Trolox (IC50: 0.06 mg/mL for DPPH and 0.09 mg/mL for ABTS). Their reducing
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abilities were evaluated by cupric reducing antioxidant capacity (CUPRAC) and ferric reduc-
ing antioxidant power (FRAP) assays. In both assays, greenhouse leaves possessed higher
abilities (CUPRAC and FRAP: 2.07 mg/mL and 1.52 mg/mL, respectively). Reducing power
assays reflect the electron-donating abilities of plant extracts and antioxidant compounds.
Phosphomolybdenum assay is based on Mo (VI) transformation to Mo (V) by antioxidant
compounds at an acidic condition. Both leaves samples had weak ability in phosphomolyb-
denum assays. Their IC50 values were higher than 3 mg/mL. In the last assay, the metal
chelating abilities of leaf extracts were determined. Results showed that leaves from in vitro
cultures had higher metal-chelating abilities, with an average IC50 value of 0.59 mg/mL.
However, ethylenediaminetetraacetic acid was a better chelator. Several studies have reported
antioxidant properties of K. parviflora extracts or fractions. For example, Krongrawa et al. [52]
demonstrated antioxidant properties of K. parviflora extracts using DPPH and FRAP assays. In
their study, IC50 values ranged from 129.08 µg/mL to 165.26 µg/mL in the DPPH assay. The
reducing power in FRAP assay was found to be 11.96–12.48 mg ascorbic acid equivalent/g ex-
tract. Thao et al. [4] reported antioxidant abilities for peroxyl radicals and cupric reducing
power of K. parviflora rhizomes. Choi et al. [53] disclosed that the ethyl acetate fraction of
K. parviflora has the strongest DPPH, ABTS, and ferric reducing power. As can be seen in
earlier papers, few reports are available on the antioxidant properties of K. parviflora. Thus,
the results of the present study provide valuable scientific knowledge of K. parviflora.

Table 10. Antioxidant properties of the tested samples (IC50 (mg /mL)).

Sources of Leaves and
Standards DPPH ABTS CUPRAC FRAP PBD Chelating

In vitro cultures >3 b 2.99 ± 0.20 c 2.82 ± 0.03 c 1.94 ± 0.01 c >3 b 0.59 ± 0.01 b
The greenhouse >3 b 2.20 ± 0.05 b 2.07 ± 0.01 b 1.52 ± 0.02 b >3 b 0.70 ± 0.09 c

Trolox 0.06 ± 0.01 a 0.09 ± 0.01 a 0.11 ± 0.01 a 0.04 ± 0.01 a 0.52 ± 0.02 a nt
EDTA nt nt nt nt nt 0.02 ± 0.001 a

nt: Not tested. PBD: Phosphomolybdenum. Means ± SDs, followed by the same letters within a column, were not significantly different
p < 0.05 by DMRT.

2.4. Enzyme Inhibitory Effects

Although the world is a healthier place today, humanity still faces global health
problems. Several infectious diseases, including polio, Ebola, and smallpox, have been
eliminated by some effective treatment strategies over the centuries. However, the preva-
lence of some noncommunicable diseases is almost epidemic all over the world. For
example, about 500 million people are affected by diabetes mellitus [58]. In this sense, we
need effective therapeutic tools to overcome the burden. Many studies have demonstrated
that enzymes are effective drug targets [59]. According to this approach, inhibition of some
clinical enzymes is linked to the alleviated symptoms observed. For example, inhibition of
amylase and glucosidase as main hydrolyzing enzymes of carbohydrates can control blood
glucose levels after a carbohydrate-rich diet [60]. Thus, enzyme inhibitors are among the
most common topics in medical and pharmaceutical areas. Researchers have attempted to
use several chemicals for this purpose. However, these chemicals have produced unpleas-
ant effects, including toxicity and gastrointestinal disturbances [61,62]. Taken together,
these findings suggest that we need to replace synthetics with safe and effective ones from
natural resources.

In the current paper, we tested the enzyme inhibiting properties of K. parviflora leaves.
Results are given as IC50 values (Table 11). The best AChE inhibitory ability was ob-
tained for leaves from greenhouse-grown K. parviflora (1.07 mg/mL). However, leaves
from in vitro cultures exhibited stronger BChE inhibitory abilities than leaves from the
greenhouse. Regarding tyrosinase inhibitory activity, both leaves had some potential, with
an average IC50 value of 0.71 mg/mL. Finally, the best amylase inhibition ability was
obtained for leaves from the greenhouse, with an IC50 value of 1.37 mg/mL. However,
inhibitor standards were more active than tested extracts in all assays performed. Observed
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enzyme inhibitory abilities might be explained by the presence of some compounds in
these leaf extracts. For example, some phenolic acids such as caffeic [63–65] and ferulic
acids [66–68] have been shown to possess significant inhibitor properties in earlier studies.
Again, flavonoids including rutin [69,70] and quercetin [69,71] have been reported as ef-
fective enzyme inhibitors. Thus, K. parviflora leaves could be useful as sources of natural
enzyme inhibitors for pharmaceutical and cosmetic applications.

Table 11. Enzyme inhibitory properties of tested samples (IC50 (mg /mL)).

Sources of Leaves and
Standards AChE BChE Tyrosinase Amylase

In vitro cultures 1.15 ± 0.04 b 0.95 ± 0.10 c 0.71 ± 0.01 b 1.41 ± 0.01 b
The greenhouse 1.07 ± 0.10 b 1.67 ± 0.11 b 0.71 ± 0.01 b 1.37 ± 0.05 b

Galantamine 0.003 ± 0.001 a 0.007 ± 0.002 a nt nt
Kojic acid nt nt 0.08 ± 0.001 a nt
Acarbose nt nt nt 0.68 ± 0.01 a

nt: Not tested. Means ± SDs, followed by the same letters within a column, were not significantly different p < 0.05 by DMRT.

3. Materials and Methods
3.1. In Vitro Micropropagation
3.1.1. Synthesis and Characterization of Silver Oxide Nanoparticles (AgO NPs)

Silver oxide nanoparticles were synthesized with the hydrothermal method using
polyethylene glycol and silver nitrates purchased from Sigma-Aldrich. For the synthesis
of AgO nanoparticles, 25 g of polyethylene glycol (PEG) was dissolved in 1 L of deion-
ized (DI) water and stirred unceasingly for 1 h at 60 ◦C. After complete dissolution as a
homogeneous solution, 1 g of silver nitrate salt was added into the aqueous PEG solution
under constant stirring for another 1 h. After a set period, formed AgO nanoparticles
were filtered using a membrane filter (0.2 µm, Millipore). These filtered particles were
washed several times with DI water. After washing with ethanol, they were then dried in
an oven at 60 ◦C overnight [72]. These dried AgO nanoparticles were characterized by a
field-emission scanning electron microscope (FESEM) attached with an energy-dispersive
X-ray analysis (EDAX) setup to determine their morphological and composition properties.
A Hitachi Ultrahigh Resolution SEM (S-4800) attached with an EDAX module was used for
morphological and compositional characterization of silver oxide nanoparticles. For SEM
characterization, synthesized particles were spread onto adhesive conductive carbon tapes.
The platinum metal was then used to coat these particles.

SEM images of hydrothermally synthesized silver oxide nanoparticles are presented
in Figure 5, showing that these AgO particles were spherical in shape with different
sizes due to the highly agglomerated nano-crystallite gains of AgO. The surface of these
agglomerated particles clearly showed nanocrystalline grains, confirming the nano-nature
of the synthesized AgO. The compositions of these synthesized AgO particles are presented
in Figure 6, showing the EDX mapping (Figure 6a) and EDX spectrum (Figure 2b) of the
product. EDX mapping displayed a uniform distribution for both Ag and O elements.
The composition levels are shown in Figure 6b. The results confirmed a stoichiometric
formation of AgO nanoparticles through hydrothermal synthesis.
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3.1.2. Plant Materials and Surface Decontamination

Rhizomes of K. parviflora harvested from field-grown plants were cleaned under running
tap water, planted in plastic trays containing a mixture of autoclaved perlite/peat moss
(1:1, v/v), and kept in a growth room in darkness at 24 ± 1 ◦C. After 3 weeks, rhizome
developing buds were isolated, soaked in detergent solution (0.01%, v/v) for 5 min, and then
thoroughly washed under tap water for 45 min. These rhizome buds were sterilized in sodium
hypochlorite (2.5% v/v) for 12 min and rinsed several times with sterilized distilled water.
These rhizome buds were again immersed in 0–200 mg L−1 AgO NPs suspension for 30 min,
60 min, or 90 min and rinsed 6 times with sterilized distilled water. These buds were excised
from sterilized rhizomes and placed on MS nutrient medium containing 2.0 µM Thidiazuron
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(TDZ), 3% sucrose, and 0.8% plant agar (pH 5.6–5.8). Cultures were kept at 24 ± 1 ◦C for
21 days with a 16h/8h light/dark photoperiod (40–45 µmol m−2 s−1) provided by cool white
fluorescent tubes. Experiments were conducted with as a completely randomized design
(CRD). In each treatment, 20 rhizome buds were used with 3 replications. All experiments
were performed twice. The decontamination rate was recorded at 7 days after incubation, and
the survival rate of explants was determined at 3 weeks after incubation.

3.1.3. Shoot Multiplication

Buds were excised from 100 mg L−1 Ag2O NPs treated K. parviflora rhizomes cultured
on MS nutrient medium containing 0–12 µM TDZ, 6-furfuryladenine (6-KN), or 6-BA and
8 µM 6-BA. The basal medium was then combined with 2 µM, 4 µM, and 6 µM 6-KN;
0.5 µM, 1 µM, and 2 µM TDZ; or 0.5 µM TDZ and 1 µM, 2 µM, or 4 µM Naphthalene-1-acetic
acid (NAA) to induce multiple shoots. These cultures were kept for 8 weeks at 24 ± 1 ◦C
with a 16 h/8 h light/dark photoperiod (40–45 µmol m−2 s−1) provided by cool white
fluorescent tubes. Experiments were conducted as a CRD (20 rhizome buds were used in
each treatment, 3 replications). All experiments were performed twice. Regeneration rate,
number of shoots per rhizome bud, and number of roots per induced shoot were assessed
after 8 weeks of incubation.

3.1.4. Rooting and Acclimatization

Four-week-old in vitro-induced shoots (≥2–3 cm in height) were obtained from shoot
clusters and cultivated on nutrient medium MS containing 0–12 µM Indole-3-butyric acid
(IBA) to induce the growth of shoots and roots. After 6 weeks, the number of roots, lengths
of roots, and lengths of shoots were recorded. Plantlets were removed from the medium MS
containing 2 µM IBA, cleaned with tap water, and transplanted into plastic trays containing
sterile soilless substrates composed of 40% peat moss, 30% perlite, and 30% vermiculite
based on volume. They were kept in a growth room at 24 ± 1 ◦C with a 16 h/8 h light/dark
photoperiod (90 µmol m−2 s−1) and irrigated at 3-day intervals. The survival of plants was
recorded after 5 weeks. Experiments were conducted as a CRD (50 shoots or plantlets for
each treatment with three replications). All experiments were performed twice.

3.2. Phytochemical Analysis
3.2.1. Extract Preparation

Leaves of K. parviflora were collected from in vitro cultured plantlets (56 days old) and
greenhouse-grown plants (90 days old), minced, stored at −70 ◦C for 12 h, and lyophilized.
Dried leaf powder samples of K. parviflora (50 mg) were extracted with 80% methanol using
an Ultraturrax at 6000 g for 30 min. After filtration, extracts were dried using a rotary
vacuum evaporator and kept at 4 ◦C until further investigation.

3.2.2. Estimation of Total Phenolics Content (TPC) and Flavonoids Content (TFC)

TPC of K. parviflora leaf extract was determined using the Folin–Ciocalteu assay
described by Slinkard and Singleton [73] and calculated as mg of gallic acid equivalent
(GAE). TFC of K. parviflora leaf extract was determined using the aluminum chloride (AlCl3)
technique according to Zengin et al. [74] and expressed as mg of rutin equivalent (RE).

3.2.3. Chemical Characterization

Chromatographic separation was accomplished with a Dionex Ultimate 3000RS UH-
PLC instrument equipped with a Thermo Accucore C18 (100 mm × 2.1 mm i. d., 2.6 µm)
analytical column for separation of compounds. Water (A) and methanol (B) containing
0.1% formic acid were employed as mobile phases. The total run time was 70 min. The
elution profile and exact analytical conditions have been published [75]. Electrospray
ionization (ESI) was performed in both negative and positive ion modes to obtain more
data. Mass spectra were recorded between m/z 100 and 1500 atomic mass units using a
Q-Exactive (Thermo Fisher Scientific, Waltham, MA, USA) Orbitrap mass spectrometer.
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Chemical constituents were identified by comparison with authentic standards and their
MS/MS spectra as well as fragmentation patterns. Peaks and spectra were processed using
the TraceFinder software and tentatively identified by comparing their (Rt) retention time
and mass spectrum based on reported data and library search.

3.3. Biological Activities of K. parviflora Leaf Extracts
3.3.1. Antioxidant Assay

Several antioxidant assays, such as 2,2-azino-bis (3-ethylbenzothiazoline-6-sulphonic
acid) (ABTS), 2,2-diphenyl-1-picrylhydrazyl (DPPH), cupric reducing antioxidant capacity
(CUPRAC), ferric reducing antioxidant power (FRAP), metal chelating ability (MCA), and
phosphomolybdenum (PBD), were carried out to determine the antioxidant potential of
K. parviflora leaf extract using published methods [76]. Assays were performed in triplicate.

3.3.2. Enzyme Inhibition Assay

Acetylcholinesterase (AChE), amylase, and butylcholinestrase (BChE), and tyrosinase
inhibitory activities of K. parviflora leaf extract were conducted in triplicates according to
procedures described by Uysal et al. [76].

3.4. Statistical Analysis

Data were analyzed using SAS version 9.4 (SAS Institute, NC, USA). Significant
difference among means was determined by analysis of variance and Duncan’s multiple
range test (DMRT).

4. Conclusions

Treatment of K. parviflora rhizome buds with AgO NPs solution resulted in excellent
surface sterilization. Among all cytokinins (6-BA, 6-KN, TDZ) and their concentrations
(1–12 µM) evaluated, 8 µM of 6-BA yielded the best explant response. The supplementation
of 6-KN (2 µM and 4 µM) or TDZ (0.5–2 µM) to medium MS containing 8 µM 6-BA enhanced
the explant response and the number of shoots. The addition of IBA to rooting medium
MS improved rooting quality. Higher levels of phenolics and flavonoids were found in
leaves from the greenhouse and in vitro cultures, respectively. Leaf extracts exhibited
free radical scavenging and enzyme inhibitory activities in in vitro assays. Phytochemical
and biological activities of K. parviflora leaf extracts are reported in this study for the first
time. Further studies are needed to quantify individual flavonoids in leaf tissues. The
micropropagation protocol optimized in the current study can be used for mass-clonal
propagation of K. parviflora.
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