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Abstract

Panax ginseng C.A. Meyer is a herb used for medicinal purposes, and its discrimination
according to cultivation age has been an important and practical issue. This study employed
Fourier-transform infrared (FT-IR) spectroscopy with multivariate statistical analysis to
obtain a prediction model for discriminating cultivation ages (5 and 6 years) and three differ-
ent parts (rhizome, tap root, and lateral root) of P. ginseng. The optimal partial-least-squares
regression (PLSR) models for discriminating ginseng samples were determined by selecting
normalization methods, number of partial-least-squares (PLS) components, and variable
influence on projection (VIP) cutoff values. The best prediction model for discriminating 5-
and 6-year-old ginseng was developed using tap root, vector normalization applied after the
second differentiation, one PLS component, and a VIP cutoff of 1.0 (based on the lowest
root-mean-square error of prediction value). In addition, for discriminating among the three
parts of P. ginseng, optimized PLSR models were established using data sets obtained
from vector normalization, two PLS components, and VIP cutoff values of 1.5 (for 5-year-old
ginseng) and 1.3 (for 6-year-old ginseng). To our knowledge, this is the first study to provide
a novel strategy for rapidly discriminating the cultivation ages and parts of P. ginseng using
FT-IR by selected normalization methods, number of PLS components, and VIP cutoff
values.

Introduction

Panax ginseng C.A. Meyer is one of the most valuable perennial herbs belonging to the family
Araliaceae. P. ginseng has been used as a herbal remedy in eastern Asia for at least 2000 years
due to its therapeutic effects [1], which are attributable to anticancer [2-4], antidiabetic [5,6],
antistress [7,8], antioxidant [9,10], and immunomodulatory [11,12] activities. It was revealed
that the pharmacological effects of P. ginseng vary according to its cultivation age and the parts
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used. Compared to young plants, aged P. ginseng plants exert stronger anticarcinogenic effects
against lung tumors in mice [13]. The content of ginsenosides, which are the main active com-
pounds of ginseng, was highest in the root hairs [14]. The different parts of ginseng including
the tap root, lateral roots, rhizome head, and skin have different properties and medicinal val-
ues [15]. Quality assessments of P. ginseng root are important since its content of bioactive
compounds varies with the cultivation age [16]. Authentication of P. ginseng has been mainly
performed by assessing the ginsenoside content, morphological characteristics, smell, or taste
[17]. Therefore, a more reliable objective method is needed for discriminating the cultivation
ages and parts of P. ginseng.

Metabolomics can provide a comprehensive profile of all the metabolites present in an
organism, and hence can be a valuable tool for quality control and discrimination [18,19].
Various studies have investigated the discrimination of P. ginseng by using liquid chroma-
tography—quadrupole time-of-flight mass spectrometry [20], high-performance liquid chro-
matography [21,22], and nuclear magnetic resonance [23,24]. Fourier-transform infrared
(FT-IR) spectroscopy is a rapid, reagentless, nondestructive, and high-throughput analytical
technique that is widely used in metabolomics and metabolic fingerprinting [25]. Two-
dimensional correlation infrared (2D-IR) and FT-IR spectroscopy have been used to dis-
criminate plants with distinct geographical origins—from Beijing, Toronto, Vancouver,
Wisconsin, and the American wild-type ginseng [26]. These two spectroscopy techniques
were also used to discriminate various grades of cultivated ginseng species, namely trans-
planted, garden, and mountain cultivation [27]. Liu et al. successfully used FT-IR and
2D-IR spectroscopy to classify cultivated, mountain wild, and mountain cultivated ginseng
based on their contents of starch, calcium oxalate, and fatty acids [28]. Yap et al. proposed
discriminating Asian and American ginseng using an FT-IR-based protocol that utilized
second-derivative spectral data between 2000 and 600 cm ™! [29]. Kwon et al. used FT-IR
analysis of leaves of three cultivars to discriminate ginseng with different cultivation ages (1,
2, and 3 years) [30]. However, these previous studies that utilized FT-IR spectroscopy did
not consider or optimize the data processing methods.

Prediction models constructed using multivariate statistical analysis are affected by various
factors including the normalization method, the number of partial-least-squares (PLS) compo-
nents, and the variable influence on projection (VIP) cutoff value. These factors can be
adjusted to construct a more suitable model. Since FT-IR spectra can be affected by differences
in sample thickness and particle size [31,32], the measured spectra should be normalized to
reduce the variance and for standardization. The normalization methods are categorized as
two types depending on the presence (minimum-maximum [min-max] normalization) or
absence (area normalization and vector normalization) of reference peaks [33]. The prediction
accuracy of a model is known to be affected by the number of PLS components, which means
that the most appropriate number of PLS components needs to be determined in order to
avoid the construction of underfitted (too few components) and overfitted (too many compo-
nents) models [34]. In addition, VIP cutoff values can be selected to choose variables for opti-
mizing PLS models [35].

To the best of our knowledge, no previous study has attempted to discriminate cultiva-
tion ages and parts of P. ginseng by using FT-IR spectroscopy based on optimal normali-
zation methods, the number of PLS components, and VIP cutoff values. The objectives of
this study were to propose optimal partial-least-squares regression (PLSR) models for
discriminating ginseng samples according to cultivation ages and parts by selecting vari-
ables based on normalization methods, the number of PLS components, and VIP cutoff
values.
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Materials and methods
Plant materials and sample preparation

Twenty-four roots of P. ginseng C.A. Meyer (12 five-year-old and 12 six-year-old P. ginseng
‘Yunpoong’) were obtained from the Medicinal Crop Research Institute (Eumseong, Republic
of Korea) in October 2014 (S1 Fig). The YP cultivar was registered in the Korea Seed and Vari-
ety Service (http://www.seed.go.kr) and cultivated in accordance with the “Ginseng GAP stan-
dard cultivation guide” developed by the Rural Development Administration (Republic of
Korea).

The root samples of P. ginseng were washed with tap water, and were dissected into three
parts based on ambient conditions: tap roots, rhizomes, and lateral roots. Each part from indi-
vidual samples from each age group (5-year-old YP and 6-year-old YP) were instantly frozen
in liquid nitrogen and stored at —80°C. After freeze-drying, the samples were ground into a
fine powder by using mortar and pestle and stored at —80°C for further analysis.

FT-IR analysis and spectral data preprocessing

P. ginseng powder (20 mg) was filtered through a sieve, and loaded onto IRTracer-100 spec-
trometer (Shimadzu Corp., Kyoto, Japan) equipped with an attenuated total reflection (ATR)
accessory for recording the FT-IR spectrum. All of the FT-IR spectra were obtained using Lab-
Solutions IR software (Shimadzu Corp., Kyoto, Japan). Sixty-four scans were recorded to
improve signal-to-noise ratio and averaged for analytical results. Each spectrum was collected
in wavenumber range from 4000 to 650 cm ™" with a spectral resolution of 4 cm ™. Six analytical
replicates of FT-IR spectral data were obtained.

FT-IR spectra were differently processed using various normalization methods, such as
area normalization, minnimum-maximum normalization, and vector normalization [33,36].
In vector normalization, all spectra were converted from transmittance to absorbance. FT-IR
absorbance spectra was converted into first and second derivative (Savitzky-Golay derivative
and 9 smoothing points) using OMNIC software (version 8.2.0.387; Thermo scientific, Wal-
tham, Massachusetts, USA). In case of vector normalization, the Euclidean norm was used to
normalize absorbance values of the spectra. Absorbance values of spectral data were divided by
the Euclidean norm to calculate vector normalization value. In area and minimum-maximum
normalizations, all spectra were converted from transmittance to absorbance, and then ATR
correction was conducted using OMNIC software. The water vapor region (4000-3500 cm™")
and two CO, region (CO, region 1; 2442-2208 cm’t, CO, region 2; 914-600 cm™!) were
removed in all FT-IR spectral data using Microsoft Office Excel (version 2013; Microsoft, Red-
mond, WA, USA) [37]. For area normalization, each absorbance value at specific wavenumber
was divided by total (integral) absorbance area of the spectrum. For min-max normalization,
each absorbance value was divided by the difference between the highest and the lowest absor-
bance values.

Multivariate statistical analysis

For the multivariate statistical analysis, the preprocessed FT-IR spectral data were imported
into the SIMCA-P+ software (version 13.0; Umetrics, Umed, Sweden) for principal component
analysis (PCA), partial least squares-discriminant analysis (PLS-DA), and PLSR. All FT-IR spec-
tral data were subjected to unit variance and pareto scaling. Cross-validation (internal valida-
tion) was used to minimize overfitting and give an estimation of the predictive capability of the
PLS-DA models. The Q° (predicted variation, “goodness of predictability”) and R* (explained
variation, “goodness of fit”) parameters were used to evaluate the models. Permutation test was
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performed 400 times using the SIMCA-P+ software. The PLSR models were validated to assess
the predictive power with R*Y and QY using cross-validation. Training set and test set were
needed to perform cross-validation. Regression models were created by using training sets, and
model’s predictive ability was verified by test sets. Grinded ginseng powder were used to obtain
six replicated FT-IR spectral data. Five replicated data was used for PLS as a training set, and
remained 1 data was employed as a test set for validation. After cross-validation, the statistical
significance of PLSR models was assessed using permutation test parameters such as R*Y inter-
cept and QY intercept.

Results and discussion
Band assignment in FT-IR spectra

Various bands from representative FT-IR spectra of P. ginseng are shown in Fig 1, and Table 1
lists the assignment of each wave number to the corresponding functional groups. The band
between 4000 and 3500 cm™" was attributed to the stretching of O-H bonds in water vapor
[37]. Proteins reportedly show nine types of amide bands in FT-IR spectra: amides A, B, and
I-VII [38]. The 3335 cm ™' band was assigned to stretching of N-H bonds in proteins, which is
known as the amide A band [39]. In addition, the 3335 cm™" band can be assigned to the
stretching of hydroxyl group in ginsenosides [40]. The 2923 cm™" band was assigned to the
stretching of C-H bonds in ginsenosides, fatty acids, lipids, and proteins [40,41]. The band
between 2442 and 2208 cm™" was due to the stretching of O-C-O bonds in carbon dioxide
[37]. The band at 1733 cm™" was due to stretching of C = O bonds of the carbonyl group [42].
The 1621 cm ™" band was assigned to calcium oxalate, which is abundant in P. ginseng roots
[43,44]. The 1417 cm™" band was attributable to the stretching of bonds in CHj in lipids and
aromatic compounds [39]. The band at 1373 cm™" originated from the stretching of bonds in
COO™and the bending of bonds in CHj in lipids and proteins [45]. The band at 1253 cm ! was
assigned to amide III bands of proteins [46]. The strong band at 1018 cm ™ was attributed to
the stretching of C-O-C bonds in polysaccharides [47]. The band between 914 and 600 cm™*
corresponded to the bending of O-C-O in carbon dioxide [37]. Water-vapor bands (4000 to
3500 cm™') and CO, bands (from 2442 to 2208 cm ™ and from 914 to 600 cm™") were removed

Absorbance

0 1850 1700 1550 1400 1250 1100 950 $00 650

A \\’a\enumbel(cm‘) A
Fig 1. Representative FT-IR spectral data obtained after area normalization.

https://doi.org/10.1371/journal.pone.0186664.g001
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Table 1. Assignment of major bands in a representative Fourier-transform infrared (FT-IR) spectrum of Panax ginseng samples.

Wavenumber (cm™") Vibration Suggested biomolecular assignment Reference
4000-3500 O-H stretching H,O [37]
3335 O-H stretching Hydroxyl group of ginsenosides [40]
N-H stretching Amide A of proteins [39]

2923 C-H stretching C-H bond of ginsenosides [40]
C-H stretching (asymmetric) CH, in fatty acids, lipids, and proteins [41]

Methylene group of membrane phospholipids [39]

2442-2208 0O-C-O stretching CO, [37]
1733 C = O stretching Carbonyl group and lipids [42]
1621 OC = O stretching (asymmetric) Calcium oxalate [43]
C-O and C-N stretching Amide | of proteins [41]

1417 CHjs stretching (asymmetric) Lipids and aromatics [39]
1373 COO stretching (symmetric) and CH3 bending Lipids and proteins [45]
1253 N-H bending in plane and C-N stretching Amide Il of proteins [46]
1018 C-0O-C and CO stretching Polysaccharides [47]
-C-O- stretching Carbohydrates [48]

914-600 0-C-0O bending CO, [37]

https://doi.org/10.1371/journal.pone.0186664.t001

in order to avoid misleading results in the subsequent experiments. It can be assumed that gin-
seng root is mainly composed of saponin, polysaccharides, calcium oxalate, and lipids.

Determination of normalization, scaling methods, and number of PLS
components

Permutation tests were performed to select normalization methods (area normalization, min-
max normalization, and vector normalization), scaling methods (UV and Pareto), and the
number of PLS components (from one to three PLS components) for discriminating the ages
and parts of ginseng samples.

The permutation parameters for various normalization and scaling methods and numbers
of PLS components of PLS-DA models for discriminating 5- and 6-year-old ginseng samples
using tap root, rhizome, and lateral root are listed in S1, S2 and S3 Tables, respectively. The
same parameters for discriminating the three parts of ginseng using 5- and 6-year-old samples
are listed in 54 and S5 Tables, respectively.

Table 2 lists PLS-DA models selected from S1 to S5 Tables. R*Y and QY indicate how well
a model fitted the data and how well it predicted the results of other experiments, respectively.
Both the R®Y and QY values range between 0 and 1.0. A higher R*Y value in a PLS-DA model
indicates a better model fit. Q®Y values within the range of 0.5-0.9 are considered to indicate
good predictability, while those of 0.9-1.0 indicate excellent predictability. The R*Y and Q*Y
intercepts are obtained in a permutation test; in valid models these parameters must be less
than 0.4 and 0.05, respectively [49]. Among valid PLS-DA models satisfying RY and Q*Y
intercept values, those models obtained by area or min-max normalization and using two PLS
components showed higher RY and Q?Y values for discriminating 5- and 6-year-old ginseng
samples using tap root, rhizome, and lateral root. When vector normalization was employed to
construct the PLS-DA model, the use of one PLS component produced higher RY and Q*Y
values.

To discriminate the three parts (tap root, rhizome, and lateral root) of 5-year-old ginseng
samples, higher RY and QY values were obtained by using any of the normalization methods
when three PLS components were used to establish the models. To discriminate the three parts
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Table 2. Selection of partial-least-squares—discriminant analysis (PLS-DA) models according to various normalization and scaling methods and
numbers of PLS components for discriminating cultivation ages and parts of P. ginseng samples.

Normalization method Scaling

5- vs. 6-year-old TR

Area uv
Min—-max uv
Vector (first) uv
Vector (second) Par
5- vs. 6-year-old RH

Area uv
Min—-max Par
Vector (first) Par
Vector (second) Par
5- vs. 6-year-old LR

Area Par
Min—-max Par
Vector (first) Par
Vector (second) Par
5-year-old TR vs. RHvs. LR

Area Par
Min—-max Par
Vector (first) Par
Vector (second) Par
6-year-old TR vs. RHvs. LR

Area Par
Min—-max Par
Vector (first) uv
Vector (second) Par

R%Y

0.904
0.870
0.961
0.973

0.880
0.841
0.725
0.887

0.923
0.939
0.774
0.677

0.866
0.826
0.908
0.915

0.889
0.849
0.889
0.678

Q%Y

0.719
0.832
0.855
0.907

0.816
0.722
0.478
0.586

0.798
0.723
0.672
0.417

0.771
0.544
0.754
0.862

0.758
0.681
0.800
0.501

R2Y intercept

0.343
0.265
0.390
0.119

0.384
0.313
0.360
0.209

0.391
0.391
0.285
0.533

0.270
0.264
0.328
0.363

0.256
0.288
0.362
0.265

Q?Y Intercept

-0.373
-0.389
-0.275
-0.325

-0.290
-0.231
-0.141
-0.164

-0.280
-0.209
—-0.233
-0.109

-0.312
—0.243
-0.370
—-0.349

-0.370
-0.327
—-0.340
-0.317

Number of components

W W ww = | =N N = = 1NN - = NN

NN W w

TR, tap root; RH, rhizome; LR, lateral root; Min—-max, minimum—maximum; Vector (first), vector normalization applied after the first differentiation; Vector

(second), vector normalization applied after the second differentiation; UV, unit variance; Par, Pareto.

https://doi.org/10.1371/journal.pone.0186664.t1002

of 6-year-old ginseng samples, higher R*Y and QY values were obtained by using three PLS
components with area or min-max normalization, whereas models constructed with two PLS
components showed higher R*Y and QY values by vector normalization.

Development of a PLSR model for predicting the cultivation ages of

ginseng

We constructed PLSR models to predict the ages and parts of ginseng samples based on the
selected normalization method and the number of PLS components. In addition, various VIP
cutoff values were used to select variables for constructing the prediction models. PLSR models
were constructed based on data from the training set, and the constructed models were evalu-
ated using the test set (which was independent from training set). Root-mean-square error of
estimation (RMSEE) values were obtained from PLSR models constructed based on training
sets. These values were then evaluated to determine the accuracy of PLSR models. Root-mean-
square error of prediction (RMSEP) values were used to assess the predictability of the models.

The values of RMSEE and RMSEP range between 0 and 1, with smaller values indicating
higher accuracy and predictability of the models.
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Table 3. Selected normalization and variable influence on projection (VIP) cutoff values for model construction for discriminating 5- and 6-year-
old ginseng samples and permutation parameters derived from the partial-least-squares regression (PLSR) prediction models.

Normalization vIP Total RMSEE RMSEP R%Y Q% R%Y Q%Y Number of
method cutoff wavenumbers (months) (months) intercept intercept components
5-vs. 6-year-old TR (UV scaling)
Vector (second) 1.0 552 0.077 (0.924) | 0.044 (0.528) | 0.981 | 0.970 —0.064 —-0.369 1
5- vs. 6-year-old RH (UV scaling)
Min—-max 1.3 112 0.198 (2.376) | 0.036 (0.432) | 0.890 | 0.788 0.201 —0.389 2
5- vs. 6-year-old LR (UV scaling)
Area 1.3 262 0.171(2.052) | 0.096 (1.152) | 0.918 | 0.806 0.231 —0.296 2

TR, tap root; RH, rhizome; LR, lateral root; RMSEE, root-mean-square error of estimation; RMSEP, root-mean-square error of prediction; UV, unit variance.

https://doi.org/10.1371/journal.pone.0186664.t003

As listed in S6-S13 Tables, various VIP cutoff values were tested in order to construct better
prediction models based on the RMSEP values among those satisfying the R’Y and QY inter-
cept values. S6-59 Tables list the prediction models for discriminating between 5- and 6-year-
old ginseng samples. The best models for each part of the P. ginseng samples among S6-59
Tables are listed in Table 3. For tap root, the PLS-DA model constructed by vector normaliza-
tion applied after the second differentiation with a VIP cutoff of 1.0 showed the lowest RMSEP
value of 0.044 (0.528 months) along with a higher R*Y value of 0.981 and a QY value of 0.970
(S2 Fig). For rhizome, min-max normalization with a VIP cutoff of 1.3 was employed to con-
struct the best PLSR model, which showed the lowest RMSEP value of 0.036 (0.432 months)
when discriminating between the 5- and 6-year-old ginseng samples (S3 Fig). For lateral root,
the PLSR model using area normalization with a VIP cutoff of 1.3 showed a RMSEP value of
0.096 (1.152 months), which was higher than those for tap root and rhizome (54 Fig).

Table 3 indicates that two prediction models using tap root and rhizome were suitable for dis-
criminating 5- and 6-year-old ginseng samples. However, the RMSEE, R?Y, and QY values of
PLSR models when using tap root were better than for those when using rhizome. Thus, the
PLSR model using tap root can be considered as the most suitable model for discriminating the
cultivation age. However, the rhizome is generally removed before using P. ginseng root due to
its emetic effects [50]. The rhizome has economically lower worth than tap root because of this
adverse effect. The rhizome of P. ginseng samples could be an alternative resource to the tap root
for discriminating 5- and 6-year-old ginseng samples without the concern of economical loss.

Development of a PLSR model for predicting the parts of ginseng
S10-S13 Tables list various prediction models for discriminating ginseng parts, among which

Table 4 lists the best models for discriminating 5- and 6-year-old ginseng parts. For predicting

Table 4. Selected normalization and variable influence on projection (VIP) cutoff values for model construction for discriminating various parts of
ginseng samples, and the permutation parameters derived from the PLSR prediction models.

Normalization VIP cutoff | Total wavenumbers | RMSEE | RMSEP | R2Y | Q2Y | R?Y intercept | Q%Y intercept | Number of components
method
5-year-old TR vs. RH vs. LR (UV scaling)
Vector (first) 15 23 0.204 0.161 | 0.950 | 0.913 0.352 -0.223 2
6-year-old TR vs. RH vs. LR (Par scaling)
Vector (second) 1.3 258 0.337 0.185 | 0.864 | 0.764 0.363 -0.321 2

TR, tap root; RH, rhizome; LR, lateral root; RMSEE, root-mean-square error of estimation; RMSEP, root-mean-square error of prediction; UV, unit variance;
Par, Pareto.

https://doi.org/10.1371/journal.pone.0186664.1004
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Fig 2. Flow chart to discriminate cultivation ages and parts of ginseng. VIP, variable influence on projection.

https://doi.org/10.1371/journal.pone.0186664.9002

the various parts of 5-year-old ginseng samples, the PLS-DA model constructed by vector nor-
malization after the first differentiation and with a VIP cutoff of 1.5 and two PLS components
showed the lowest RMSEP value of 0.161 along with a higher R?Y value of 0.950 and a Q*Y

value of 0.913 (S5 Fig). These values suggest that the model had excellent predictive abilities.

value of 0.864 and a QY value of 0.764 (S6 Fig). It is generally difficult to determine the parts

For discriminating various parts of 6-year-old ginseng samples, vector normalization
applied after the second differentiation and with a VIP cutoff of 1.3 and two PLS components
was the best model. This model showed the lowest RMSEP value of 0.185 and a higher R*Y
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of ginseng that have been used to produce powdered ginseng products. The content of ginse-
nosides, which are the main compound in ginseng, is higher in lateral roots than in the tap
root [51]. Even if commercial ginseng products comprise only 6-year-old ginseng, the efficacy
and composition of ginseng samples might differ with the ginseng parts. Therefore, the PLSR
model for discriminating the various parts of ginseng could be useful from both academic and
commercial points of view.

Conclusions

This study employed FT-IR analysis combined with multivariate statistical analysis to discrim-
inate 5- and 6-year-old ginseng samples as well as three parts of ginseng plants. The focus was
on 5- and 6-year-old ginseng roots since they constitute most of the commercially available
ginseng products. For discriminating cultivation age and different parts, various conditions
were selected including the number of PLS components, normalization methods, and VIP cut-
off value, as shown in Fig 2. The best prediction model for discriminating 5- and 6-year-old
ginseng was obtained using the tap root. Vector normalization applied after the second differ-
entiation, one PLS component, and a VIP cutoff of 1.0 were suggested to be optimal (based on
the lowest RMSEP value) for the construction of this prediction model. In addition, for dis-
criminating the three parts of P. ginseng, the optimized PLSR models were established by vec-
tor normalization, two PLS components, and selecting variables based on VIP cutoft values of
1.5 (for 5-year-old ginseng) and 1.3 (for 6-year-old ginseng).

To our knowledge, this is the first study to determine suitable normalization methods and
the number of PLS components of FT-IR spectral data in the development of PLSR models to
discriminate 5- and 6-year-old ginseng samples and various ginseng parts. The information
obtained in this study provides a solid foundation for further studies using various cultivars,
cultivation methods, and geographic origins of ginseng samples to construct commercially
applicable discrimination and prediction models.

Supporting information

S1 Fig. External appearance characteristics of Panax ginseng ‘Yunpoong’ sample with dif-
ferent parts used in this study. Panax ginseng is composed of three parts.
(TIF)

S2 Fig. Score plot derived from PLSR model of Panax ginseng tap root (TR) based on vari-
ables with VIP values over 1.0 (A), permutation testing plot (B), and correlation plot using
training set (C) and test set (D). Second differentiation, vector normalization, and unit vari-
ance scaling were used in FT-IR spectrum. PLSR, partial least squares regression; VIP, variable
influence on projection; RMSEE, root mean squared error of estimation; RMSEP, root mean
squared error of prediction.

(TIF)

S3 Fig. Score plot derived from PLSR model of Panax ginseng rhizome (RH) based on vari-
ables with VIP values over 1.3 (A), permutation testing plot (B), and correlation plot using
training set (C) and test set (D). Minimum-maximum normalization and unit variance scal-
ing were used in FT-IR spectrum. PLSR, partial least squares regression; VIP, variable influ-
ence on projection; RMSEE, root mean squared error of estimation; RMSEP, root mean
squared error of prediction.

(TIF)

S4 Fig. Score plot derived from PLSR model of Panax ginsenglateral root (LR) based on
variables with VIP values over 1.3 (A), permutation testing plot (B) and correlation plot
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using training set (C), test set (D). Area normalization and unit variance scaling were used in
FT-IR spectrum. PLSR, partial least squares regression; VIP, variable influence on projection;
RMSEE, root mean squared error of estimation; RMSEP, root mean squared error of predic-
tion.

(TIF)

S5 Fig. Score plot derived from PLSR model of 5-year-old Panax ginsengbased on vari-
ables with VIP values over 1.5 (A), permutation testing plot (B), and correlation plot using
training set (C) and test set (D). First differentiation, vector normalization, and unit variance
scaling were used in FT-IR spectrum. PLSR, partial least squares regression; VIP, variable
influence on projection; RMSEE, root mean squared error of estimation; RMSEP, root mean
squared error of prediction.

(TIF)

S6 Fig. Score plot derived from PLSR model of 6-year-old Panax ginsengbased on vari-
ables with VIP values over 1.3 (A), permutation testing plot (B), and correlation plot using
training set (C) and test set (D). Second differentiation, vector normalization, and pareto
scaling were used in FT-IR spectrum. PLSR, partial least squares regression; VIP, variable
influence on projection; RMSEE, root mean squared error of estimation; RMSEP, root mean
squared error of prediction.

(TIF)

S1 Table. PLS-DA model parameters according to the number of components (one to
three components), normalization (area, minimum-maximum, and vector normalization)
and scaling methods (unit variance and pareto) for differentiation of cultivation ages of
Panax ginseng using tap root (TR). For vector normalization, first and second differentiations
were applied. PLS-DA, partial least squares discriminant analysis; Min-max, minimum-maxi-
mum; UV, unit variance; Par, pareto.

(DOCX)

S2 Table. PLS-DA model parameters according to the number of components (one to
three components), normalization (area, minimum-maximum, and vector normaliza-
tion), and scaling methods (unit variance and pareto) for differentiation of cultivation
ages of Panax ginseng using rhizome (RH). For vector normalization, first and second differ-
entiations were applied. PLS-DA, partial least squares discriminant analysis; Min-max, mini-
mum-maximum; UV, unit variance; Par, pareto.

(DOCX)

$3 Table. PLS-DA model parameters according to the number of components (one to
three components), normalization (area, minimum-maximum, and vector normaliza-
tion), and scaling methods (unit variance and pareto) for differentiation of cultivation
ages of Panax ginseng using lateral root (LR). For vector normalization, first and second dif-
ferentiations were applied. PLS-DA, partial least squares discriminant analysis; Min-max, min-
imum-maximum; UV, unit variance; Par, pareto.

(DOCX)

$4 Table. PLS-DA model parameters according to the number of components (one to
three components), normalization (area, minimum-maximum, and vector normaliza-
tion), and scaling methods (unit variance and pareto) for differentiation of ginseng parts
using 5-year-old Panax ginseng. For vector normalization, first and second differentiations
were applied. PLS-DA, partial least squares discriminant analysis; Min-max, minimum-

PLOS ONE | https://doi.org/10.1371/journal.pone.0186664 October 19, 2017 10/15


http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0186664.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0186664.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0186664.s007
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0186664.s008
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0186664.s009
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0186664.s010
https://doi.org/10.1371/journal.pone.0186664

@° PLOS | ONE

Prediction of cultivation age and parts of P. ginseng by FTIR combined with multivariate statistical analysis

maximum; UV, unit variance; Par, pareto.
(DOCX)

S5 Table. PLS-DA model parameters according to the number of components (one to
three components), normalization (area, minimum-maximum, and vector normalization),
and scaling methods (unit variance and pareto) for differentiation of ginseng parts using
6-year-old Panax ginseng. For vector normalization, first and second differentiations were
applied. PLS-DA, partial least squares discriminant analysis; Min-max, minimum-maximum;
UV, unit variance; Par, pareto.

(DOCX)

S6 Table. List of permutation parameters obtained by variables selected by various variable
influence on projection (VIP) cutoff values and scaling methods. Area normalization and
two PLS components were used for discriminating between 5- and 6-year-old ginseng samples.
TR, tap root; RH, rhizome; LR, lateral root; RMSEE, root mean squared error of estimation;
RMSEDP, root mean squared error of prediction; UV, unit variance; Par, pareto.

(DOCX)

S7 Table. List of permutation parameters obtained by variables selected by various variable
influence on projection (VIP) cutoff values and scaling methods. Minimum-maximum nor-
malization and two PLS components were used for discriminating between 5- and 6-year-old
ginseng samples. TR, tap root; RH, rhizome; LR, lateral root; RMSEE, root mean squared error
of estimation; RMSEP, root mean squared error of prediction; UV, unit variance; Par, pareto.
(DOCX)

S8 Table. List of permutation parameters obtained by variables selected by various variable
influence on projection (VIP) cutoff values and scaling methods. Vector normalization

after first differentiation and one PLS component were used for discriminating between 5- and
6-year-old ginseng samples. TR, tap root; RH, rhizome; LR, lateral root; RMSEE, root mean
squared error of estimation; RMSEP, root mean squared error of prediction; UV, unit vari-
ance; Par, pareto.

(DOCX)

S9 Table. List of permutation parameters obtained by variables selected by various variable
influence on projection (VIP) cutoff values and scaling methods. Vector normalization
after second differentiation and one PLS component were used for discriminating between 5-
and 6-year-old ginseng samples. TR, tap root; RH, rhizome; LR, lateral root; RMSEE, root
mean squared error of estimation; RMSEP, root mean squared error of prediction; UV, unit
variance; Par, pareto.

(DOCX)

$10 Table. List of permutation parameters obtained by variables selected by various vari-
able influence on projection (VIP) cutoff values and scaling methods. Area normalization
and three PLS components were used for discriminating ginseng samples from three parts (tap
root, rhizome, lateral root). TR, tap root; RH, rhizome; LR, lateral root; RMSEE, root mean
squared error of estimation; RMSEP, root mean squared error of prediction; UV, unit vari-
ance; Par, pareto.

(DOCX)

S11 Table. List of permutation parameters obtained by variables selected by various vari-
able influence on projection (VIP) cutoff values and scaling methods. Minimum-maxi-
mum normalization and three PLS components were used for discriminating ginseng samples
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