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ABSTRACT

Methylation of a CpG island is a faithful marker of
silencing of its associated gene. Different appro-
aches report the methylation status of a CpG
island based on the determination of one or a few
CpG sites by assuming the homogeneity of methy-
lation along the element. This strategy is frequently
applied in both locus-specific and genome-wide
studies, but often without a validation of the repre-
sentativeness of the interrogated CpG site com-
pared with the whole element. We have evaluated
the predictive informativeness of the HpaII sites
located in CpG islands using data from high-
resolution methylome maps, which offer the possi-
bility to assess the methylation homogeneity of each
CpG island and to determine the reporter accuracy
of single sites as surrogate markers. An excellent
correlation was observed between the HpaII and
CpG island methylation levels (r> 0.93). At the quali-
tative level, the predictive sensitivity of HpaII was
>95% with >92% specificity for methylated CpG
islands and >90% sensitivity with >95% specificity
for unmethylated CpG islands. This analysis provides
a global validation framework for strategies based
on the use of the methylation-sensitive HpaII restric-
tion enzyme.

INTRODUCTION

Epigenetic information is encoded as a heritable combin-
ation of chemical modifications of both DNA and its
packaging histones (1,2). Methylation of the cytosine
base within the CpG dinucleotide is the main epigenetic
modification of the DNA in mammals (3,4). Most of the
human genome is CpG depleted. However, this dinucleo-
tide can be found at close to its expected frequency in
small genomic regions (200 bp to a few kb) known as
CpG islands (5,6). These areas are usually ‘protected’
from methylation and are located in the proximal

promoter regions of 75% of human genes (3,4,7).
Methylated CpG islands are strongly and hereditably re-
pressed (4). Therefore, DNA methylation has been con-
sidered as a mark for long-term inactivation (4,8,9). DNA
methylation patterns are characteristic of developmental
stages and cell differentiation and are also intrinsically
associated with multiple pathologies, being cancer a prom-
inent example (3,10–12).

The epigenomic landscape varies markedly across tissue
types and between individuals (13,14). Hence, there is not
a single reference map, what represents an extraordinary
challenge not only for experiment design but also for data
management, analysis and interpretation. A considerable
effort has been made in the last years to obtain
genome-scale maps of DNA methylation and other epi-
genetic marks in different cell types (15–17). Ambitious
initiatives, i.e. the NIH Roadmap Epigenomics Mapping
Consortium (www.roadmapepigenomics.org), the Human
Epigenome Project (www.epigenome.org) and the
Blueprint project (http://www.blueprint-epigenome.eu)
are addressed to map DNA methylation, histone modifi-
cations and other chromatin features in different cell and
tissue types.

A large number of methodologies have been developed
for the analysis of DNA methylation at different genomic
scales (reviewed in (3,11,18,19)). All data generated until
now have been obtained using techniques based on one of
these three principles: methylation-sensitive endonucle-
ases, bisulfite conversion or purification of methylated
DNA by affinity/specific antibodies (18). Besides direct
sequencing of bisulfite converted DNA, which is
probably the reference method (20), an extraordinary cor-
nucopia of techniques has found a niche in the Epigenetics
labs. This is due to the relatively homogeneous distribu-
tion of DNA methylation (or unmethylation) within
definite genomic elements. Prominent examples are CpG
islands and repeat sequences in which most CpG sites
within the element show similar levels of DNA methyla-
tion. This uniformity allows the extrapolation of the
analysis of a single site or a few sites to the whole CpG
island or repeat element. In the foremost studies, this
property was instrumental to reveal the global alterations
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of DNA methylation profiles in cancer cells (21,22). Still
nowadays, the analysis of a single CpG site or a few CpG
sites as surrogate indicators of the DNA methylation
status of the corresponding element is the most prevalent
strategy in epigenetic studies at different scales. These
approaches are based on either the enzymatic digestion
using specific restriction endonucleases or the bisulfite
transformation and offer the advantage of high through-
put, high sensitivity and relative simplicity of data analysis
(18,23).

Most of the studies that use surrogate markers perform
some kind of validation and make a global estimation of
technique’s accuracy. On the other hand, the post-hoc
analysis of massive data rarely includes the recognition
of bona fide and counterfeit sites which precludes the
direct comparison of data generated with different
approaches beyond the small subset of elements validated
independently. Recent advances in sequencing methods
and the development of bioinformatic tools have
allowed the generation of single-base resolution maps of
human methylomes (24–30). The generation of these high-
resolution DNA methylation maps for different cell types,
including pathological situations, is likely to represent a
milestone in epigenetic studies of similar impact as the
sequencing of the human genome. However, an indiscrim-
inate application of such approaches to most DNA methy-
lation studies is nowadays unfeasible.

Assuming that bisulfite sequencing is today’s gold
standard in DNA methylation analysis and using pub-
lished results at the genome scale (25,26) as the reference
map, we have examined the accuracy of using single CpG
sites as surrogate markers for the predefined CpG islands.
For pragmatic reasons we report here the analysis of the
CpG within the HpaII (CCGG) restriction site, frequently
used in genome-scale approaches (11,18). However, other
sites may be easily analysed in the same way with our
pipeline.

MATERIALS AND METHODS

DNA methylation data acquisition

Data were obtained from two studies, both whole-genome
single-base resolution measurements of the methylation by
high-throughput bisulfite sequencing. Together they
provide data from H1 human embryonic stem cells,
IMR90 fetal lung fibroblasts, ADS female adipose stem
cells (ADSC) and adipocytes derived from ADSC
(ADS-Adi) (25,26). These studies generated 1.16, 1.18,
1.10 and 1.13 billion reads for H1, IMR90, ADSC and
ADS-Adi, respectively (ADSC and ADS-Adi reported
reads were originally paired-end reads but they were
uncoupled and treated as single reads in this analysis).
The HpaII-CpG island methylation correlation was also
analysed in cell lines: iPSC derived from ADSC
(ADS-iPSC), three iPSC lines derived from foreskin fibro-
blasts (FF-iPSC 6.9, FF-iPSC 19.7, FF-iPSC 19.11), H9
human embryonic stem cells and iPSC derived from
IMR90 fibroblasts (IMR90-iPSC) (26). All reads were
aligned to the human reference sequence (NCBI build
36/hg18) using the Bowtie program (31). Reads were

downloaded from http://neomorph.salk.edu/human_
methylome/data.html (H1 and IMR90) and http://neo
morph.salk.edu/ips_methylomes/data.html (rest of cell
lines), processed to be SAM-like, transformed to the
BAM format and indexed using the C++ program
SAMTOOLS (32).
The genomic coordinates of the CpG islands (defined

according classical criteria (5): GC content of 50% or
greater, length >200 bp, and a ratio >0.6 of observed
number of CpG dinucleotides to the expected number)
and the human genome sequence were downloaded
from the UCSC Genome Browser, version hg18 (33).
Additional analyses were also performed using CpG
islands annotated using experimental (34) and bioinfor-
matic criteria (35). Only reads overlapping fully or par-
tially with these positions were considered (Supplementary
Table S1). HpaII positions and CpG islands sequences
were obtained by processing the human genome with
Perl scripts. Each HpaII was assigned to the correspond-
ing CpG island using the ‘intersectBed’ function from
BEDTOOLS suite (36). A scheme of the data acquisition
and processing is shown in Supplementary Figure 1A.

Methylation coefficient calculation

The methylation coefficient was calculated for CpG
islands (ßC) and HpaII restriction sites (ßH) using a
Python script (available from the authors upon request).
In the sequence reads, unmethylated cytosines are
visualized as thymines (T) due to the bisulfite conversion
whereas methylated cytosines remain untransformed (C).
Hence, the coefficient was defined as the ratio between the
number of cytosines and the total number of cytosines and
thymines (no. of C / (no. of C+no. of T) (Supplementary
Figure 1B). This definition is equivalent to the ß value
used in methylation arrays (37) and ranges from 0
(no methylation) to 1 (fully unmethylated). The CpG
dinucleotide includes two cytosines, each one on one
strand, and reads can cover differently each of them
(i.e. if all reads covering a CpG are 50 to 30, only informa-
tion of one cytosine is provided). For that reason, each
cytosine within a CpG dinucleotide was processed as an
individual genomic position and a methylation coefficient
was assigned to it. Our Python script firstly scans each
CpG island sequence for CG motif. Once found, it
assigns the corresponding nucleotides for that position
using the python library pysam and according to reads
already indexed (Supplementary Figure S1) and taking
into account both Watson and Crick DNA strands.
Positions with <5 reads were discarded as they were con-
sidered not informative enough. In order to use only pos-
itions with trustable methylation information, an
additional filter was added: positions with <5 C+T
were also discarded. With these filters we obtain the
same coverage as reported in a previous analysis (23).
Mean and standard deviation (SD) values were obtained
for each CpG island taking into account only the valid
positions. Only CpG islands with a minimum of inform-
ativeness (>25% CpG sites covered by at least 5 reads
each) were considered, what resulted in a minimum of
10 693 informative CpG islands for the H1 cell line and
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more than 26 000 for the ADS-Adi samples (Supple-
mentary Table S1). The total number of HpaII sites
included in the analysis ranged from 32 153 for the H1
cells to more than 250 000 in ADS-Adi (Supplementary
Table S1). A second analysis was also performed for all
CpG islands covered with at least one informative position
to check for the robustness of the reporter informativeness
when limited coverage is obtained. When the informative-
ness restrictions were eliminated, more than 21 000 CpG
islands contained at least one HpaII site covered by at
least 5 reads (Supplementary Table S1). It is worth to
note that the numeric differences between the pairs
H1/IMR90 and ADSC/ADS-Adi are caused by the differ-
ent read coverage between the two studies. Scripts are
available upon request.
A number of CpG islands contained more than one

HpaII site in the analysed sequence (Supplementary
Table S1). In these cases, the mean methylation value of
all the HpaII sites was calculated. The reporter value of
individual and mean ßH was calculated as the difference
with the respective CpG island methylation value.
A randomized set of data was generated to evaluate

possible biases due to the bimodal distribution of methy-
lation. A virtual catalog of CpG islands matching the
same size and coverage of the ones included in the study
was generated and the valid CpG sites methylation
coefficient values were randomly distributed along the
CpG islands and used to calculate the corresponding ßC.
Hypothetical HpaII sites were randomly chosen matching
the actual distribution. The simulation was done with H1
and IMR90 datasets.

Data analysis

The methylation value for the CpG island and HpaII sites
together with structural and descriptive information like
genomic coordinates or O/E ratio was stored in a mySQL
Database to allow rapid retrieval and the easy establish-
ment of relationships (Supplementary Figure S1). Scripts
are available upon request. Graphs and derived calcula-
tions were generated using the statistical software R. The
jitter mode was used in scatter plots with large datasets to
improve dot visualization. The complete analysis was per-
formed with the subset of CpG islands with high coverage
(Supplementary Table S1) and all the CpG islands repre-
sented by at least one sequence read. Most analyses
produced identical or very similar results when the
filtered (high coverage) or the unfiltered sets were used.
For simplicity, only data generated using the filtered set
are shown here, except for those cases in which different
distributions were observed (Supplementary Figure S2).

RESULTS

Characterization of CpG island DNA methylation internal
heterogeneity

The ßC showed a bimodal distribution with most values
near 0 (fully unmethylated) or 1 (fully methylated) with
some intermediate values (Supplementary Figure S2), and
confirming the enrichment for methylated CpG islands in
the H1 cells as compared with the other cell lines as

reported (25). Interestingly, this difference disappears
when all CpG islands with at least one sequence read
were included in the analysis (Supplementary Figure S2).
This indicates a methylation dependent bias in the
coverage of CpG islands in the H1 sample as methylated
CpG islands are better covered than unmethylated ones.

CpG island methylation heterogeneity was represented
as the SD of the methylation coefficient among the CpG
dinucleotides contained in a CpG island (Figure 1). As a
whole, the greatest variability was observed for a small
population of CpG islands with intermediate methylation
values indicating alternative methylation status of individ-
ual CpG positions rather than a homogeneous intermedi-
ate methylation level of the CpG sites. Next, we explored
the distribution of variability according to the methylation
levels. As expected, methylated CpG islands exhibited
the lowest levels of internal variability (Supplementary
Figure S3). Surprisingly, unmethylated CpG islands ex-
hibited high homogeneity in H1 cells but a broader distri-
bution in the rest of samples, indicating a more relaxed
methylation profile. Intermediately methylated CpG
islands exhibited higher levels of internal variability, but
once again, H1 cells showed less variability (Supplemen-
tary Figure S3). Together, these results indicate a high
homogeneity in the methylation profiles of methylated
CpG islands. Highly unmethylated and, especially, inter-
mediately methylated CpG islands exhibit different levels
of heterogeneity, which might suggest that, for a small
number of CpG islands, individual CpG sites may not
be representative of the global profile.

HpaII site DNA methylation as a proxy of
CpG island methylation

To evaluate the predictive value of individual CpG sites
contained within a CpG island, the HpaII restriction site
was selected (CCGG) as this enzyme is used by multiple
locus-specific and genome-scale techniques. A total
of 32 153, 77 417, 249 053 and 251 516 HpaII sites
located inside the preselected CpG islands (Supplementary
Table S1) were informative in H1, IMR90, ADSC and
ADS-Adi cells, respectively. The symmetrical DNA
methylation of HpaII sites was confirmed by comparing
the methylation coefficient of both strands calculated sep-
arately (data not shown). Only HpaII sites with five or
more informative reads in at least one strand were con-
sidered to have high coverage and included in the analysis.

At global scale, an excellent correlation existed between
the ßH and that of its corresponding CpG island (H1,
r=0.96, P< 10�15; IMR90, r=0.93, P< 10�15; ADSC,
r=0.94, P< 10�15; ADS-Adi, r=0.94, P< 10�15)
(Figure 2). For the rest of cell lines a high correlation
was also observed (r> 0.94, Supplementary Figure S4).
Further analysis of the data revealed that, in methylated
CpG islands, HpaII sites tend to be hypermethylated (dif-
ferential methylation coefficient <0) as compared with the
global methylation coefficient of the respective CpG island
in all the cell lines analysed (Figure 3). In unmethylated
and intermediately methylated CpG islands no biases were
observed.
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We have applied this analysis to the CpG islands
annotated in the UCSC genome browser, as it represents
a referential source of genomic information. Nevertheless,
other studies have proposed new methods and criteria to
define CpG islands. We have considered two of these
studies, one based on the experimental capture of CpG
islands (34) and the other on the application of hidden
Markov models (35). In both cases, the high correlation
was maintained (Supplementary Figure S5). Noteworthy,
CpG islands identified experimentally (34) but not
annotated in the UCSC showed a similar correlation
even the proportion of methylated CpG islands was
higher in the newly identified CpG islands than those
overlapping with the classical definition (Supplementary
Figure S5).

As most studies on DNA methylation report data as
binary marks (methylated/unmethylated), a qualitative
evaluation of the predictive value of HpaII sites was
made. A Receiver Operating Characteristic (ROC) curve
analysis was performed to ascertain the optimal cutoff
points and accuracy (Supplementary Figure S6). In all
cases the area under the curve was above 0.95. The ßH
cutoff point for the methylated CpG islands (ßC> 0.75)
ranged from �0.40 to �0.67 (Supplementary Figure S6).
The ßH cutoff point for the unmethylated CpG islands

(ßC< 0.25) ranged from <0.34 to <0.12. Sensitivity
and specificity were �90% in all cases (Supplementary
Figure S6). An additional evaluation was performed in
which matching or unmatching scores were set when the
absolute difference between the two coefficients (jßC – ßHj)
was over 0.25. Under this arbitrary criterion, 5.2% (1169
out of 32 153), 8.3% (6455 out of 77 417), 3.13% (7802 out
of 249 053) and 3.01% (7575 out of 251 516) of the HpaII
sites showed discordant results for H1, IMR90, ADSC
and ADS-Adi cells, respectively (Figure 2). When the
absolute difference value determining discordance was
set to >0.5, the proportion of unmatching data was
reduced to 0.9% (300 out of 32 153), 1.3% (1034 out of
77 417), 0.52% (1288 out of 249 053) and 0.50% (1249 out
of 251 516), respectively.
Besides the low proportion of discordant sites, a high

recurrence was observed, especially in the samples with
high coverage (Supplementary Figure S7). For instance,
the comparison of 3 samples showed an overlapping of
42% for 2 or more samples and of 16% for the 3
samples (absolute difference >0.25). This represents an
extraordinary enrichment, as the total number of inform-
ative HpaII sites was above 250 000 and the number of
discordant sites per sample is about 3%, which implies
that if discordance was randomly distributed, we would

Figure 1. Homogeneity of CpG methylation in CpG islands. The mean of all informative CpG sites located inside each CpG island (CpG island
methylation coefficient, ßC) is plotted against the SD for four of the cell lines analysed in this study. Vertical dash lines delimit graph areas
containing unmethylated (ßC mean <0.25) and methylated (ßC mean >0.75) CpG islands. The numbers of points represented in each area of the
graph and the distribution histograms of both axes are shown. Illustrative DNA methylation profiles of CpG islands represented in each area are
displayed using lollipop diagrams, in which empty dots represent unmethylated CpG sites, whereas gray-filled dots represent partially methylated sites
and black-filled dots fully methylated sites. Only CpG islands with high coverage are displayed.
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expect about 7 HpaII sites to discordant in the 3 samples,
in front of the 2268 observed.
A randomization of CpG sites among all CpG islands

(see Materials and Methods) showed no correlation
between the hypothetical HpaII sites and the corres-
ponding CpG island (r=0.30 and r=0.22 with data
from H1 and IMR90, respectively), demonstrating that

the observed correlation is not explained by the bimodal
distribution of DNA methylation levels (Suppementary
Figure S8).

In those CpG islands with more than one informative
HpaII site, the accuracy in the prediction of ßC was
improved by using the average of all the HpaII sites
instead of a single one. As expected, mean ßH exhibited
a better correlation with CpG island methylation (r> 0.98,
Figure 2 lower panels) and the difference between actual
ßC and individual ßH was dramatically reduced when the
mean HpaII methylation was used (Figure 4). At the
qualitative level the discordant points were reduced to
1.8, 2.7, 0.95 and 0.89% in H1, IMR90, ADSC and
ADS-Adi cells, respectively (discordant points are those
with differences in the methylation coefficient above
0.25). These figures were 0.2, 0.1, 0.05 and 0.04% when
the difference was set to >0.5.

As a whole, these results indicate that measurement of
DNA methylation in HpaII sites (individually or pooled)
is a good surrogate of the methylation state of the CpG
island, especially when more than one site is used per CpG
island.

Features of discordant sites

To get insights into the putative determinants of the
atypical methylation in discordant HpaII sites (those
points with an absolute difference between the ßC and
the ßH> 0.25) we explored some genomic features
(distance from the HpaII to the nearest extreme of the
CpG island, CpG island length, total number of CpG

Figure 2. Correlation plots for the methylation coefficient between the HpaII and the corresponding CpG island for H1, IMR90, ADS-Adi and
ADSC samples. Dash lines delimit areas with differences >0.25 between the HpaII site and the corresponding CpG island. The numbers of points
represented in each area of the graph and the distribution histograms of both axes are shown. Upper panels show correlation for individual HpaII
sites with the respective CpG island, lower panels depict the same correlations but comparing the mean of all HpaII sites in any given CpG island.
The number of informative CpG islands for each cell line is shown in Supplementary Table S1. Plots representing additional samples and alternative
CpG island definitions are shown in Supplementary Figures S4 and S5, respectively.

Figure 3. Density plot of the difference between the CpG island methy-
lation coefficient and the respective HpaII methylation coefficient.
A bimodal distribution was observed in H1 cells (blue) suggesting that
a subpopulation of HpaII sites tend to be hypermethylated as compared
with the referenced CpG island. Further exploration of the distribution
according to the methylation state of the CpG island (METHYLATED,
UNMETHYLATED and INTERMEDIATE) revealed a slight hyperme-
thylation of the HpaII site (as compared with the respective CpG island)
in methylated CpG islands (METHYLATED, see arrowhead).
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positions in the CpG island and Observed versus Expected
CG ratio of the CpG island) of these sites separately for
hypermethylated and hypomethylated HpaII sites as
compared with the respective CpG island (Supplementary
Figure S9). No major differences were observed in the
distribution of these features, with the exception of a
slight increase of discordant sites (both hypo and
hypermethylated) in larger CpG islands (Supplementary
Figure S9), especially in H1 cells.

Finally, we analysed the possible occurrence of single-
nucleotide polymorphisms (SNPs) affecting the CpG di-
nucleotide in the HpaII site that could explain some
discrepancies. SNP data were obtained from the dbSNP
build 135 at ftp.ncbi.nih.gov/snp. About 3% of all HpaII
sites may contain polymorphisms affecting the detection
of methylation. Discordant HpaII sites exhibited a highly
significant enrichment of SNPs (up to 9%) as compared
with concordant sites (Supplementary Table S2), which
suggests that a fraction of the discordances may be due
to genetic variation.

DISCUSSION

Bisulfite sequencing is considered the gold standard in
DNA methylation analysis but it is a cumbersome proced-
ure. The reading of electropherograms is an intricate task
not free of subjective interpretations and technical biases

(38,39). Hence, the use of alternative approaches relying
on the determination of one or a few CpG sites has been a
common detour in a large number of studies reporting
differential methylation of CpG islands. Methylation-
specific PCR (MSP) is probably the most employed alter-
native method in targeted studies whereas in genome-wide
studies, methylation-sensitive restriction enzymes and
specific probes for the methylated/unmethylated
sequence are frequently used (11,18). Each method has
specific advantages and disadvantages and can be more
or less suitable depending on the application. The
features of the different methods and their performance
in relation to different parameters (i.e. amount of material
required, resolution, quantitativeness, genomic coverage,
computational cost, etc.) have been addressed in detail
elsewhere (11,18,23,40–44).
In the last couple of years, a few studies have performed

whole-genome shotgun bisulfite sequencing (WGSBS) of a
reduced number of human samples (24–30) providing an
excellent framework to inquire the appropriateness of other
reduced complexity approaches from a theoretical (23) and
a practical (44,45) point of view. Here we have analysed the
concordance of HpaII site methylation with that of the in-
clusive CpG island using data from two WGSBS studies in
human samples (25,26). The choice of HpaII was obvious
as it is present in 94% of CpG islands in the human genome
and together with SmaI (CCCGGG), that includes the

Figure 4. Improvement in the predictive value of HpaII methylation coefficient when using the mean methylation of all HpaII sites within a CpG island.
The difference between the CpG island and the HpaII site methylation (X axis) exhibits a wider distribution as compared with the use of the mean of all
HpaII sites (Y axis) contained in the CpG island (see Supplementary Table S1 for the distribution of HpaII in the CpG islands analysed in this study).
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HpaII site (CCGG), is the most widely used methylation-
sensitive restriction enzyme for DNA methylation studies
(18,45,46). Moreover, we cannot elude historical reasons as
this site was instrumental in the discovery and initial char-
acterization of CpG islands originally recognized as HpaII
Tiny Fragment (HTF) islands (47,48).
In our analysis of Lister data, the methylation of HpaII

sites embedded in CpG islands appears as an excellent
reporter of the overall methylation of the CpG island, in
agreement with other studies using different strategies
(45). Beyond the quantitative correlation, it is important
to note that at the qualitative level (the most usual way to
report DNA methylation states), HpaII exhibited a very
high predictive value that was extremely accurate in CpG
islands containing two or more HpaII sites. The high cor-
relation appears to be independent of the global methyla-
tion levels, that were quite different among samples, and
tissue type. Moreover it is preserved in CpG islands
defined by alternative criteria (34,35) and not included in
the list of the UCSC genome browser (Supplementary
Figure S5). Noteworthy, our analysis also shows that a
higher proportion of the CpG islands defined by alterna-
tive criteria are methylated as compared with the
annotated in UCSC genome browser (Supplementary
Figure S5, vertical histograms). This is consistent with
the enrichment of differentially methylated regions
(DMRs) in these CpG islands (35,49). Moreover, most
of DMRs in colon cancer cells (50) overlap with CpG
islands defined using hidden Markov models (35), which
expands the applicability of this approach.
A limitation in the use of HpaII is that not all CpG

islands are represented. In the human genome, 1718 out
of 28 226 (6.1%) human CpG islands do not contain a
HpaII site. Nevertheless, achieving a similar coverage by
WGSBS represents an extraordinary challenge as the one
faced in Lister et al. (25,26), that limits the application of
this kind of approach to reduced sets of samples. Other
biases as base composition and size of the fragments
should be also considered in the massive application of
approaches based on HpaII, but these issues have been
already addressed in other studies that have demonstrated
that they have a minimal impact on the results (45). When
we analysed different features of the CpG islands, no
major bias that could affect the representativeness of the
HpaII was observed, maybe with the exception of the H1
cells, in which discordant sites tended to be more frequent
in longer CpG islands with a high number of CpGs
(Supplementary Figure S9). This bias was not associated
with the position of the HpaII site within the CpG island
(near or far from the edge). We may speculate that
many of those discrepancies could be due to the relative
abundance of 5-hydroxymethylcytosine (5hmC) in the
promoter regions of developmentally regulated genes in
embryonic stem cells (51). 5hmC, that cannot be distin-
guished from methylated cytosine by bisulfite sequencing,
is considered to be a transitional state in active
demethylation (reviewed in (52)) and hence, it is more
likely to confer a heterogeneous methylation profile to
the CpG island. Noteworthy, the methylation level of
the HpaII site appears to exaggerate the methylation
state of the CpG island in methylated CpG islands

(Figure 3), whereas in unmethylated CpG islands no
bias was observed. This subtle overestimation of methyla-
tion is no longer observed when the mean of all HpaII
sites is used (data not shown).

The procedure used by us is not limited to strategies
based on restriction enzymes but it may be also applied
for the design of reduced complexity strategies. In
example, information about the representativeness of
each CpG site in regard to the respective genomic
element may help in the design and selection of specific
probes to analyse DNA methylation using hybridization
microarrays with bisulfite transformed DNA (i.e. the
Infinium platform from Illumina).

In this report we have limited the analysis to CpG
islands as they constitute distinct genomic elements with
an important and definite functional role in gene regula-
tion. On the other hand, HpaII sites are also frequent
outside CpG islands, implying that other genomic
elements may be also analysed using similar strategies
provided they exhibit homogeneous methylation profiles.
One example could be CpG island shores. Currently, CpG
island shores are defined as regions within 2000 bp but not
inside CpG island (50). In cell differentiation and cancer
the methylation profiles of CpG island shores appear to be
more plastic than in CpG islands (49,50), becoming a pref-
erential target of genome-wide studies. The availability of
new methylomes for different cell types should allow the
evaluation of new surrogate markers amenable for other
genomic elements beyond CpG islands. In turn, homogen-
eity of DNA methylation profiles along genomic regions
may contribute to define previously unrecognized epigen-
etic domains as putative functional elements. Cancer cells
may represent a preferential target for this type of studies,
but the pervasive cell heterogeneity of most tumors
involves an additional level of difficulty in the analysis
and interpretation of partial methylation. In this case,
concordance of CpG methylation in CpG sites within
the same read may coexists with methylation heterogen-
eity between reads, what most probably should be inter-
preted as an indicator of cell heterogeneity.

In summary, our analysis provides a global validation
of strategies based on the use of the methylation-sensitive
restriction enzyme HpaII. This validation can be extended
to other similar reduced complexity approaches. Besides
the high informativeness and coverage offering these al-
ternative approaches, their principal advantage is the
drastic reduction in costs not only in expenses associated
with data generation (wet lab experiments) but also in
computational analysis (18,53–55). The systematic appli-
cation of reduced complexity methods in combination
with microarrays or next-generation sequencing in
studies that are not intended to obtain full methylomes
will thrust the generation of epigenomic maps with an
excellent benefit-cost ratio.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Tables 1 and 2 and Supplementary
Figures 1–9.
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