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Abstract
Introduction  Comprehensive genetic cancer profiling using circulating tumor DNA has enabled the detection of National Com-
prehensive Cancer Network (NCCN) guideline-recommended somatic alterations from a single, non-invasive blood draw. How-
ever, reliably detecting somatic variants at low variant allele fractions (VAFs) remains a challenge for next-generation sequencing 
(NGS)-based tests. We have developed the single-molecule sequencing (SMSEQ) platform to address these challenges.
Methods  The OncoLBx assay utilizes the SMSEQ platform to optimize cell-free DNA extraction and library preparation 
with variant type-specific calling algorithms to improve sensitivity and specificity. OncoLBx is a pan-cancer panel for solid 
tumors targeting 75 genes and five microsatellite sites analyzing five classes of NCCN-recommended somatic variants: 
single-nucleotide variants (SNVs), insertions and deletions (indels), copy number variants (CNVs), fusions and microsatellite 
instability (MSI). Circulating DNA was extracted from plasma, followed by library preparation using SMSEQ. Analytical 
validation was performed according to recently published American College of Medical Genetics and Genomics (ACMG)/
Association for Molecular Pathology (AMP) guidelines and established the limit of detection (LOD), sensitivity, specificity, 
accuracy and reproducibility using 126 gold-standard reference samples, healthy donor samples verified by whole-exome 
sequencing by an external College of American Pathologists (CAP) reference lab and cell lines with known variants. Results 
were analyzed using a locus-specific modeling algorithm.
Results  We have demonstrated that OncoLBx detects VAFs of ≥ 0.1% for SNVs and indels, ≥ 0.5% for fusions, ≥ 4.5 copies 
for CNVs and ≥ 2% for MSI, with all variant types having specificity ≥ 99.999%. Diagnostic performance of paired samples 
displays 80% sensitivity and > 99.999% clinical specificity. Clinical utility and performance were assessed in 416 solid tumor 
samples. Variants were detected in 79% of samples, for which 87.34% of positive samples had available targeted therapy.

Electronic supplementary material  The online version of this 
article (https​://doi.org/10.1007/s4029​1-019-00406​-0) contains 
supplementary material, which is available to authorized users.
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Key Points 

This article outlines the creation and rigorous valida-
tion of a novel single-molecule sequencing (SMSEQ) 
platform and a custom gene panel covering 75 genes and 
five microsatellite site markers for diagnosis of cancer 
and therapy selection.

We assay National Comprehensive Cancer Network 
(NCCN) guideline-recommended somatic genomic 
alterations for solid tumors using a single, non-invasive 
blood draw.

The platform analyzes, and we report the validation of, 
five classes of somatic variants: single-nucleotide vari-
ants, insertions and deletions, copy number variants, 
fusions, and microsatellite instability.
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1  Introduction

The increased use of next-generation sequencing (NGS) in 
laboratory-developed tests (LDTs) has facilitated the tran-
sition of this technology to clinical application for cancer 
genomic profiling [1]. Genetic analysis of tumors has driven 
the development and clinical use of targeted and immuno-
therapy for cancer treatment. For example, trastuzumab 
(Herceptin) is a targeted therapy with well-demonstrated 
efficacy in breast cancer and pembrolizumab, a checkpoint 
immunotherapy agent, was recently approved by the Food 
and Drug Administration (FDA) as a pan-tumor indica-
tion for patients with cancers harboring high microsatellite 
instability (MSI-H) or mismatch repair deficiency (dMMR) 
[2–6]. NGS based tests allow simultaneous testing of thou-
sands of loci and parallel analysis of different classes of 
genetic variants in a single assay. In contrast, other meth-
ods such as digital polymerase chain reaction (dPCR) may 
require sequential or multiple tests, or excessive material 
to cover the breadth and depth that NGS-based assays can 
achieve from a single assay [1, 7]. For example, BRAF 
V600E-mutated cancers, rare in non-small cell lung cancer, 
are not routinely tested for and are generally only identified 
through broad test panels, often from NGS platforms [8–10]. 
As new therapies, genetic targets, and target types emerge, 
LDTs are poised to be the first to translate new discoveries 
into validated clinical tests, with NGS being one of the most 
common platforms for new test development [1, 7].

NGS-based tumor tissue biopsy tests have demonstrated 
clinical utility for therapy selection [11, 12]. Tissue biopsies, 
when possible to obtain, are limited in scope to small speci-
mens. Many cancer types are genetically heterogeneous, and 
tumor tissue obtained by tissue biopsy may not fully reflect 
this heterogeneity, resulting in false negative results [3, 13]. 
Further, tissue biopsy, as an invasive diagnostic test, can be 
risky and has relatively low levels of patient acceptance [14]. 
Moreover, for patients in late metastatic stages of cancer, 
acquired mutations from continued tumor evolution at both 
primary and metastatic sites may lead to misleading results 
[15–17]. These shortcomings have fueled research and devel-
opment of liquid biopsy as an alternative to tissue biopsy.

Physiological events of cells such as apoptosis, necrosis 
and secretion release both cell-free DNA (cfDNA) from nor-
mal tissue as well as tumor-derived cfDNA (ctDNA) into the 
bloodstream [18]. It has been shown that variants of tumor 
origin can be identified in ctDNA [18–20]. Because cfDNA 
is released via physiological events, it might have a more 
global genomic view across the heterogeneous landscape 
of primary tumors and their metastases. In addition, cfDNA 
has a short half-life (~ 2 h), which means that blood can be 
used as a “real-time” reflection of the genetics of the tumor 
at the time of blood draw [21–25].

However, there are major challenges that limit the use 
of standard NGS techniques and protocols for accurate 
and reproducible detection of ctDNA in blood. Generally, 
there is a limited amount of cfDNA fragments present in 
peripheral blood, and within the cfDNA, only a small frac-
tion of molecules may be of tumor origin (ctDNA) [26]. 
The tumor fraction of cfDNA, which varies by cancer type, 
stage and location, has been reported at low variant allele 
fractions (VAFs) (0.1%) [27–30]. At such low VAFs, the 
intrinsic error rate of standard NGS renders it difficult to 
distinguish tumor-derived variants from various sources of 
error that occur during library preparation, cluster formation, 
and sequencing [30–32]. To overcome these technical hur-
dles, we have developed a novel platform, single-molecule 
sequencing (SMSEQ), that is optimized for isolating and 
analyzing ctDNA to identify five classes of variants at low 
allele frequencies.

In this study, we paired the SMSEQ platform with a 
pan-cancer NGS panel targeting 75 genes and 5 micros-
atellite sites to create a liquid biopsy test, OncoLBx. This 
panel targets five types of variants (single-nucleotide vari-
ants [SNVs], insertions and deletions [indels], copy num-
ber variants [CNVs], fusions and microsatellite instability 
[MSI]) spanning all National Comprehensive Cancer Net-
work (NCCN) guideline-recommended actionable genomic 
variants for solid tumors (see the electronic supplementary 
material [ESM] methods for the list of genes targeted for 
each variant type). We have performed validation and 
benchmarking of OncoLBx following the recently published 
College of American Pathologists (CAP)/Association for 
Molecular Pathology (AMP) guidelines for the develop-
ment and validation of NGS-based oncology panels [33]. 
OncoLBx was validated against a wide range of sample 
types, including gold-standard reference samples, cell lines 
with known variants, blood and tissue pairs, and clinical 
samples whose variants have been verified by an external 
Clinical Laboratory Improvement Amendments (CLIA)/
CAP lab. In addition, we show clinical results from our 
first 416 consecutive samples sent to our CAP-accredited 
laboratory in Taipei, Taiwan.

2 � Materials and Methods

2.1 � Analytical Samples

Analytical control samples and cell lines were acquired from 
commercial vendors (see supplementary Table S3 in the 
ESM). Samples used for analytical validation were derived 
from commercial reference samples designed and verified to 
contain known variants at specific allele frequencies or cell 
lines known to harbor specific variants (see the supplemen-
tary methods for details).
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2.2 � Clinical Samples

Institutional review board (IRB) and informed consent was 
obtained from Chang Gung Memorial Hospital for 97 study 
patients, including 36 patients providing both blood and 
tissue. Informed consent was obtained from all 97 study 
patients and for 319 consecutive clinical samples that were 
processed by CellMax Life’s CAP-accredited lab in Taiwan 
and a CLIA-certified and CAP-accredited US laboratory. 
All patient information presented has been de-identified and 
anonymized.

2.3 � Collection of Blood and Isolation of Plasma 
and Buffy Coat

Ten milliliters of blood were collected from patients and 
healthy donors in Cell-Free DNA BCT (Streck) and K3/
EDTA tubes. The tube was spun down at 1600 g for 10 min 
at room temperature to separate plasma, buffy coat and red 
blood cells. The plasma fraction was carefully isolated and 
further spun down at 16,000 g for 10 min to collect cell-free 
plasma.

2.4 � Extraction of cfDNA

Cell-free DNA (cfDNA) was extracted from approximately 
4–5 ml of plasma using the Qiagen Circulating Nucleic Acid 
kit with an optimized protocol to increase cfDNA extrac-
tion efficiency. Incubation time for proteinase K and lysis 
treatment was extended twofold from standard protocol to 
maximize cfDNA release. In addition, carrier RNA was used 
to minimize cfDNA loss during the extraction process. To 
further enhance the cfDNA recovery rate, double elution 
was performed using eluate from first elution for the sec-
ond elution, with an incubation time of 15 min prior to elu-
tion (standard protocol is single elution and 3-min incuba-
tion time). See the supplementary methods in the ESM for 
cfDNA quantification and quality control (QC).

2.5 � SMSEQ Library preparation

Libraries were prepared using 20–30 ng size corrected input 
cfDNA (see the supplementary methods in the ESM). The 
ends of the cfDNA were repaired (blunt-ended and 5′ phos-
phorylated) enzymatically and dA-tailed (see the supple-
mentary methods). In order to perform SMSEQ analysis, 
unique molecular indices (UMIs) were ligated on one end 
and Tru-Seq single-index sequencing adapters from Inte-
grated DNA Technologies (IDT) were ligated on the other. 
Both adapters include sequences complementary to Illumi-
na’s flow-cell sequence to facilitate sequence reading (see 
the supplementary methods for SMSEQ adapter design). In 
order to achieve maximum ligation efficiency, we lowered 

the standard ligation temperature to 18 °C and extended the 
ligation time to 4 h. In order to reduce polymerase errors 
and amplification biases, the ligated cfDNA libraries were 
polymerase chain reaction (PCR) amplified with a minimum 
number of cycles (five cycles) using high-fidelity, low-error 
polymerase using primers directed against common ends. 
This was followed by double-sided Ampure XP (Beckman 
Coulter) size selection and cleanup to generate sequencing 
libraries with sample-specific unique barcodes. See the sup-
plementary methods for workflow and QC.

2.6 � Panel Design

SMSEQ target enrichment was performed with a custom 
75-gene capture panel covering SNVs, indels, CNVs, 
fusions and MSI across 85 kb bases. The panel consists 
of approximately 700 biotinylated DNA probes which are 
120 bp long. The DNA probes were designed by CellMax 
and manufactured by IDT. The probes were pooled together 
to constitute a panel.

2.7 � Hybridization/Target Enrichment

A custom proprietary hybridization buffer was created spe-
cifically for the custom panel with ionic strength and addi-
tives based on the capture probe complexity, GC content, 
and probe length. Hybridization/wash time and tempera-
ture were carefully tuned based on the dynamic range of 
the probe’s Tm. With extensive optimization of this step, we 
were able to decrease the off-target rate and minimize GC 
bias by performing capture at a temperature of 62 °C for 4 h. 
This step was followed by a pull-down using streptavidin 
beads (see the supplementary methods for details).

2.8 � Sequencing

The enriched libraries (capture pools) are quantified by 
quantitative PCR and normalized and pooled together to 
ensure adequate sequence coverage. 0.5-nM libraries are 
denatured with freshly made 0.2 N NaOH and diluted down 
to 21 pM. PhiX is spiked in, and the final pool is run in 
Illumina MiSeq using a 600-cycle V3 kit. Paired-end read 
lengths (> 200 bp) are used to ensure that there is significant 
overlap between the forward and reverse reads on average 
for each library strand, to increase accuracy. See the sup-
plementary methods for QC details.

2.9 � Informatics Pipeline and Sequencing Data 
Processing

OncoLBx sequencing data are processed by a custom bioin-
formatics pipeline built on common, established open-source 
tools, with software provided by Illumina and proprietary 
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software designed and optimized for use with SMSEQ. See 
the supplementary methods for details.

2.10 � Primary and Secondary Analysis

Primary and secondary analysis are performed using tools 
provided by Illumina and other open-source software to pro-
duce BAM files aligned to the human genome. Alignments 
are then used by SMSEQ for variant calling. See supplemen-
tary methods for details.

2.11 � SMSEQ Analysis

Custom software was developed to utilize UMIs ligated to 
each cfDNA molecule (parent molecule) during library prep-
aration. Daughter molecules created from parent molecules 
during amplification are grouped by UMI and alignment 
position. Positions with quality scores < Q30 are ignored, 
and low-quality tails of reads are trimmed. In addition, 
daughter molecules with lengths < 100 bases are filtered out. 
After filtering, reads from both forward and reverse strands 

Fig. 1   Single-nucleotide variants detection performance using single-
molecule sequencing (SMSEQ). Graphs a and b show an example of 
the results of SMSEQ analysis on cell-line data with known variants. 
False positives are colored in black, and expected true positives are 
red. The red dashed lines represent the calling region for the sample. 
The line at 0.1% is for the lower limit of detection. a The results of 
the data when no SMSEQ error correction analysis is performed. b 
The results after performing SMSEQ error correction on the same 
data set. c The distribution of KRAS G12R allele frequencies was 

plotted for all 416 clinical samples. The red dotted line represents the 
statistical significance allele frequency cutoff (p value cutoff) and the 
blue line represents the coverage cutoff (allele frequency cutoff). The 
dashed black line shows the position-specific scoring matrix (PSSM)-
based statistical distribution. Samples passing all cutoff thresholds 
are called positive and are shown shaded in black. d An example of 
KRAS G12R p values generated for variant calling in OncoLBx. Sam-
ples called positive are marked in red. Positive samples show signifi-
cant separation from negatives
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are used to build a consensus sequence. For each position, 
the base with ≥ 75% consensus among all daughter mole-
cules is selected as the consensus base and non-consensus 
bases are treated as errors and ignored. This consensus cri-
teria results in the removal of errors (false positives).

2.11.1 � SMSEQ SNV and Short Indel Analysis

SMSEQ’s SNVs and indel variant calling is performed 
by consensus read analysis across all target regions in the 
75-gene panel. SMSEQ analyzes every position by using 
SMSEQ data and comparing potential variants against a 
position-specific scoring matrix (PSSM), to separate true 
variants from background noise (Fig. 1). Variants are evalu-
ated using the following equation:

where RX is the sequencing data for sample X, a is the alter-
nate allele being evaluated, L is the genomic location of 
the variant, M is the PSSM for a specific locus (L), G is the 
germline genotype of sample X at location L, and the signifi-
cance threshold, α, is defined for each locus. If P(R|M) < α, 
then the variant is a call candidate. P(R|M) is distributed as 
a beta distribution with parameters derived from the PSSM. 
Candidate variants are evaluated for single-molecule support 
and other sample specific-factors such as background signal.

2.11.2 � SMSEQ Copy Number Analysis

CNVs are determined by performing coverage analysis 
across all targets in the OncoLBx panel at both the gene 
and exon level. Coverage for all targets is normalized and 
compared against genomic DNA (gDNA) to create a sam-
ple-specific copy number profile. This profile is compared 
against similar profiles from healthy samples to identify 
copy number variations. These candidates are compared 
against expected values to determine if a CNV is present. 
CNVs are viewed in the context of the copy numbers of 
nearby genomic markers and observed allelic imbalance.

2.11.3 � SMSEQ Gene Fusion Detection

Fusions candidates are identified by assessing their predicted 
breakpoints and single-molecule support. Gene fusion evalu-
ation is performed targeting introns of five genes (FGFR3, 
NTRK1, RET, ROS1, and ALK) with canonical fusion 
events and established treatment indications based on NCCN 
guidelines. Reads which pass QC are tested for breakpoints 
by split read analysis and filtered for target regions. Split 
reads are divided into fragments based on their alignments. 
Read fragments are realigned to the genome and recombined 
together to determine the breakpoint. Potential breakpoints 

P(a is a variant) = P(R
X
a,L
|ML,G
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are evaluated by their level of single-molecule support and 
checked against expected background noise, with those pass-
ing considered fusion candidates. Candidates are then evalu-
ated by their predicted protein and functional consequences, 
and known treatment indications.

2.11.4 � SMSEQ MSI Status Determination

MSI status is determined by tabulating homopolymer length 
changes at five well-established microsatellite sites: NR-21, 
NR-24, BAT-25, BAT-26 and MONO-27 [34, 35]. Homopol-
ymer length is determined by realigning raw reads to MSI 
target regions. The lengths of homopolymers observed are 
converted into a homopolymer score. The homopolymer 
score is compared against normal samples to generate a 
p value. This p value is used to determine whether a specific 
site is microsatellite stable (MSS) or microsatellite unstable. 
MSI status is determined by assessing these sites. Samples 
with two or more unstable sites are considered as MSI-H, 
one unstable site as MSI-low, and 0 unstable sites as MSS.

2.12 � Calculation and Definition of Performance 
Metrics

Analytical performance of OncoLBx was established by 
comparing the set of called variants against the set of 
expected known variants according to the guidelines pub-
lished by the AMP/CAP for designing clinical oncology 
LDTs using NGS [33] (see Sect. 2). The analytical valida-
tion includes 126 samples derived from 19 established cell 
lines with droplet digital PCR (ddPCR)-verified variants, 
ten healthy donors verified by exome sequencing from an 
external CAP/CLIA lab, and cfDNA reference control 
samples. A variant is considered negative if there is no 
verified variant at that target. For indels and SNVs, every 
locus in the panel is considered a target. For other vari-
ant types, a negative result simply is defined as no vari-
ant detected for that target. Diagnostic performance was 
assessed by comparing call sets against one another (see 
the supplementary methods for details).

3 � Results

3.1 � SMSEQ Analysis

SMSEQ analysis utilizes UMIs to suppress errors and to 
improve variant calling accuracy (see Sect. 2). A cancer cell 
line with known somatic variants (true positives) was used to 
evaluate the performance of SMSEQ error correction across 
a large genomic region. As shown in Fig. 1a, analysis with-
out the error correction shows a large number of false posi-
tives at lower allele frequencies (most under 0.2%). It is not 
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possible to separate true positives (red) from false positives 
(black). The error correction removes false positives, while 
maintaining the signal from true positives (red) at expected 
allele frequencies (Fig. 1b). These results demonstrate that 
SMSEQ error correction facilitates the separation of true 
and false positives, which improves the limit of detection 
(LOD) and accuracy of OncoLBx.

3.2 � SNV Detection Performance

SNVs are detected using SMSEQ and custom algorithms 
trained to evaluate and separate variants from background. 
SMSEQ variant calling utilizes a PSSM which has been 
developed and trained against a separate set of 125 samples 
from healthy donors, patient samples, analytical controls, 
and cell lines to separate variants from background (see 
Sect. 2). P(R|M) is modeled and parameterized using the 
PSSM. We used KRAS, a well-characterized oncogene, as 
an example of how model-based analysis performs using 
consensus data to identify low allele frequency variants (see 
Fig. 1). There is a clear separation of background reads and 
reads positive for KRAS p.G12R (Fig. 1c). The results show 
that we were able to obtain statistical significance below 
0.1% VAF for this variant (Fig. 1c). This oncogenic hotspot 
regularly shows 0 variant reads for negative samples, and 
for positive samples, at least ten reads supporting the G12R 
are detected. If P(R|M) < α, then variant is considered a call 
candidate. Figure 1d shows an example of the p values for 
calling the variant KRAS p.G12R, which has an α of 0.01. 
The points marked in red indicate samples that were called 
positive, while blue demarks samples called negative.

To demonstrate the dynamic range of SNV detection, 
DNA samples from multiple cell lines were mixed at vari-
ous ratios to create two sample pools with a total of 188 
variants, with allele frequencies ranging from 0.5 to 100% 
for each pool (see the supplementary methods for details). 
We identify 188 out of 188 expected variants, with allele 
frequencies within the expected range (Fig. 2a). To establish 
the LOD, we used reference cfDNA samples which contain 
289 known clinically relevant SNVs with a range of allele 
frequencies from 0.1 to 5%. Figure 2b shows the comparison 
between observed and expected allele frequencies for the 
SNVs. Across 289 known variants, we identify 90 out of 106 
variants (84.9%) with an allele frequency ≤ 0.2% and 183 
out of 183 variants (100%) with an allele frequency > 0.2%.

Commercially available reference samples and frag-
mented cell lines only mimic cfDNA and may mask assay 
problems due to variability in cfDNA size or complications 
from interfering substances. To show the test’s ability to 
detect variants from the intended sample matrix (cfDNA 
from plasma), whole blood was obtained from ten healthy 
donors with no history of cancer. gDNA and cfDNA were 
extracted for each patient sample. The gDNA was sent out 

to an external CLIA-CAP lab for whole-exome sequencing 
to establish each sample’s germline reference, and cfDNA 
was tested. We mixed cfDNA of the ten healthy samples 
at various ratios to create six sample pools with expected 
allele frequencies from 0.05 to 10%. Figure 2b shows the 
results comparing the observed allele frequency produced 
with the expected allele frequency for variants which were 
externally verified by an independent CLIA/CAP lab. We are 
able to correctly identify 23 out of 25 SNVs (92.0%) with 
allele frequency ≤ 0.2% and 52 out of 52 (100%) at > 0.2% 
from cfDNA extracted from plasma. The two variants not 
called were all observed at allele frequencies between 0.05 
and 0.1%.

To demonstrate reproducibility, 36 libraries from cfDNA 
reference standards with 0, 0.1, 1 and 5% allele frequencies 
were sequenced seven, ten, ten and nine times, respectively. 
These libraries were run by different operators, on different 
days at various times over an extended time period. Each 
reference sample contained six ddPCR-verified SNVs in the 
panel’s 85-kb target regions. Figure 2c has boxplots showing 
the distribution of observed VAFs for each of the six vari-
ants for all positive samples. For negative reference samples 
(wild type), no false positives were observed after seven 
repeated library preparations and sequencing runs (data not 
shown). The error bars represent standard deviation, which 
is indicative of the variability in detection, and as can be 
observed, there is no significant difference, suggesting 
robust assay reproducibility.

SNV performance is summarized in Table 1. We are 
able to correctly identify 86.26% of variants with an allele 
frequency ≤ 0.2% and 100% of variants with an allele fre-
quency > 0.2% with OncoLBx. A total of five false-positive 
variants were detected in two samples across all allele fre-
quencies for over 1.8 million base pairs sequenced, provid-
ing a specificity of > 99.999%. We also demonstrated repro-
ducibility and repeatability for SNV detection across allele 
frequencies ranging from 0.1 to 100%. In total, 536 out of 
554 variants were correctly identified, giving 96.75% sen-
sitivity, and five loci were called positive incorrectly, giv-
ing > 99.999% specificity and accuracy for identifying SNVs 
(see Sect. 2).

3.3 � Indel Detection Performance

To establish LOD, we used cfDNA reference samples that 
contain 12 ddPCR-verified indels (seven insertions and five 
deletions) within OncoLBx’s target regions. We prepared 
samples by mixing reference sample with background wild 
type at 2, 1, 0.5, 0.2, 0.1 and 0%, with a total of 60 indel 
variants across all dilutions. Figure 3 shows the range of 
allele frequencies observed compared with their expected 
allele frequency for all the expected variants across the dilu-
tion series. In these samples, we were able to detect 56 out of 
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60 indels across all allele frequencies, and no false positives 
were detected in the 0% control sample.

The dynamic range for detecting indels was tested using 
breast cancer cell lines from Coriell, with known BRCA1/2 
indels combined at specific ratios into two different pools. 
Across both pools, there were a total of eight small indel 
variants (< 10 bp) with allele frequencies ranging from 
0.5 to 20% and a 40-bp large deletion in BRCA1. Table 2 
displays the known indel variants and compares their 
expected versus observed allele frequencies. We are able to 

accurately identify five out of five variants in BRCA1 and 
four out of four in BRCA2. The large BRCA1 40-base dele-
tion (c.1175_1214del40) showed lower allele frequency than 
expected, but was still called correctly (Table 2). In addition, 
we also tested a cell line with a known 15-base EGFR exon 
19 deletion, with expected variant frequencies ranging from 
30 to 0.1%. We are able to call this deletion down to 0.3% 
with high confidence, and while detected at 0.1%, the variant 
did not meet our requirements for a confident call. Based on 
these results, we are able to call short indels (< 10 bp) with 

Fig. 2   Detection of single-nucleotide variants (SNVs) and assay 
reproducibility. a Comparison of observed and expected allele 
frequencies for 188 SNVs from two different sample pools with 
expected variant allele fractions (VAFs) from 0.5% to 100%. Pools 
were created by mixing 4 cell lines mixed at various ratios to cre-
ate variants with a wide range of allele frequencies. b Comparison 
of observed and expected allele frequencies of multiple sample sets 
with expected VAFs ranging from 0.05% to 5%. The samples sets 
are made of Horizon cell-free DNA (cfDNA) reference samples with 
VAFs of 0.1, 1 and 5%, 2% Seracare cfDNA reference mixed with 

wild-type DNA to make dilutions of 0.1, 0.2, 0.5, 1 and 2%, and 10 
cfDNA samples from healthy patients mixed at various ratios to pro-
duce sample pools with expected VAFs from 0.05% to 10%. Each 
sample set has 6, 23, and 75 unique variants, respectively. c Assess-
ment of reproducibility and variability by assessment of observed 
allele frequencies for 6 variants from 29 replicate reference samples. 
Horizon cfDNA reference samples with VAFs of 0.1, 1 and 5% were 
sequenced 10, 10 and 9 times, respectively. For each of the expected 
VAFs, a boxplot shows the range of allele frequencies observed for 
each of the 6 variants
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allele frequencies as low as 0.1% and large indels at least as 
low as 0.3%, with results indicating detection at lower allele 
frequencies is possible, but may have reduced sensitivity 
compared with short indels and SNVs.

Overall indel performance was assessed by aggregating 
the results for these two data sets and determining positive 
and negatives for both in Table 1. As shown in Table 1, vari-
ants with allele frequencies above 0.2% are identified with 
100% sensitivity and specificity, whereas for VAFs ranging 
from 0.1 to 0.2%, the sensitivity and specificity are 83.33% 
and 99.999% respectively. These data demonstrate the abil-
ity to identify clinically relevant variants and variants with 
a LOD as low as 0.1%.

3.4 � CNV Detection Performance

We validated CNV detection using OncoLBx by testing 33 
reference samples and cell lines with known copy number 
amplifications (CNAs). Using HCC2218, with a known 
ERBB2 CNA, we created a dilution series with VAFs of 
100%, 50%, 20%, 10%, 5% and 0%. Figure 4a shows the 
log ratio of counts between each of the HCC2218 dilution 
samples and a normal healthy sample. We identified amplifi-
cations in all exons of ERBB2, representing > 21 kb of chro-
mosome 17, across all positive variant fractions (5–100%).

We validated the ability to detect a dynamic range of copy 
numbers using a reference sample (HCC827) with a verified 
65-copy EGFR amplification spanning 17 kb of chromo-
some 7. Table 3 shows the copy number dilution series of 
EGFR and the number of replicates run for each copy num-
ber. All 11 samples had their estimated counts compared 
against expected, as plotted in Fig. 4b. We are able to detect 
EGFR amplifications in all four exons covered in the panel 
for each expected copy number representing the range of 
variant fractions from 100 to 5%. We are also able to identify 
the 2-copy (healthy) control samples and correctly call them 
as CNA negative.

Reproducibility was tested using the Horizon structural 
reference sample. This sample has been verified using 
ddPCR to contain 4.5 copies of MET with a whole gene 
amplification (~ 97 kb of chromosome 7). We tested 11 rep-
licates of the sample, and we detected amplification of each 
exon in MET in all 11 replicates. In Fig. 4c, we show a box-
plot of detected values for all reference sample replicates and 
compare it against another boxplot made of detected counts 
from healthy control samples (2 copies). These results dem-
onstrate that we can reproducibly detect CNA of 4.5 copies 
and define the LOD as ≥ 4.5 copies.

Table 1   Analytical performance of OncoLBx

The table shows statistical performance parameters such as sensitivity, specificity, positive predictive value (PPV) and accuracy for specific 
detection ranges. A summary of the results used to calculate analytical performance is provided in the electronic supplementary material, Sup-
plementary Table S1
CNV copy number variant, indels insertions and deletions, MSI microsatellite instability, VAF variant allele fraction, SNV single-nucleotide vari-
ant

Variant types Detection range Sensitivity (%) Specificity (%) PPV (%) Accuracy (%)

SNVs 0.1–0.2% VAF 86.263 99.999 95.763 99.999
> 0.2% VAF 100 100 100 100

Indels 0.1–0.2% VAF 83.333 99.999 90.909 99.998
> 0.2% VAF 100 100 100 100

Fusions > 0.5% VAF 100 100 100 100
CNVs > 4.5 copies 100 100 100  100
MSI 2–100% VAF 100 100 100 100

Fig. 3   Detection of insertions and deletions (indels). Comparison of 
the expected and observed variant allele fractions (VAFs) of 12 indels 
from cell-free DNA (cfDNA) references samples with VAFs ranging 
from 0% to 2%. Seracare cfDNA reference samples were mixed with 
wild-type cfDNA to create a dilution series with VAFs of 0, 0.1, 0.2, 
0.5, 1, and 2%. Ins insertion, Del deletion
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3.5 � Fusion Detection Performance

Fusions are identified by split read analysis covering all 
genes in the panel, with a focus on genes with known treat-
ment guidelines. Single molecule split reads are used to esti-
mate breakpoints and identify fusions (see Sect. 2). Since 
it is difficult to obtain reference samples with validated 
fusions, the validation is performed using all commercially 
available samples with four verified fusions. The ability to 
detect fusions was validated using cell lines and reference 
control samples with known fusions targeting RET-CCDC6, 
EML4-ALK, NCOA4-RET and TPR-ALK (see the supple-
mentary methods in the ESM). The cell line containing the 
EML4-ALK fusion was tested at dilutions of 100, 10, 5, 1 
and 0.5% to determine dynamic range. Figure 4d shows the 
visualization of the reads detected spanning ALK and EML4 
at each dilution. Using OncoLBx we were able to correctly 
identify the fusion at all allele frequencies. One reference 
sample containing two fusions (NCOA4-RET and TPR-ALK) 
was tested at frequencies of 2, 1, 0.5, 0.2 and 0.1% to deter-
mine LOD. OncoLBx correctly identified both fusions in all 
samples; however, lower allele frequency samples (≤ 0.2%) 
had low coverage, reducing calling confidence for these 
samples. Overall, we were able to correctly identify 100% 

of fusion variants with high confidence at VAFs as low as 
0.5% (Table 1), and these can be detected at lower VAFs, but 
sensitivity may be reduced.

3.6 � MSI Detection Performance

MSI status is determined by analysis of length changes 
in five repeat regions (see Sect. 2). Samples with two or 
more unstable sites are deemed MSI-H. DNA from MSI-H 
cell lines was spiked into normal DNA and fragmented to 
mimic cfDNA and tested with OncoLBx. Figure 4e shows 
the number of reads showing deletions of a specific size, 
ranging from 1 to 30 bases, for HCT-116 spike-in samples 
at one repeat region. Deletions observable in all MSI-H 
samples were not detected in wild type. The LOD for MSI 
was tested with serial dilutions of HCT-15 and HCT-116 
fragmented DNA into background DNA. MSI status was 
correctly determined with VAFs of 2.5% for HCT-116 and 
2% for HCT-15, demonstrating the ability to detect MSI 
with tumor fractions as low as 2%. All seven samples were 
correctly identified as MSI-H for all tumor fractions in 
both cell lines. Table 1 summarizes the analytical results, 
showing 100% sensitivity and specificity for tumor frac-
tions as low as 2%.

Table 2   Detection of indels in BRCA​ and EGFR reference samples

The table shows the observed and expected allele frequencies from 10 cell lines with known BRCA1/2 and EGFR indels from 11 sample pools. 
Cell-line DNA was mixed at various ratios to create 11 sample pools with known VAFs ranging from 0% to 30%
Indels insertions and deletions, VAF variant allele fraction

Sample pool Gene Position Variant information Expected VAF (%) Observed 
VAF (%)

Pool 1 BRCA1 chr17:41276044 c.68_69delAG 0.50 0.70
Pool 1 BRCA1 chr17:41243788 c.3756_3759delGTCT​ 2.00 1.82
Pool 1 BRCA1 chr17:41243479 c.4065_4068delTCAA​ 7.50 7.46
Pool 1 BRCA1 chr17:41246333 1175_1214del40 10.00 2.53
Pool 2 BRCA1 chr17:41246748 c.798_799delTT 0.50 0.43
Pool 2 BRCA2 chr13:32914766 c.6275_6276delTT 1.50 1.05
Pool 2 BRCA2 chr13:32914209 c.5722_5723delCT 12.00 11.64
Pool 2 BRCA2 chr13:32914437 c.5946delT 16.00 13.75
Pool 2 BRCA2 chr13:32914688 c.6198_6199delTT 20.00 16.78
Pool 3 EGFR chr7:55242464 c.2235_2249del GGA​ATT​AAG​

AGA​AGC​
30.00 31.50

Pool 4 EGFR 13.00 15.22
Pool 5 EGFR 6.00 8.64
Pool 6 EGFR 3.00 3.35
Pool 7 EGFR 1.00 1.68
Pool 8 EGFR 0.60 0.69
Pool 9 EGFR 0.30 0.16
Pool 10 EGFR 0.10 0.03
Pool 11 EGFR 0.00 0.00



530	 A. Atkins et al.

Fig. 4   Detection of copy number variants (CNVs), gene fusions and 
microsatellite instability (MSI). a Dilution series of a cell line with 
a known ERBB2 copy number amplification visualized by compar-
ing the log ratio of normalized coverage values between a sample and 
a healthy control. DNA from the breast cancer cell line HCC2218 
was mixed with wild type to create samples with tumor fractions of 
100, 50, 10, 5, and 0% (0% not shown). b Graph showing the EGFR 
amplification from the HCC827 cell line, plotting known copy num-
ber against observed counts (on a log scale). Copy numbers 14.6 and 
lower were done in triplicate. c A boxplot showing the reproducibil-
ity of detecting 4.5 copies across 11 control reference samples and 
healthy controls. d A dilution series of samples with a known fusion 

visualized with Integrated Genomics Viewer (IGV). DNA from the 
lung cancer cell line (H2228) with a known EML4–ALK fusion was 
spiked into wild type to create 6 samples with expected variant allele 
fractions (VAFs) of 0, 0.5, 1, 5, 10 and 100%. Aligned reads at the 
fusion breakpoint are shown for each fusion partner; ALK is shown at 
100%, and the inset shows EML4’s breakpoint for each sample in the 
series. e DNA from the MSI-high colorectal cancer cell line HCT116 
was mixed with wild-type DNA to create samples at various tumor 
fractions. The figure shows the number of reads at one marker with 
specific deletion size for samples with 10, 5, 2.5 and 0% tumor frac-
tions. Peaks present in samples with positive tumor fractions were not 
detected in wild type
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3.7 � Clinical Validation

We assessed clinical performance using 36 clinical sam-
ples for which both blood and tissue formalin-fixed paraf-
fin-embedded (FFPE) were available. These samples were 
sourced from patients diagnosed with stage II, III, or IV 
colorectal cancer (seven) and lung adenocarcinoma (29). 
For NGS-based tissue/liquid biopsy tests, the established 
methodology to evaluate diagnostic performance is a com-
parison of variants detected in blood with variants detected 
in tissue (FFPE) samples [19]. For clinical validation, the 
diagnostic performance was determined by designating 
variants detected in one sample type (tissue or blood) as the 
reference call set and then evaluating the performance of 
the variant identification using the other sample type. This 
was then repeated with the sample types reversed. When 
using the FFPE sample variants as the reference set, liquid 
biopsy achieved a clinical sensitivity of 80.22% (Table 4). 
In the opposite case, with cfDNA calls used as the refer-
ence call set, FFPE samples had a clinical sensitivity of 82% 
(Table 4). A total of 73 variants were identified across all 36 
sample pairs (average of 2.02 variants per sample), including 
four samples with fusions (EML4–ALK) and eight samples 
with amplifications (EGFR and PDGFRA). The most com-
monly mutated genes were EGFR, APC, KRAS and TP53. 
Figure 5c visualizes the EGFR amplification from a paired 
sample with the variant detected in both tissue and blood. 
Figure 5d is a visualization of the breakpoint coverage of 
the EML4-ALK fusion detected in a blood and tissue sam-
ple pair. Five FFPE samples with enough genetic material 
for variant confirmation were sent for Sanger sequencing. 
Sanger confirmed the presence of all five targeted variants 
that were called in the FFPE samples. 

In total, blood from 416 patients from a Taiwan cohort 
were tested with OncoLBx. Figure 5a shows the distribu-
tion of primary tumor types from the patient sample group, 
with the most common being colon, lung, breast, ovarian 

and pancreatic cancers. We identified somatic mutations 
(positive) in 79% of samples, with 87.34% of these sam-
ples having clinically relevant variants (variants with known 
oncological effects). Across all tumor types, TP53 was the 
most commonly mutated gene, followed by APC, PTEN, 
BRCA1/2 and PIK3CA. Over half of the samples (56%) 
were stage IV, 21% stage III, and 24% stage I/II (Fig. 5a). 
Actionable variants (variants with known targeted treatment 
options) were identified across all disease stages: 50% of 
stage I, 62% of stage II, 89% of stage III and 86% of stage 
IV patients (Fig. 5b). A total of 76 samples were tested for 
fusions, with nine out of 76 (12%) showing fusions, eight 
of which were EML4-ALK fusions, and 1 was a FGFR3-
TACC3 fusion. In 55 clinical samples diagnosed with lung 
adenocarcinoma, EGFR variants were detected in 25 out of 
55 samples (45%), RAS variants in five out of 55 samples 
(9%), and a BRAF variant in one out of 55 samples (2%). In 
addition, fusions were detected in three out of 55 samples 
and amplifications were detected in six out of 55 samples, 
which are consistent with previously published mutation 
frequencies [36–40]. The most common EGFR variants, in 
descending order, were p.L858R, ex19 deletion, p.T790M 
and ex20 insertions.

4 � Discussion

NGS-based genomic profiling has been demonstrated to be 
effective in helping identify relevant targeted and immuno-
therapies to improve and manage cancer patient care [2, 4–6, 
41, 42]. OncoLBx allows the assessment of all NCCN guide-
line-relevant treatments with known genomic variants, using 
peripheral blood from cancer patients with solid tumors. We 
demonstrated that OncoLBx paired with SMSEQ has high 
sensitivity and specificity across a large range of variant fre-
quencies (VAF 0.1–100%) for SNVs, indels, CNAs, fusions, 
and MSI. The SMSEQ platform improves the signal-to-noise 
ratio for detecting genetic alterations at ultra-low allele fre-
quencies in ctDNA, and corrects NGS artifacts and bias cre-
ated through library preparation and sequencing. Consist-
ently accurate detection of a range of variant types is aided 
by stringent QC steps included in the platform. The error 
correction process enables variant calling with high sensitiv-
ity, specificity, and accuracy.

CAP/AMP guidelines for validation of an NGS clini-
cal assay include defining real and effective QC metrics, 
adequate statistical power to support claims and accurate 
determination of test performance [33]. Strict QC steps 
become important for high-sensitivity tests like liquid biopsy 
to ensure consistent and reliable results. We have developed 
stepwise QC metrics and stringent acceptance criteria to 
monitor and guide sample processing from sample prepara-
tion to variant calling (see Sect. 2 and supplementary Figure 

Table 3   EGFR CNA sample copy numbers by sample

The table shows the EGFR CNA obtained by spiking-in HCC827 
cell-line DNA with healthy background DNA. The two were mixed 
at various ratios to create sample pools containing 5–65 copies of 
EGFR. The targeted regions span a 17-kb region of chromosome 7 
and include exons 18–21 of EGFR
CNA copy number amplification

Cell line Gene Spike-in 
percentage

Expected copy 
number

HCC827 EGFR exons 18–21 100.00 65 copies
50.00 33.5 copies
20.00 14.6 copies
10.00 8.3 copies
5.00 5.15 copies
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Table 4   Tissue vs blood concordance for clinical validation

Using tissue as reference

Blood vs. Tissue Positive Negative

Detected 73 16

Not detected 18 3074899

Total 91 3074915

Diagnostic Performance

Sensitivity 80.220%

Specificity 99.999%

Accuracy 99.999%

Using blood as reference

Tissue vs. Blood Positive Negative

Detected 73 18

Not detected 16 3074899

Total 89 3074917

Diagnostic Performance

Sensitivity 82.022%

Specificity 99.999%

Accuracy 99.999%

The tables show the results from paired blood and tissue samples. The Blood vs. Tissue table shows performance of blood when using tissue 
variants as the reference call set. The Tissue vs. Blood table shows performance for formalin-fixed paraffin-embedded (FFPE) tissue compared 
against a blood-based reference set. A total of 91 variants were detected in tissue samples and 89 variants in total were detected by liquid biopsy. 
Negative calls, totaling 3,074,915 and 3,074,917, represent the number of bases without variants in the 65-kb panel totaled across all samples in 
each of the respective reference sets. The sensitivity derived from comparing these two call sets (80% and 82%, respectively) show high concord-
ance between the two different sample types

Fig. 5   Clinical validation. a Diagnosed cancer types and stage for 
416 clinical samples. Breast, colon, and lung were the most com-
mon cancer types. Most of the samples were stage IV, and 77% of 
the samples stage III/IV. b The percentage of clinical samples with 
actionable variants detected, grouped by stage. c Comparison of an 
EGFR copy number variant identified in paired blood and formalin-

fixed paraffin-embedded (FFPE) tissue. The log ratio of normalized 
coverage between each sample and a healthy control is shown for 
both sample types. d Comparison of EML4–ALK fusion identified in 
a paired blood and FFPE sample. The coverage of the breakpoint in 
both genes is shown, constructed to show the resulting fusion DNA 
sequence
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S1). The establishment of QC metrics/acceptance criteria 
allows us to generate consistent high-quality data, which 
is essential for identifying variants with low VAFs. For a 
high-sensitivity assay with large dynamic ranges, such as 
OncoLBx, more reference samples are required to demon-
strate capability and robustness of calling low allele fre-
quency. We used over 126 reference and cell-line samples 
and hundreds of clinical samples to validate OncoLBx. 
Without this rigorous characterization of a test, issues such 
as sampling bias could have a significant effect on test 
accuracy.

The challenge of identifying variants at low VAFs is 
different for each variant type. For SNVs, calling variants 
near the error rate of the Illumina platform was primarily 
solved through the use of SMSEQ and the development of 
algorithms trained to specifically identify SNVs (Fig. 1). 
Run-to-run variability was found to have no impact on 
variants with VAFs > 0.2%; however, results suggest that 
increased variability at lower allele frequencies (< 0.2%) 
may increase the chance of incorrect variant calling. Tar-
get capture bias did not appear to play a significant role 
in SNV detection, but may be a factor in performance of 
larger structural variants, such as fusions and long indels 
(see Sect. 3). This difference in performance between short 
and long indels in a capture-based assay is consistent with 
previous work showing that bias increases as the difference 
between sequencing read and capture sequence increases 
[40]. Fusion breakpoints also showed a lower observed 
allele frequency compared to expected. To confirm this 
hypothesis, we designed amplicons with the established 
breakpoint at various positions in the amplicon to com-
pare capture performance based on breakpoint position 
(data not shown). From this testing, we confirmed that as 
we moved the breakpoint so that fewer bases covered the 
capture probe target region, performance (reads detected) 
dropped significantly. Increasing probe concentration or 
adjusting probe tiling strategies in low coverage regions 
may remediate the issue.

Our results showed that OncoLBx is highly concord-
ant with tissue-based typing; however, when comparing 
paired blood and tissue samples, some sample pairs were 
discordant. We believe that variants detected in blood and 
not FFPE samples are mostly a result of tumor heterogene-
ity and clonal mutation in metastatic sites [21–25]. We also 
believe that variants found in FFPE samples, but not blood, 
are because not all tumors shed DNA at the same rate, if at 
all [26–30]. Our results show the assay’s ability to detect 
variants correlated with disease progression; cfDNA test-
ing was less likely to detect variants in samples classified as 
stage II (60%) and more likely (> 85%) in stages III and IV. 
This correlates well with discordance between blood and 
tissue.

There are limitations to the OncoLBx assay. Most promi-
nent is that not all tumors and stages will shed ctDNA at lev-
els that are detectable. Additionally, the scope of this valida-
tion does not include copy number losses. While OncoLBx 
can detect copy number losses, analytically it is difficult to 
determine whether there is a loss of one or both copies. For 
therapy matching purposes, amplifications typically have 
more positive treatment indications. Another limitation is 
OncoLBx only targets known fusion sites, with NCCN-
guideline treatments. There are known (less-common) fusion 
sites that are not covered by the panel. Finally, this valida-
tion study was limited by only having paired colon and lung 
cancer samples for comparison. Despite this, this study as a 
whole demonstrates that OncoLBx can detect five different 
variant types at low allele frequencies regardless of cancer 
type and meets guidelines for calling all five variant types 
for all cancers [33].

In addition to validation with peripheral blood, we have 
previously tested OncoLBx with other body fluids known 
to harbor ctDNA, such as pleural effusion and cerebral spi-
nal fluid [43–46]. In many of these cases, we are able to 
identify variants with therapy options from the non-blood 
body fluids. In the case of cerebral spinal fluid, we were able 
to identify a targeted therapy option which had an optimal 
treatment outcome.

Accurate real-time, non-invasive tumor typing can help 
physicians to optimize and monitor the treatment of cancer 
patients [3, 13]. OncoLBx has been developed and validated 
as a liquid biopsy assay for identifying tumor variants at 
low allele frequencies from peripheral blood, with the abil-
ity to detect actionable variants from a wide range of solid 
tumor types and stages. It is an alternate testing platform 
available to doctors and patients to provide a non-invasive 
typing option. While not part of this validation, we believe 
that OncoLBx can be used to monitor tumor evolution in 
real-time, and disease progress may be trackable across 
multiple tests to monitor for treatment efficacy and disease 
progression.

Acknowledgements  We would like to acknowledge Medical Tech-
nologists of CellMax Life Taiwan Clinical Lab for processing the 
clinical samples. Especially, thanks to Shih-En Chang, Jr-Ming Lai 
and Twinkal Marfatia for coordinating clinical sample collection and 
maintaining the clinical database. This work would not have been 
possible without clinical samples provided by doctors from various 
medical facilities and hospitals in Taiwan; we would like to thank Dr. 
Chia-Hsun Hsieh (Chang Gung Memorial Hospital), Dr. Po-Jen Liu 
(Elite Clinic), Dr. Jui-Kun Hsieh (Evergreen Health), Dr. Yu-Lin Lin 
(National Taiwan University Hospital), Dr. Hung-Chih Lai (Shin Kong 
Hospital), and Dr. Chung-Ken Wu (Taichung). We would also like 
to thank Cardinal Tien Hospital, China Medical University Hospital, 
Chung Shan Medical University Hospital, Kaohsiung Veterans General 
Hospital, Taipei Veterans General Hospital, Taichung Veterans General 
Hospital, Tung’s Taichung Metro Harbor Hospital, and Core (India).



534	 A. Atkins et al.

Compliance with Ethical Standards 

Conflict of interest  AA., P.G., J.L., M.J., A.V. and R.M. are employed 
at CellMax Life, which provided funds for this research. B.M.Z. and 
W.T. report no known conflicts of interest.

Funding  The research was carried out at CellMax Life, which provided 
the funds.

Open Access  This article is distributed under the terms of the Crea-
tive Commons Attribution-NonCommercial 4.0 International License 
(http://creativecommons.org/licenses/by-nc/4.0/), which permits any 
noncommercial use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons license, and indicate 
if changes were made.

References

	 1.	 Cummings CA, Peters E, Lacroix L, Andre F, Lackner MR. The 
role of next-generation sequencing in enabling personalized 
oncology therapy. Clin Transl Sci. 2016;9(6):283–92.

	 2.	 Lindeman NI, Cagle PT, Aisner DL, Arcila ME, Beasley MB, 
Bernicker E, et al. Updated molecular testing guideline for the 
selection of lung cancer patients for treatment with targeted tyros-
ine kinase inhibitors: guideline from the College of American 
Pathologists, the International Association for the Study of Lung 
Cancer, and the Association for Molecular Pathology. Arch Pathol 
Lab Med. 2018;142:321–46.

	 3.	 Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz 
LA Jr, Kinzler KW. Cancer genome landscapes. Science. 
2013;339(6127):1546–58.

	 4.	 Boyiadzis MM, Kirkwood JM, Marshall JL, Pritchard CC, Azad 
NS, Gulley JL. Significance and implications of FDA approval 
of pembrolizumab for biomarker-defined disease. J Immunother 
Cancer. 2018;6(1):1–7.

	 5.	 Bonneville R, Krook MA, Kautto EA, Miya J, Wing MR, Chen 
H-Z, et al. Landscape of microsatellite instability across 39 can-
cer types. JCO Precis Oncol. 2017;1(1):1–15.

	 6.	 Le DT, Durham JN, Smith KN, Wang H, Bartlett BR, Aulakh 
LK, et al. Mismatch repair deficiency predicts response of solid 
tumors to PD-1 blockade. Science. 2017;357(6349):409–13.

	 7.	 Horak P, Fröhling S, Glimm H. Integrating next-generation 
sequencing into clinical oncology: strategies, promises and pit-
falls. ESMO Open. 2016;1(5):e000094.

	 8.	 Barlesi F, Mazieres J, Merlio J-P, Debieuvre D, Mosser J, Lena 
H, et al. Routine molecular profiling of patients with advanced 
non-small-cell lung cancer: results of a 1-year nationwide pro-
gramme of the French Cooperative Thoracic Intergroup (IFCT). 
Lancet. 2016;387(10026):1415–26.

	 9.	 Carter J, Illei P, Zheng G, Lin M-T, Tseng L-H, Dudley J, 
et  al. Non-p.V600E BRAF mutations are common using a 
more sensitive and broad detection tool. Am J Clin Pathol. 
2015;144(4):620–8.

	10.	 Planchard D, Smit EF, Groen HJM, Mazieres J, Besse B, Hel-
land Å, et al. Dabrafenib plus trametinib in patients with pre-
viously untreated BRAFV600E-mutant metastatic non-small-
cell lung cancer: an open-label, phase 2 trial. Lancet Oncol. 
2017;18(10):1307–16.

	11.	 Murtaza M, Dawson S-J, Tsui DWY, Gale D, Forshew T, 
Piskorz AM, et al. Non-invasive analysis of acquired resistance 

to cancer therapy by sequencing of plasma DNA. Nature. 
2013;497(7447):108–12.

	12.	 Sausen M, Phallen J, Adleff V, Jones S, Leary RJ, Barrett MT, 
et al. Clinical implications of genomic alterations in the tumour 
and circulation of pancreatic cancer patients. Nat Commun. 
2015;6:7686.

	13.	 Gerlinger M, Rowan AJ, Horswell S, Larkin J, Endesfelder 
D, Gronroos E, et al. Intratumor heterogeneity and branched 
evolution revealed by multiregion sequencing. N Engl J Med. 
2012;366(10):883–92.

	14.	 Overman MJ, Modak J, Kopetz S, Murthy R, Yao JC, Hicks ME, 
et al. Use of research biopsies in clinical trials: are risks and 
benefits adequately discussed? J Clin Oncol. 2013;31(1):17–22.

	15.	 Yates LR, Knappskog S, Wedge D, Tutt A, Lønning PE, Camp-
bell PJ. Genomic evolution of breast cancer metastasis and arti-
cle genomic evolution of breast cancer metastasis and relapse. 
2017;32:169–84.

	16.	 Hong MKH, Macintyre G, Wedge DC, Van Loo P, Patel K, 
Lunke S, et al. Tracking the origins and drivers of subclonal 
metastatic expansion in prostate cancer. Nat Commun. 
2015;6:6605.

	17.	 Todenhöfer T, Struss WJ, Seiler R, Wyatt AW, Black PC. Liquid 
biopsy-analysis of circulating tumor DNA (ctDNA) in Bladder 
Cancer. Bl Cancer. 2018;4(1):19–29.

	18.	 Swarup V, Rajeswari MR. Circulating (cell-free) nucleic acids—a 
promising, non-invasive tool for early detection of several human 
diseases. FEBS Lett. 2007;581(5):795–9.

	19.	 Crowley E, Di Nicolantonio F, Loupakis F, Bardelli A. Liquid 
biopsy: monitoring cancer-genetics in the blood. Nat Rev Clin 
Oncol. 2013;10(8):472–84.

	20.	 Lanman RB, Mortimer SA, Zill OA, Sebisanovic D, Lopez 
R, Blau S, et al. Analytical and clinical validation of a digital 
sequencing panel for quantitative, highly accurate evaluation of 
cell-free circulating tumor DNA. PLoS One. 2015;10(10):1–27.

	21.	 Chan KCA, Jiang P, Zheng YWL, Liao GJW, Sun H, Wong J, 
et al. Cancer genome scanning in plasma: detection of tumor-
associated copy number aberrations, single-nucleotide variants, 
and tumoral heterogeneity by massively parallel sequencing. Clin 
Chem. 2013;59(1):211–24.

	22.	 Chan KCA, Hung ECW, Woo JKS, Chan PKS, Leung S-F, Lai 
FPT, et  al. Early detection of nasopharyngeal carcinoma by 
plasma Epstein-Barr virus DNA analysis in a surveillance pro-
gram. Cancer. 2013;119(10):1838–44.

	23.	 Cheng F, Su L, Qian C. Circulating tumor DNA: a promising 
biomarker in the liquid biopsy of cancer. Oncotarget. 2015;7(30).

	24.	 Bettegowda C, Sausen M, Leary R, Kinde I, Agrawal N, Bartlett 
B, et al. Detection of circulating tumor DNA in early- and late-
stage human malignancies. Sci Transl Med. 2014;6(224):224ra24.

	25.	 Pantel K, Alix-Panabières C. Real-time liquid biopsy in cancer 
patients: fact or fiction? Cancer Res. 2013;73:6384–8.

	26.	 Diaz LA, Bardelli A. Liquid biopsies: genotyping circulating 
tumor DNA. J Clin Oncol. 2014;32:579–86.

	27.	 Phallen J, Sausen M, Adleff V, Leal A, Hruban C, White J, et al. 
Direct detection of early-stage cancers using circulating tumor 
DNA. Sci Transl Med. 2017. https​://doi.org/10.1126/scitr​anslm​
ed.aan24​15.

	28.	 Diehl F, Schmidt K, Choti MA, Romans K, Goodman S, Li M, 
et al. Circulating mutant DNA to assess tumor dynamics. Nat 
Med. 2008;14(9):985–90.

	29.	 Diehl F, Li M, Dressman D, He Y, Shen D, Szabo S, et  al. 
Detection and quantification of mutations in the plasma of 
patients with colorectal tumors. Proc Natl Acad Sci USA. 
2005;102(45):16368–73.

	30.	 Newman AM, Bratman SV, To J, Wynne JF, Eclov NCW, 
Modlin LA, et  al. An ultrasensitive method for quantitating 

https://doi.org/10.1126/scitranslmed.aan2415
https://doi.org/10.1126/scitranslmed.aan2415


535Validated Liquid Biopsy for Cancer Therapy Selection

circulating tumor DNA with broad patient coverage. Nat Med. 
2014;20(5):548–54.

	31.	 Gregory MT, Bertout JA, Ericson NG, Taylor SD, Mukherjee 
R, Robins HS, et al. Targeted single molecule mutation detec-
tion with massively parallel sequencing. Nucleic Acids Res. 
2016;44(3):1–11.

	32.	 Park G, Park JK, Shin SH, Jeon HJ, Kim NKD, Kim YJ, et al. 
Characterization of background noise in capture-based targeted 
sequencing data. Genome Biol. 2017;18(1):1–13.

	33.	 Jennings LJ, Arcila ME, Corless C, Kamel-Reid S, Lubin IM, 
Pfeifer J, et  al. Guidelines for validation of next-generation 
sequencing–based oncology panels: a joint consensus recommen-
dation of the Association for Molecular Pathology and College of 
American Pathologists. J Mol Diagn. 2017;19(3):341–65.

	34.	 Hempelmann JA, Scroggins SM, Pritchard CC, Salipante SJ. MSI 
plus for integrated colorectal cancer molecular testing by next-
generation sequencing. J Mol Diagn. 2015;17(6):705–14.

	35.	 Suraweera N, Duval A, Reperant M, Vaury C, Furlan D, Leroy 
K, et al. Evaluation of tumor microsatellite instability using five 
quasimonomorphic mononucleotide repeats and pentaplex PCR. 
Gastroenterology. 2002;123(6):1804–11.

	36.	 Paez JG. EGFR mutations in lung cancer: correlation 
with clinical response to gefitinib therapy. Science (N Y). 
2004;304(5676):1497–500.

	37.	 Pao W, Miller V, Zakowski M, Doherty J, Politi K, Sarka-
ria I, et al. EGF receptor gene mutations are common in lung 
cancers from “never smokers” and are associated with sensi-
tivity of tumors to gefitinib and erlotinib. Proc Natl Acad Sci. 
2004;101(36):13306–11.

	38.	 Paik PK, Arcila ME, Fara M, Sima CS, Miller VA, Kris MG, et al. 
Clinical characteristics of patients with lung adenocarcinomas 
harboring BRAF mutations. J Clin Oncol. 2011;29(15):2046–51.

	39.	 Pratilas CA, Hanrahan AJ, Halilovic E, Persaud Y, Soh J, Chitale 
D, et al. Genetic predictors of MEK dependence in non-small cell 
lung cancer. Cancer Res. 2008;68(22):9375–83.

	40.	 Brose MS, Volpe P, Feldman M, Kumar M, Rishi I, Gerrero R, 
et al. BRAF and RAS mutations in human lung cancer and mela-
noma. Cancer Res. 2002;62:6997–7000.

	41.	 Mohamed A, Krajewski K, Cakar B, Ma CX. Targeted therapy for 
breast cancer. Am J Pathol. 2013;183(4):1096–112.

	42.	 Masoud V, Pagès G. Targeted therapies in breast cancer: new 
challenges to fight against resistance. World J Clin Oncol. 
2017;8(2):120.

	43.	 Huang WT, Lu NM, Hsu WY, Chang SE, Atkins A, Mei R, 
et al. CSF-ctDNA SMSEQ analysis to tailor the treatment of a 
patient with brain metastases: a case report. Case Rep Oncol. 
2018;11(1):68–74.

	44.	 Li Y, Pan W, Connolly ID, Reddy S, Nagpal S, Quake S, et al. 
Tumor DNA in cerebral spinal fluid reflects clinical course in a 
patient with melanoma leptomeningeal brain metastases. J Neu-
rooncol. 2016;128(1):93–100.

	45.	 Husain H, Nykin D, Bui N, Quan D, Gomez G, Woodward B, 
et al. Cell-free DNA from ascites and pleural effusions: molecular 
insights into genomic aberrations and disease biology. Mol Cancer 
Ther. 2017;16(5):948–55.

	46.	 Peng M, Chen C, Hulbert A, Brock MV, Yu F. Non-blood 
circulating tumor DNA detection in cancer. Oncotarget. 
2017;8(40):69162–73.


	Detection of Circulating Tumor DNA with a Single-Molecule Sequencing Analysis Validated for Targeted and Immunotherapy Selection
	Abstract
	Introduction 
	Methods 
	Results 

	1 Introduction
	2 Materials and Methods
	2.1 Analytical Samples
	2.2 Clinical Samples
	2.3 Collection of Blood and Isolation of Plasma and Buffy Coat
	2.4 Extraction of cfDNA
	2.5 SMSEQ Library preparation
	2.6 Panel Design
	2.7 HybridizationTarget Enrichment
	2.8 Sequencing
	2.9 Informatics Pipeline and Sequencing Data Processing
	2.10 Primary and Secondary Analysis
	2.11 SMSEQ Analysis
	2.11.1 SMSEQ SNV and Short Indel Analysis
	2.11.2 SMSEQ Copy Number Analysis
	2.11.3 SMSEQ Gene Fusion Detection
	2.11.4 SMSEQ MSI Status Determination

	2.12 Calculation and Definition of Performance Metrics

	3 Results
	3.1 SMSEQ Analysis
	3.2 SNV Detection Performance
	3.3 Indel Detection Performance
	3.4 CNV Detection Performance
	3.5 Fusion Detection Performance
	3.6 MSI Detection Performance
	3.7 Clinical Validation

	4 Discussion
	Acknowledgements 
	References




