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Abstract: The Global Action Fund for Fungal Infections (GAFFI) estimates that fungal diseases kill
around 150 people each hour, and yet they are globally overlooked and neglected. Histoplasma and
Talaromyces, which are associated with wildlife, cause systemic infections that are often lethal in
patients with impaired cellular immunity. Dermatophytes that cause outbreaks in human hosts are
often associated with domesticated animals. Changes in human behavior have been identified as
a main cause of the emergence of animal-associated fungal diseases in humans, sometimes caused
by the disturbance of natural habitats. An understanding of ecology and the transmission modes of
causative agents is therefore essential. Here, we focus on fungal diseases contracted from wildlife
and domesticated animals, their habitats, feces and carcasses. We discuss some basic fungal lifestyles
and the risk of transmission to humans and illustrate these with examples from emerging and
established diseases.
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1. Introduction

Fungal diseases affect around one billion people annually resulting in over 1.5 million
deaths [1,2]. Since the mid-20th century, a global rise in fungal infections and associ-
ated deaths has been noted. In recent years, several new and known fungal infections
have emerged in immunocompromised and other long-term patients and in the human
population as a whole [3,4]. Although some intrinsic characteristics of fungi contribute
to the emergence of diseases [5], recent scenarios have mainly been associated with our
modern activities, including the widespread use of medication (e.g., corticosteroids), ur-
banization, domestication, increase in population, tourism, migration and accelerated
climate change [6–10]. Several of these emergent fungal infections have been described
as zoonoses. Animals have been construed as the main contributors to infectious hu-
man diseases, representing 75% of all emerging infections [11]. Nonetheless, this fraction
does not separate true animal pathogens from environmental pathogens that thrive on
fecal matter and decaying animal bodies. This is a considerable oversight, as many emer-
gent infectious fungi have an environmental reservoir with the capacity to invade animal
hosts, including humans [3,12,13]. For instance, Talaromyces marneffei, an ascomycete in-
fecting over 50,000 HIV-positive patients yearly, has been linked to bamboo rats and their
habitats [14–18]. However, animals should not be falsely accused, our modern activities
may have more impact, encroaching into wild animals’ habitats and domesticating them as
pets represents a larger threat to public health [19]. In this context, we provide an update on
the terminology and trends of fungal diseases emerging in humans, related to animals. For
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each category of fungus, we examine and compare the mode and likelihood of transmission
to humans.

2. Terminology for Animal-Associated Fungal Infections

Several terms are used to refer to infectious diseases associated with animals. “Zoono-
sis” and “sapronosis” have often been used with variable and overlapping meanings by dif-
ferent authors [20,21]. The World Health Organization (WHO) officially describes zoonoses
as infections naturally transmitted between vertebrate animals and humans. The term
thus does not distinguish whether “true” pathogens or opportunists are involved [21–23].
Pathogens are adapted to and can complete their life cycle in a mammalian host, whereas
opportunists inhabit environmental niches but are also able to survive in animal hosts.
When an opportunist, acquired from a non-living source such as soil, decaying plant mate-
rial or feces, causes infection and/or an outbreak, the latter is referred to as a sapronosis [22].
None of the fungi are dependent on vertebrate hosts, but they have increased fitness if
they use a mammal in any stage of their life cycle. Sapronotic agents occasionally infect
humans or other animals without showing any specialized adaptation to their host [24–26].
Fungi that have double life cycles with stages in both the environment and an animal
host are known as environmental pathogens. These live as saprobes, but once inside
a warm-blooded vertebrate, they display a specialized invasive phase adapted to the
host [22,27]. Following infection, environmental pathogens can be dispersed in the environ-
ment through defecation (e.g., Histoplasma capsulatum) [28] or potentially escape the host’s
body upon death (e.g., Coccidioides immitis) [22]. On the other hand, opportunistic fungi are
non-transmissible among hosts, and upon death of the host, the fungus dies as well [22].
Environmental pathogens, zoonotic agents and sapronotic agents differ significantly in
their life cycle, target population and clinical symptoms, and a clear distinction between
them is important [22,26] (Figure 1).
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Figure 1. Lifecycle and mode of transmission of zoonotic agent, sapronotic agent and environmen-
tal pathogen. (A) sapronotic agents/opportunists are non-transmissible; outbreak occurs follow-
ing repeated infection from a common environmental source leading to sapronosis; (B) zoonotic
agents/zoophilic pathogens depend on the host for feeding and transmission, which mainly occurs
directly via contagious animal hosts; (C) environmental pathogen, feeding and sexuality is envi-
ronmental, propagation via host, non-contagious. In (A,B), repeated events of transmission occur
from the same host/environment as opposed to (C), where a single host is infected and spreads
the infective agent in an environment; this is represented by the number of arrows connecting each
host and environment. Adapted with permission from ref. [29]. Copyright 2022 Atlas Clinical Fungi
web-version.
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3. Direct versus Indirect Transmission—Should We Fear One More than the Other?

Among other factors, the emergence of an infectious disease depends on the opportu-
nity of transmission, and thus the emergence is dependent on transmission mode [30]. Two
modes of transmission are recognized in infectious diseases including zoonoses: direct and
indirect. Skin contact, scratches and bites constitute examples of direct transmission from
an infected animal to a human host [20]. It is a highly efficient and exclusive mode of trans-
mission in the spread of Sporothrix brasiliensis by cats. Indirect transmission occurs when
pathogens shed in the environment by an infectious host are acquired by a new host [31,32].
The latter type of transmission involves vehicles for dispersal, such as air, water, food
or an animal vector [20]. For instance, bats are vectors of Histoplasma capsulatum, as they
actively carry and spread the fungus during long-distance flights. When comparing the
two modes of transmission, indirectly transmitted pathogens are generally more successful
long-term spreaders. Indeed, indirect transmission often involves extensive environmental
dissemination. This is particularly true for dimorphic fungi and fungi producing spores
that can persist outside the host for extended periods, thus increasing the likelihood of
transmission [30]. Persistence in the environment also increases the probability of spillover
events resulting in infections of not only larger populations, but a wider host range as
well [30]. Routes of transmission also dictate the prevalence and risk of outbreak in human
populations. The prevalence of infection in the primary animal host population, the rate of
encounter of these animals with humans and the probability of humans becoming infected
upon contact constitute outbreak risks [33]. However, it should be noted that several fungi
are not restricted to one mode of transmission [30]. For example, some dermatophytes
are highly contagious and can easily jump to a new host by direct contact, but can also
survive for extended periods on keratinized fomites to be transmitted indirectly [23,34].
The adaptation of zoophilic dermatophytes to the human host may occur within a rather
short time span [35].

4. Are Fungal Pathogens of Close Human Relatives More Likely to Cause Outbreaks
in Humans?

Pathogens often coevolve with their hosts; thus, many pathogenic microorganisms
are adapted to and infect a limited number of host species [36,37]. Specific ligand–receptor
interactions between an infectious agent and its host must occur for a pathogen to access
and multiply on an infectable surface; colonize, invade and multiply inside the host; and
resist its innate and/or adaptive immune mechanisms. Following this concept, for the
successful invasion of a new category of hosts, the pathogen has to re-adapt to some or all
of these interactions. For pathogens outside the fungal kingdom, it has been hypothesized
that those of non-human primates have a higher probability to cross the species barrier
and infect humans, as opposed to those associated with phylogenetically more distant
hosts [38]. In support of this, in proportion to the number of species in the same taxon,
pathogens of non-human primates contribute more to human infectious diseases than those
of non-primate mammals [36,38]. This barrier to transmission of pathogens between species
is referred to as the “species barrier”, indicating the host specificity of the agent. In fungi,
this is known, e.g., in Pneumocystis [39], where the numerous extant species have restricted
host ranges, and the human-associated species, P. jirovecii, has been found to infect humans
only [40]. However, this concept of specificity and species barrier is less applicable to fungi,
which seem to be less dependent on particular hosts. For instance, Microsporum canis, a
pathogen of cats, dogs and horses is also transmissible between humans [37], causing small,
self-limiting outbreaks in school children [41,42].

Janzen [43] introduced the concept of “ecological fitting”, which seems to provide a
suitable alternative explanation for host shifts in fungi. In the context of host–pathogen
interaction, “ecological fitting” is the mechanism whereby the pathogen persists in the
novel non-optimal environment of the new host, using existing traits that have evolved
elsewhere and in response to a different set of environmental conditions [44,45]. Ecological
fitting may occur through two scenarios. First, through similarity in the resources provided
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by the previous and novel host, referred to as ecological fitting via resource tracking.
From a pathogen’s perspective, the new host may actually not be so different from the
previous one, as long as essential conditions for infection are the same [36,46]. Here,
similarities can be closely linked to the phylogenetic relatedness of the hosts [47]. However,
several pathogenic fungi also have the ability to survive and adapt under sub-optimal
conditions, e.g., temperature [48]. In the second scenario, fungi have what is known as a
broad “sloppy fitness space”, which facilitates new associations between species or simply
expands the number of potential hosts: ecological fitting via sloppy fitness space [45]. The
main limitation is that for the fungal pathogens to jump to humans, their primary host
must also be a mammal, as host shifts from other vertebrates such as birds, amphibians
and fish are highly exceptional. Most environmental fungal pathogens of rodents, bats or
armadillos have a sufficiently wide fitness space to be able to infect humans [48].

5. Some Examples of Animal-Associated Fungal Infections

In recent years, the epidemiological patterns of some fungal diseases associated with
domesticated and wild animals have changed, showing an increased prevalence, death toll
or change in populations at risk. Here, we summarize and review new insights and findings
of some important animal-associated fungal infections. Using specific examples, we delve
into the concepts discussed above: mode of transmission, host shift and classification of
causative fungal pathogen in relation to the risk of outbreaks and threat to public health.

5.1. Dermatophytoses

Dermatophytosis, commonly known as ringworm or tinea, occurs worldwide, but
currently, a change is being observed in the epidemiology of the disease. The distribution
of species causing the disease now varies significantly between countries. This has been
attributed to inappropriate treatment, high population density, traveling and migration,
among other factors [49–51]. With the domestication of animals as pets, new species
such as T. erinacei and T. benhamiae have also emerged in humans, causing an increase in
zoonotic infections [25,52]. Concerns arise as the elevated cost and lengthy treatment of
dermatophytosis frequently leads to a non-adherence to therapy, with an emergence of
resistance as a serious consequence [53].

Recently, considerable alarm has been raised due to an ongoing large-scale dermato-
phytosis outbreak in India, which is spreading to other countries [54]. The disease spreads
among humans, typical of anthropophilic causative agents, but manifests a severity of
symptoms typical of a zoophilic dermatophyte. The outbreak has been attributed to a
novel species, Trichophyton indotineae [55], which shows increased virulence as opposed
to the previously widespread T. mentagrophytes and T. interdigitale [54]. Tang et al. [35]
have suggested that what is being observed is the geophilic, wild animal-infecting species,
T. mentagrophytes, shifting host to domesticated animals and now behaving as an anthro-
pophilic clonal offshoot. The Indian strain is also more frequently resistant to antifungal
drugs, which has been attributed to the overuse of common antifungals by the public.
Consequently, the disease is hard to control, and occurrence of the dermatophyte is on the
rise [35,56].

A case of host shift has been noted earlier in the dermatophyte Trichophyton equinum
infecting horses. Kandemir et al. [57] describes Trichophyton tonsurans, which causes tinea
capitis in humans as the anthropophilic counterpart of T. equinum. Here, rapid evolution
towards anthropophily may have occurred by the clonal emergence of mating types.

5.2. Sporotrichosis

In recent years, zoonotic sporotrichosis has become an emerging public health issue
in Latin America and has taken the proportion of an epidemic [58]. In the state of Rio de
Janeiro alone, cases have escalated from a few hundred in the late 1990s to more than 10,000
in the year 2017 [59]. Two species are the cause of the ongoing feline epizootic and epidemic:
Sporothrix brasiliensis and Sporothrix sckenckii sensu stricto, the former predominating [59].
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The emergence of Sporothrix brasiliensis in cats in Brazil has been linked to a lifestyle
shift of a saprobic Sporothrix species. The acquired ability of the fungus to survive at the
relatively high body temperature of cats may be related to global warming [58,60]. The
fungus easily spreads among cats through scratches and bites in fights. Cases in humans
occur exclusively by zoonotic transmission. An epidemiological relationship has been
observed between the number of infected cats in the urban areas of Brazil and diagnosis
in humans [61]. Although cats are the primary vector, Sporothrix brasiliensis also prevails
among dogs and rats [62]. As for dermatophytes, zoophilic Sporothrix brasiliensis is more
virulent than previously known species. Alarmingly, the fungus is also insensitive to some
antifungal treatments [62,63]. The prevalence of the disease keeps increasing in Brazil and
is now spreading to adjacent Argentinian states [61].

As opposed to the Brazilian species, Sporothrix sckenckii sensu stricto occurs worldwide.
Zoonotic transmission has been reported mainly from cats, but also dogs, squirrels, rats and
armadillos. Sporothrix globosa, S. mexicana and S. luriei, also occur in humans but are commonly
acquired through the inhalation of conidia rather than animal transmission [62,64,65].

5.3. Histoplasmosis

Approximately 500,000 people suffer from histoplasmosis annually, 100,000 develop
disseminated histoplasmosis and 25,000 die from the disease [1]. Histoplasmosis is emerg-
ing worldwide. Originally, the disease was endemic in Ohio, Mississippi; St. Lawrence
River Valley in America; and in sub-Saharan Africa [66,67], but it now extends to the
Caribbean, Southeastern Asia and South and Central America [68]. As the disease is of-
ten misdiagnosed (e.g., as tuberculosis or emergomycosis) and notification of infection
to the authorities is not mandatory in many countries, its geographical prevalence and
distribution may still be underestimated [69,70].

The causative agent of the disease is the dimorphic fungus Histoplasma capsulatum,
which was first isolated in Mexico. Recent studies have revealed that H. capsulatum is a
species complex rather than a single species. Sepúlveda et al. [71] established a number
of sibling species within the H. capsulatum complex on the basis of population genomic
data, each with an approximately restricted geographic distribution. The genetic diversity
between populations is considerable [72,73], and the fungus comprises at least four distinct
genetic groups of differing virulence [71].

Histoplasmosis, once known as the “cave sickness” [74], has been strongly associ-
ated with bats. Several species and populations of Chiroptera, belonging to Molossi-
dae, Phyllostomidae, Vespertilionidae and Emballonuridae, have been reported with the
disease [75,76]. Histoplasmosis has also been reported in birds, but only sporadically [73].
However, rather than being zoonotic, the causative agent, H. capsulatum, thrives in the
feces of bats and birds and in soils enriched with their fecal matter [25,66]. Interestingly,
an overlap was found between the geographical occurrence of infected bats and regions
of histoplasmosis endemicity [77]. As infected bats travel for long distances and migrate,
they spread the pathogen [70,78]. Among mammals, bats are the second most speciose
group after rodents; they have a worldwide distribution and live in colonies, which are
sometimes found in close proximity to humans. These features make bats a continued
source of emerging pathogens [36]. However, encroachment into wildlife habitats related
to touristic activities such as bird and bat watching, caving or construction and excava-
tion work should be regarded as the main reasons for the spillover of histoplasmosis in
humans [79,80].

A wide range of mammalian hosts including bears, monkeys, apes and several felines
have also been reported with H. capsulatum infection [81]. Teixeira et al. [73] found that
isolates of H. capsulatum from specific mammalian hosts formed monophyletic clades,
suggesting that mammals play a key role in the diversification (e.g., strains) and the mecha-
nism by which the fungus disperses. Other authors have also discussed the significance of
animal hosts in the evolution of new pathogenic fungal species [82]. Wide host range is yet
another characteristic of an emerging disease [83].
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Histoplasmosis is typically contracted by the inhalation of airborne conidia from
the environment and usually affects AIDS patients. However, cases have recently been
reported in otherwise immunocompetent individuals [68,84,85]. In general, histoplasmosis
symptomatology ranges from asymptomatic in immunocompetent patients to fatal in
immunocompromised ones [86]. In addition, the severity of the infection also depends on
the inoculum size and age of the individual [80], but unexpected cases do occur. In a recent
outbreak, members of a film crew suffered from histoplasmosis after working in a vampire
bat cave. One of them, a young man in his thirties with no underlying conditions, suffered
from acute pulmonary histoplasmosis, as he occasionally removed his mask [87].

5.4. Cryptococcosis

Beyond the tropics and the sub-tropics, cryptococcosis is now recognized as one
of the deadliest fungal diseases worldwide [8,88]. Since the first case report in the mid
1980s, the epidemiology of cryptococcosis has evolved [89]. The emerging invasive fungal
disease now kills both treated and untreated patients with and without underlying immune
defects [89], causing a death toll of over 180,000 annually [20,90]. The course of the disease
can be insidious or can cause a range of symptoms. Meningoencephalitis is common in
HIV-positive and other immunosuppressed patients and is often caused by Cryptococcus
neoformans. Concurrently, C. gattii is increasingly being diagnosed in immunocompetent
individuals causing pulmonary infection [91].

In terms of diseases related to and dispersed by animals, Cryptococcus neoformans is
of main concern as it typically thrives in bird excreta. The habitat of Cryptococcus gatti
comprises of plants, particularly eucalyptus [91]. However, species belonging to both the
C. neoformans and C. gattii species complexes shift to an infective yeast form once they go
through the respiratory system of mammals. Numerous cases, outbreaks and epidemics
of cryptococcosis by the two species complexes have been documented in farmed and
companion animals: birds, cattle, horses, cats and dogs, among others [92–94]. The risk of
human cryptococcosis by these infected animals should not be neglected given that they
are part of our daily life and have a high potential to contaminate the environment.

Insightful discoveries and advances have been made in the molecular characterization,
diagnosis and treatment of cryptococcosis [89,95–97]. However, the scarcity of antifungal
treatments to treat mycosis and the emergence of antifungal resistance challenges the goal
to curb mortality rates [96].

5.5. Emergomycosis

Emergomycosis, previously known as adiaspiromycosis for the giant cell variant, is
caused by members of Emergomyces [98]. This genus is particularly interesting due to the nu-
merous drastic changes that have been made to its classification within just a few years [99].
The previous type species Emmonsia parva has been moved to Blastomyces. Additionally,
Emmonsia crescens and E. soli have been reassigned to Emergomyces, although the morphol-
ogy and size of their invasive stage (a determinant characteristic for delineating dimorphic
fungi at a generic level) differ significantly from other members of the genus. Additionally,
Emergomyces species show considerable variation in their virulence and clinical manifes-
tations [99–101]. Previously, due to the unconventional characteristics of Emergomyces,
the identification of species causing emergomycosis was difficult and ambiguous. These
were collectively referred to as emmonsia-like species (Emmonsia sp.) in reference to the
resemblance in symptoms of the disease (adiaspiromycosis) caused by Emmonsia crescens
and Emmonsia parva [99,100]. Recent phylogenetic analysis separated them into five distinct
species belonging to Emergomyces (E. africanus, E. canadensis, E. europaeus, E. orientalis and
E. pasteurianus).

Currently, seven species are known to cause emergomycosis. These include exclu-
sive human pathogens as well as pathogens common to both humans and other animals.
Emergomyces crescens is normally associated with small burrowing mammals, particularly
Cricetidae and Muridae rodents [48,102]. Cases in other rodents and humans occur oc-
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casionally [103]. The disease has thus been considered potentially zoonotic with small
rodents and their predators as vectors; however, conclusive evidence is yet to be found.
Jiang et al. [48,99] suggested that zoonotic infection by E. crescens remains highly unlikely,
as a higher frequency of infection by the fungus appears in hosts with body temperatures
relatively lower (35.0–37.5 ◦C) than that of humans. Emergomyces africanus with increased
prevalence, causing hundreds of deaths in HIV patients yearly, is exclusively found in
humans. Yet emergomycosis remains of particular interest when dealing with animal-
associated fungal diseases in humans, as it strongly resembles histoplasmosis in its clinical
presentations and diagnostic test results. Anthropophilic Emergomyces species, such as E.
africanus, and Histoplasma capsulatum proliferate by forming thin-walled, budding yeast and
yeast-like cells, leading to disseminated infection. Dissemination commonly involves the
spleen, liver, gastrointestinal tract and bone marrow [104,105]. When the infective agent is
sampled and cultured, swollen conidiophores and florets of conidia form fluffy whitish-
yellow mycelium in both anthropophilic Emergomyces and Histoplasma capsulatum [99].
However, the mycelial form varies considerably, and if successfully cultured, it can be used
as a distinguishing characteristic [44,99]. Ultimately, molecular methods provide a more
accurate means for identification [39,106].

5.6. Talaromycosis

Talaromyces marneffei (previously known as Penicillium marneffei) infects around 50,000
HIV positive patients every year in endemic regions [18]. However, in the last decade,
a change in the epidemiology of Talaromyces marneffei has been observed. The fungus
once considered exclusively AIDS-related now shows association with other types of
impairment of cellular immunity such as disorders related to mutation of the STAT-1
gene [107,108]. In Southern China and East India, immunocompetent individuals also seem
to be involved [85,109–111].

Talaromycosis is described as a soft-tissue infection, but recently, Li et al. [112] stated
the radiological findings of bone involvement in non-HIV talaromycosis patients, mainly
osteolytic bone destruction in flat bones. Concerns arise as the clinical manifestations
of non-HIV talaromycosis develop rapidly, are non-specific and occur concurrently with
other opportunistic fungal infections, often leading to misdiagnosis [110,112]. Surpris-
ingly, disease mortality was found to be higher in non-HIV patients than in HIV-positive
patients [113].

A newly reported case in a patient who had no recent contact with any known source
or reservoir of infection [110] has brought back uncertainties around the ecology and
transmission of Talaromyces marneffei. The fungus comprises the sole dimorphic species of
Talaromyces [114]. Little is known about the causative agent of talaromycosis. Its natural
environmental niche is still debated, and the mechanism through which it invades the host
is poorly understood [115]. Infection is presumed to occur through inhalation of conidia
from the environment [116]. Zoonotic transmission has also been speculated as strains
infecting bamboo rats and humans are genetically similar [117]. A case of disseminated
talaromycosis has also been reported in a male who had consumed bamboo rat meat [109].
However, further evidence is needed to confirm the hypothesis of direct transmission from
rodents to humans. Since the first isolation of the fungus from the liver of bamboo rats,
subsequent studies uncovered the natural occurrence of the fungus in plant materials and
soil associated and non-associated with the rodent [14–17,115].

6. Conclusions

Fungal diseases typically associated with animals continue to emerge in humans
mainly due to human modern activities. With increased movement and development along
with environmental changes, emerging fungal infections are on the rise and require close
surveillance. The emergence of animal-associated diseases in humans is noted as a result
of either an increase in the number of cases or as host switch of a known species. In all
cases, assessing the risk that these fungi pose to public health may be challenging, as it
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requires interdisciplinary collaboration. Infections of humans and domestic animals have
been studied thoroughly, but knowledge on wildlife habitats is fragmented. Tackling this
gap requires collaborative research among many fields, including taxonomy, ecology and
epidemiology. The basis of understanding and forecasting epidemics is to trace the source
of the disease. Wildlife should be given close attention, yet it should not be spuriously
considered as the source of all threatening diseases. If emerging diseases can be predicted
early, then preventive methods (e.g., novel pharmaceutical agents) or other methods can
be developed in a timely manner [1,3,7]. Though this review is centered on humans and
public health, successfully tackling emerging fungal diseases will require a One Health
approach, whereby humans, other animals and the environment are considered.
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49. Waśkiel-Burnat, A.; Rakowska, A.; Sikora, M.; Ciechanowicz, P.; Olszewska, M.; Rudnicka, L. Trichoscopy of tinea capitis: A
systematic review. Dermatol. Ther. 2020, 10, 43–52. [CrossRef]

50. Ebrahimi, M.; Zarrinfar, H.; Naseri, A.; Najafzadeh, M.J.; Fata, A.; Parian, M.; Khorsand, I.; Babič, M.N. Epidemiology of
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