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Background: For chemicals with high within-subject temporal vari-
ability, assessing exposure biomarkers in a spot biospecimen poorly 
estimates average levels over long periods. The objective is to charac-
terize the ability of within-subject pooling of biospecimens to reduce 
bias due to exposure misclassification when within-subject variabil-
ity in biomarker concentrations is high.
Methods: We considered chemicals with intraclass correlation coef-
ficients of 0.6 and 0.2. In a simulation study, we hypothesized that the 
chemical urinary concentrations averaged over a given time period 
were associated with a health outcome and estimated the bias of stud-
ies assessing exposure that collected 1 to 50 random biospecimens per 
subject. We assumed a classical type error. We studied associations 
using a within-subject pooling approach and two measurement error 
models (simulation extrapolation and regression calibration), the lat-
ter requiring the assay of more than one biospecimen per subject.
Results: For both continuous and binary outcomes, using one sample 
led to attenuation bias of 40% and 80% for compounds with intra-
class correlation coefficients of 0.6 and 0.2, respectively. For a com-
pound with an intraclass correlation coefficient of 0.6, the numbers 
of biospecimens required to limit bias to less than 10% were 6, 2, 
and 2 biospecimens with the pooling, simulation extrapolation, and 
regression calibration methods (these values were, respectively, 35, 
8, and 2 for a compound with an intraclass correlation coefficient of 
0.2). Compared with pooling, these methods did not improve power.
Conclusion: Within-subject pooling limits attenuation bias with-
out increasing assay costs. Simulation extrapolation and regression 

calibration further limit bias, compared with the pooling approach, 
but increase assay costs.

(Epidemiology 2016;27: 378–388)

Exposure assessment is a central issue in epidemiologic stud-
ies exploring the effects of environmental contaminants on 

human health. For chemicals with multiple exposure sources, 
biomarker measurements in biospecimens are often used to 
assess an exposure proxy.1,2 Such biomarker-based studies gen-
erally rely on few (often only one) biospecimens per subject. 
However, for chemicals with a short half-life, such as bisphenol 
A, phthalates, and pyrethroid pesticides, within-subject bio-
marker concentrations strongly vary over time.3–5 Consequently, 
a biomarker assay based on a single biospecimen is likely to 
imperfectly reflect the average exposure throughout long time 
periods (typically, a week to several years). In this setting, the 
biomarker concentration measured in a spot biospecimen varies 
around the true unmeasured value (corresponding to the aver-
age biomarker level during the toxicologically relevant exposure 
window) in a way such that the average of many replicate mea-
surements is expected to approximate the true individual level. 
This corresponds to what is termed classical error.6 Classical 
error is expected to bias dose–response relationships toward the 
null in a predictable way7,8 and reduce statistical power.9–11

Performing repeated exposure measurements on each 
study participant is generally a relevant option to reduce bias 
due to exposure misclassification in environmental health 
studies.7,8 This approach has so far little been used in epide-
miologic studies on the health effect of chemicals with short 
half-lives.12,13 This might be due to the increased assay costs, 
and possibly to the assumption that increasing the number of 
study subjects is more efficient than increasing the number of 
biospecimens per subject (which is not always true14). One 
way to have some of the benefits of the reliance on repeated 
biospecimens per subject without increasing the assay costs, 
compared with the situation where only one biospecimen is 
collected, would be to collect and pool several biospecimens 
for each subject before assaying the chemical of interest 
(within-subject pooling). Pooling biospecimens from different 
subjects (between-subject pooling) has been applied since the 
1940s to reduce the cost of identification of infectious cases in 
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large populations.15,16 More recently, in the context of case–
control studies with expensive biomarker assays, between-sub-
ject pooling of biospecimens from random groups of cases and 
controls has been used to estimate individual effect of exposure 
while reducing assay costs.17 To the best of our knowledge, in 
spite of its simplicity, within-subject pooling of biospecimens 
has been very little used in biomarker-based environmental 
epidemiology. Notably, within-subject pooling has been pro-
posed to limit the proportion of biospecimens with biomarker 
concentrations below the limit of detection,18 and as a strategy 
to estimate intraclass correlation coefficients (ICC).16

Our aim was therefore to assess the ability of within-
subject pooling of biospecimens to reduce bias due to expo-
sure misclassification occurring when biomarkers with strong 
temporal variability are considered. We compared the perfor-
mance of this pooling approach to measurement error models, 
as approaches supposed to make optimal use of the collection 
of repeated biospecimens to adjust for measurement error.

METHODS

Overview of the Approach
We supposed that one is interested in estimating the 

health effects of exposure during a specific time-window to two 
distinct nonpersistent chemicals with different temporal vari-
ability in a biological matrix such as urine. We used different 
approaches to study the associations between the biomarker 
concentrations assayed with error in repeated biospecimens in 
each subject and continuous (e.g., child weight at the age of 
3 years) and binary (e.g., being overweight) health outcomes: 
within-subject pooling of biospecimens before assaying the 
chemical (or pooling method, possibly followed by a posteriori 
disattenuation7,8) and two measurement error models relying on 
the assay of the chemical in each biospecimen: regression cali-
bration and simulation extrapolation (SIMEX). We simulated 
epidemiologic studies conducted in the general population and 
estimated bias and statistical power for the four approaches.

Simulation of Exposures
For each subject i (i = 1, …, n) a variable Xi, drawn at 

random from a normal distribution (mean, 0; standard devia-
tion (SD) σ X  = 1), was assumed to represent the real unob-
served average concentration (in μg/liter) of the considered 
chemical in the biospecimens collected over a toxicologically 
relevant exposure window, measured without error, after stan-
dardization and centering around 0.

For each subject, we generated 50 error-prone variables 
Wij ( j = 1, …, 50) corresponding to exposure biomarker con-
centrations assayed in spot biospecimens collected at random 
time points during the relevant exposure window. Wij is an 
error-prone estimate of Xi. The within-subject error (Uij ,within,  

mean 0; SD, σU within
) affecting Wij was supposed to be related 

to the individual and might be due to the variability in urinary 
concentrations arising from the toxicokinetics of the studied 

compound, temporal variations in diluteness of the urine and 
temporal variability in exposure itself. Uij ,within was assumed 
to correspond to random variations around the real value Xi, 
to be additive and of classical type. The variance of the error 
term Uij ,within was computed as19

	
σ σU Xwithin ICC

,2 2 1
1= −



 � (1)

where ICC is the intraclass correlation coefficient, corre-
sponding to the expected correlation between biomarker con-
centrations in any pair of biospecimens Wij and Wik collected 
at different time points during the exposure window of inter-
est. ICCs were set at 0.6 (moderate within-subject variability, 
chemical A) or 0.2 (high within-subject variability, chemical 
B). ICCs of about 0.6 have been typically reported for benzo-
phenone-3, parabens, and a butylbenzylphthalate metabolite, 
while ICCs of 0.1–0.2 have been reported for bisphenol A and 
di-(2-ethylhexyl) phthalate (DEHP) metabolites.20,21

In additional analyses, we also considered between-
assay error (Uij ,assay) due to the biomarker measurement and 
arising from the technician and from analytical error (see  
eTables 1, 2; http://links.lww.com/EDE/B27).

In most simulations, we assumed the number of biospeci-
mens to be the same for each subject (balanced design). We 
additionally specifically considered the situation of an unbal-
anced number of biospecimens per subject keeping constant the 
total number of subjects (n = 3,000) as well as the total number 
of biospecimens available in the population (n = 9,000).

Simulation of Health Outcomes
We simulated the continuous outcome Yi as

	
Y Xi i i= + +α β ε ,1 � (2)

where β1, the “real” effect of the chemical on Y , was assumed 
to be −100 g for each increase by 1 in X  and ε was a normally 
distributed random error (mean = 0). The values of α (14,900 g) 
and of the standard deviation of ε (1,650 g) were based on the 
values observed for the weight at 3 years in a mother-child 
cohort (Eden cohort,22). To study the impact of measurement 
error on the risk of type 1 error, we also conducted simulations 
assuming a lack of effect of exposure (β1 = 0).

We also simulated the case of a binary heath outcome 
(see eTables 3, 4; http://links.lww.com/EDE/B27).

Characterizing Bias in Studies Relying on Error-
prone Estimates of Exposure

Within-subject Pooling
This method consisted of regressing the outcome Y  over 

an exposure variable corresponding to the biomarker con-
centration measured in the pool of k (k = 1, …, 50) random 
(error-prone) biospecimens from each subject. We assumed 
that all individual specimens were pooled in equal volume, 
and errors that could arise from pooling volumes of individual 

http://links.lww.com/EDE/B27
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specimens that were not exactly equal were not considered. 
Associations between the concentration measured in the pool 
(average of Wi1…Wik) and each health outcome were charac-
terized by linear and logistic regression models for the con-
tinuous and binary health outcomes, respectively.

In the situations of unbalanced numbers of biospecimens 
pooled per participant, we used weighted linear and logistic 
regression models to assess associations between exposure 
and outcome. We used analytical weights depending on the 
number of biospecimens available for each participant; these 
weights were inversely proportional to the variance of the sub-
ject-specific exposure average (option aweight in Stata).

A Posteriori Disattenuation
In the balanced design, we additionally corrected the 

effect estimates from the pooling method7,8:

	
β β� �

corr obs ICC
=

−
+



⋅ ,

k

k k

1 1
� (3)

where β� obs  was the observed effect estimate with the pooling 
method, ICC the intraclass correlation coefficient, and k the 
number of biospecimens pooled per subject. The same correc-
tion was applied to the standard deviation.

Measurement Error Models
We considered two measurement error models (SIMEX 

and regression calibration11,23), which make use of the assay of 
several biospecimens per subject to correct the dose–response 
function. For SIMEX, we used a quadratic model for the extrap-
olation step. We used bootstrap with 100 replications to esti-
mate the variance of the estimated effects for both models. The 
models were implemented in Stata using the commands rcal 
for regression calibration24 and simex for simulation extrap-
olation25 (http://www.stata.com/merror; see eAppendix 1  
for more details; http://links.lww.com/EDE/B27).

For each of the two chemicals considered, 1,000 studies 
were simulated. For each method, we quantified the average 
effect estimate (β�1) and the statistical power, defined as the pro-
portion of studies in which the P value of the parameter charac-
terizing the association between the error-prone variables and 
the health outcome was below 0.05. Results are presented for a 
sample size of 3,000 subjects and with the default assumption 
of lack of between-assay error, unless otherwise specified.

Simulations and analyses were performed using 
STATA/SE, version 13 (StataCorp, College Station, TX). 
Our code for the continuous outcome is provided in the Sup-
plemental Material (eAppendix 2, the code for the binary 
outcome is available upon request; http://links.lww.com/
EDE/B27).

RESULTS
Distributions of X , W , and Uij ,within and the simulated 

concentrations for three subjects are shown in eFigures 1 
and 2 (http://links.lww.com/EDE/B27).

Bias Resulting from the Use of One Urine 
Sample to Assess Exposure

For chemical A (ICC of 0.6), the reliance on one 
urine sample to assess exposure led to an estimated 
effect of −60 g (average over 1,000 studies), correspond-
ing to an attenuation by 40% compared with the real effect  
(β1 = −100 g). Statistical power was 71% with a sample size 
of 3,000 subjects (Table  1). For chemical B (ICC of 0.2), 
when using one sample, the average effect estimate was −20 g 
(attenuation bias of 80%) and power was 32% (Table 2). Bias 
in the logarithm of the estimated odds-ratio associated with 
the exposure variable and power were similar for the binary 
outcome (eTables 3, 4; http://links.lww.com/EDE/B27).

For the continuous outcome, dividing the observed 
effect estimates by the ICC (a posteriori disattenuation7,8) 
yielded corrected effect estimates of −100 g on average  
(i.e., no bias) for both chemicals. A posteriori disattenuation 
did not improve power (Tables 1, 2).

Increasing the Number of Biospecimens
Using the concentration assayed in the pool of several 

biospecimens per subject as a proxy of exposure decreased 
bias (Figure) and increased power, compared with the situa-
tion where one biospecimen was used per participant and no a 
posteriori disattenuation was applied. For both the continuous 
(Tables 1, 2) and binary (eTables 3, 4; http://links.lww.com/
EDE/B27) outcomes, the number of biospecimens per subject 
required to limit the bias in the health effect estimate to 10% 
was 6 for chemical A (ICC of 0.6, Table 1, eTable 3; http://
links.lww.com/EDE/B27) and 35 for chemical B (ICC of 0.2, 
Table 2, eTable 4; http://links.lww.com/EDE/B27). These val-
ues were reduced to 1 biospecimen when a posteriori disat-
tenuation correction was applied.

Applying Measurement Error Models
For a given number of biospecimens, SIMEX and 

regression calibration drastically reduced bias compared with 
pooling without disattenuation (Figure). As an example, for an 
ICC of 0.6 and considering a continuous health outcome, using 
two biospecimens per subject led to effect estimates biased 
by 25%, 5%, and 0% with pooling, SIMEX, and regression 
calibration, respectively (Table 1); these values were respec-
tively 66%, 45%, and 2% for a compound with an ICC of 0.2 
(Table 2). Statistical power was similar (slightly higher) for 
SIMEX, regression calibration, and the pooling approach: for 
chemical B (ICC of 0.2) and considering a continuous health 
outcome, collecting two biospecimens led to a power of 50% 
for the pooling method, 52% for SIMEX, and 53% for regres-
sion calibration (study sample size of 3,000, Table 2).

Impact of Exposure Misclassification on  
Type 1 Error

When the real effect of exposure was assumed to be null 
and one biospecimen was used to assess exposure, the P value 
of the parameter associated with exposure was below 0.05 for 

http://www.stata.com/merror
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http://links.lww.com/EDE/B27
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5% of the simulated datasets, whatever the ICC considered 
(eTables 5, 6; http://links.lww.com/EDE/B27), suggesting that 
under the hypotheses of our simulations, using one biospeci-
men to assess exposure did not increase the risk of type 1 error. 
For a given number of biospecimens, the risk of type I error 
was slightly higher with SIMEX and regression calibration 
(range: 5%–8%) compared with the pooling approach (range: 
4%–6%, eTables 5, 6; http://links.lww.com/EDE/B27).

Unbalanced Number of Biospecimens Between 
Subjects

For chemical A (ICC of 0.6), and for a given total num-
ber of biospecimens collected (9,000 samples among 3,000 
subjects), bias in the effect estimate was slightly higher when 
the design was unbalanced (different numbers of biospeci-
mens per subject, bias 20%–22%) than when the design was 
balanced (bias of 18%, Table  3). For chemical B (ICC of 
0.2), the effect estimate tended to be less biased with unbal-
anced (47%–52%) compared with balanced (58%) designs 
(Table 3). When measurement error models were applied, bias 
was always lower with a balanced design than with unbal-
anced designs (Table 3).

Impact of Study Sample Size
Overall, for a given number of biospecimens per partici-

pant, varying study sample size did not affect bias but impacted 
statistical power (Table 4). For both ICCs, we observed higher 
bias and higher statistical power in studies relying on one bio-
specimen per subject compared with studies with two pooled 
biospecimens and half the sample size (Table  4). For com-
pounds with an ICC of 0.2, the loss of power when recruiting 
half as many subjects with twice as many biospecimens was 
sometimes limited: power was 37% for a study of 4,000 sub-
jects with one biospecimen per subject, and 33% in a study of 

2,000 subjects in which two biospecimens were pooled by sub-
ject; bias was lower (67%) in the latter study with 2,000 sub-
jects than in the former one with 4,000 subjects (80%, Table 4).

Impact of Between-assay Error
For a given number of biospecimens, with the pooling 

method, bias increased with increasing between-assay error 
(eTable 1; http://links.lww.com/EDE/B27). When several bio-
specimens were available per subject, performance of a poste-
riori disattenuation was reduced with increasing between-assay 
error. For a compound with an ICC of 0.6, when five biospeci-
mens were available per subject, a posteriori disattenuation led 
to effect estimates biased by 1%, 8%, and 31% for between-
assay variances of 0.01, 0.1, and 0.5, respectively. With regres-
sion calibration, the between-assay variance did not affect bias 
while with SIMEX, bias increased with increasing between-
assay error (eTable 1; http://links.lww.com/EDE/B27). This 
increase in bias is likely to result from the effect of the ICC 
decrease (from 0.60 to 0.46 and from 0.20 to 0.18) that resulted 
from the increase in the between-assay error, rather than result 
from a direct effect of the between assay error. Indeed, in simu-
lations in which ICCs were kept constant whatever the value of 
the between-assay error, with SIMEX, bias was not affected by 
increases in the between-assay variance (eTable 2; http://links.
lww.com/EDE/B27).

In situations of substantial between-assay error (σUassay

2,  

0.1 and 0.5), power was lower with pooling compared with 
SIMEX and regression calibration (eTables 1, 2; http://links.
lww.com/EDE/B27).

DISCUSSION
Our simulation study confirmed that relying on one 

biospecimen to assess exposure to short half-life chemicals 
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yields biased dose–response functions. Increasing the number 
of biospecimens per subject and pooling them was efficient 
in decreasing bias and increasing statistical power without 
affecting assay costs, compared with the usual approach in 
which only one biospecimen per subject is collected. When 
the number of biospecimens pooled is identical for each sub-
ject, bias due to classical-type error could be further reduced 
by applying an a posteriori correction (disattenuation) to the 
effect estimate obtained with the pooling method.7,8

Bias and Power in Studies Relying on One 
Biospecimen

The attenuation in the effect estimates observed in our 
study has been previously described in situations of measure-
ment error of classical type.7,8,10,11 When one biospecimen 
per subject was used to assess exposure, our results were in 
line with the property that the ICC corresponds to the mul-
tiplicative attenuation factor in the parameter of the regres-
sion model.7,8 Consequently, if the ICC is known, dividing the 
observed effect estimate by the ICC (a posteriori disattenua-
tion) provided unbiased estimate of the real effect. Such a cor-
rection did not improve power. For compounds with low ICCs, 
such as bisphenol A, DEHP metabolites and some pesticides 
(ICC below 0.3),21,26,27 the bias in studies relying on a single 
biospecimen per subject appears very large (more than 70% 
attenuation), making such studies of limited informative value 
regarding the dose–response function whatever the number of 
subjects. Bias remains large with an ICC of 0.6.

The decrease in power observed with decreasing ICC 
was coherent with the fact that the bias in the health effect 
estimates corresponded to attenuation.11 As discussed else-
where,28 when several chemicals with different ICCs are 
simultaneously considered,29,30 interpretation of results should 
consider these ICCs, in particular when no association is high-
lighted. Without bias correction, such studies cannot easily be 
used to identify which exposure, among those tested, is most 
harmful, because the amplitude of the bias is likely to differ 
between exposures.

Increasing the Number of Biospecimens Per 
Subject

Collecting repeated biospecimens per subject is an effi-
cient method to decrease bias. The number of biospecimens that 
has to be collected to restrict attenuation of the health effect 
estimate can be estimated from the formula from Brunekreef  
et al.,8 and Rappaport et al.7 (Eq. 3), which predicts that six and 
36 biospecimens per participants would be needed to limit the 
attenuation factor to 0.9 for chemicals with ICCs of 0.6 and 
0.2, respectively. This was in line with our estimations based 
on a simulation approach (six and more than 35 biospecimens, 
respectively). Most epidemiologic studies relying on biomark-
ers to assess exposure to short half-life compounds relied on 
a small number of biospecimens per subject.13,22,31 A possible 
explanation lies in the increased cost incurred by the assessment 
of biomarkers in several biospecimens per subject. This is not a 
justification to refrain from collecting several biospecimens per 

TABLE 3.  Unbalanced Designs: Effect Estimates and Statistical Power When the Numbers of Biospecimens Available Differed 
Between Subjects (Continuous Outcome, 1,000 Simulations for Each Design; Real Effect β1 = −100, Assuming a Lack of 
Between-assay Error)

Design
True Effect 
Estimateb

Within-subject Poolinga SIMEX Regression Calibration

Effect 
Estimateb Powerc Bias (%)d

Effect 
Estimateb Powerc Bias (%)d

Effect  
Estimateb Powerc Bias (%)d

Chemical A, intraclass correlation coefficient of 0.6

 � a −102 −81 0.81 21 −95 0.84 7 −101 0.85 1

 � b −101 −79 0.83 22 −97 0.85 4 −102 0.86 1

 � c −99 −79 0.82 20 −96 0.85 3 −102 0.85 3

 � d −100 −80 0.78 20 −93 0.81 7 −101 0.82 1

 � e −100 −82 0.85 18 −98 0.86 2 −100 0.86 0

Chemical B, intraclass correlation coefficient of 0.2

 � a −99 −48 0.62 51 −61 0.59 38 −105 0.64 6

 � b −102 −55 0.69 47 −65 0.62 37 −96 0.71 6

 � c −100 −50 0.63 50 −53 0.53 47 −87 0.65 13

 � d −100 −48 0.62 52 −52 0.50 48 −107 0.59 7

 � e −100 −43 0.58 58 −66 0.61 34 −100 0.62 1

Design a: 600 subjects with one sample, 1,500 with two samples, and 900 with six samples; design b: 600 subjects with one sample, 1,800 with three samples, and 600 with five 
samples; design c: 900 subjects with one sample, 1,200 with three samples, and 900 with five samples; design d: 1,200 subjects with one sample, 1,200 with two samples, and 600 with 
nine samples; design e: 3,000 subjects with three biospecimens each (balanced design).

aWeighted linear regression models were used to assess associations between exposure and outcome.
bMean of 1,000 effect estimates.
cStatistical power, proportion of studies in which the P value of the parameter characterizing the association between the error-prone variables Wij( ) and the continuous outcome 

was below 0.05.
dDifference between the real effect and the effect estimate, divided by the real effect.
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subject. Indeed, the within-subject pooling approach described 
here allows to decrease bias and increase power without increas-
ing assay costs, compared with the situation when one spot 
biospecimen is collected. When the number of biospecimens 
pooled is identical for each subject, a posteriori disattenuation7,8 
can be used to further reduce attenuation bias. If the number of 
samples collected varies between subjects (unbalanced design), 
then the formula to disattenuate effect estimates a posteriori 
cannot rigorously be used anymore, but, as we have illustrated, 
the within-subject pooling approach still applies.

When no a posteriori correction of the effect estimate 
was performed, for a given number of biospecimens collected, 
studies relying on one biospecimen were more biased but had 
higher power than studies with two pooled biospecimens and 
half the sample size. For a compound with an ICC of 0.2, the 
gain in power was sometimes limited. For such compounds, 
compared with studies with a single biospecimen, studies with 
two or more samples per subject and possibly fewer subjects 
are an alternative worth considering. These would moreover 
have a lower assay cost.

Limitations of the Within-subject Pooling 
Approach

For chemicals with high intraindividual variability (ICC 
of 0.2), without a posteriori disattenuation, a large number of 
biospecimens (above 30) was required for the pooling approach 
to limit bias to 10%. Collecting more than 30 samples per sub-
ject outside of a clinical setting is cumbersome for the subjects 
(possibly limiting participation rate and inducing selection bias) 
and in terms of collection, storage and processing of the bio-
logical samples, which might impact the total cost of the cohort.

Caution is required in attempting to correct biomarker 
levels for creatinine concentration when pooling is done. The 
mathematical average of the creatinine-standardized bio-
marker concentrations (biomarker concentration/creatinine 
concentration) assessed in two biospecimens will indeed gen-
erally differ from the creatinine-standardized concentration 
assessed in the pool made of these two biospecimens; this fea-
ture might limit the efficiency of creatinine correction through 
standardization in the pooling approach. Other approaches 
could be considered to take into account urine dilution.32

If the toxicologically relevant exposure window is 
unknown, pooling biospecimens over long exposure windows 
should be considered with caution, as pooling biospecimens 
collected during the relevant exposure window with biospeci-
mens collected in another exposure window may increase 
exposure misclassification instead of decreasing it, in particu-
lar if exposure varied between the two windows considered.

Use of Measurement Error Models to  
Decrease Bias

Compared with the pooling approach used without 
a posteriori disattenuation, for a given number of biospeci-
mens per subject, SIMEX and regression calibration strongly 
reduced bias. In our simulations, for chemicals with moderate 

intraindividual variability (ICC of 0.6), both measurement 
error models behaved similarly and two biospecimens were 
enough to limit bias to 10%. For chemicals with high vari-
ability (ICC of 0.2), SIMEX appeared to be less able than 
regression calibration to reduce bias. In line with our results, 
studies relying on linear and logistic models overall observed 
more biased effect estimates with SIMEX than with regres-
sion calibration in the case of high intraindividual variability 
in exposure.33,34

The slight gain in power observed with SIMEX and 
regression calibration compared with pooling is likely to 
result from the fact that, under the assumptions of our simula-
tion, SIMEX and regression calibration led to inflated type I 
error, compared with pooling. The fact that, compared with 
pooling, measurement error models did not strongly improve 
power while reducing bias, is a manifestation of the bias ver-
sus variance tradeoff11: measurement error models led to 
effect estimates that were less attenuated (further away from 
the null), but with larger variances than the effect estimates 
from the pooling approach.

SIMEX and regression calibration corrected for both 
the between-assay error and the error related to the individ-
ual, while the within-subject pooling method was inefficient 
in correcting for the between-assay error. An explanation is 
that, in contrast to the individual error, which tends to cancel 
out when several biospecimens are pooled, the between-assay 
error occurs after the pooling is done and remains the same 
whatever the number of biospecimens pooled. Conversely, 
SIMEX and regression calibration methods identified the total 
error (including the intraindividual and between-assay error) 
through the repeated assays and corrected for it.

Although measurement error models have been applied 
in air pollution35,36 and nutritional37,38 epidemiology, they 
have so far little been used in biomarker-based studies in the 
general population. Repeated measurements of exposure for 
each subject are needed to use these models; an option to limit 
the cost incurred by these repeated assessments is to perform 
them among a subsample of study subjects rather than the 
entire population.38

Model Assumptions
Although no study actually tried to characterize the 

statistical nature (i.e., classical or Berkson-type errors) of 
the error entailed by within-subject biomarker variability, 
we believe that the assumption we made regarding the clas-
sical nature of error is plausible for biomarkers of exposure 
to widely used chemicals with short half-life in the general 
population. We assumed the correlation between two repeated 
measurements to be the same whatever the time elapsed 
between biospecimen collections, which might not be true 
for some short half-life compounds (correlation levels might 
for example decrease with time21). This might limit generaliz-
ability of our results. We assumed that all biomarker levels 
were above the limit of detection, which will generally not 
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occur for all populations nor chemicals considered with the 
currently available bioassays. The proportion of samples with 
a concentration below the limit of detection will be lower in 
pooled than unpooled samples,17,18 which may have caused us 
to overestimate the relative efficiency of measurement error 
models, compared with the pooling approach.

We assumed that the average of the concentrations mea-
sured in all biospecimens collected during the considered time 
window corresponded to the toxicologically relevant dose (or 
was a good proxy thereof). For some exposure–health out-
come pairs, the toxicologically relevant measure of exposure 
may rather be the dose to a specific organ, of which the urinary 
concentration is only a proxy. These sources of exposure mis-
classification will possibly further bias dose–response rela-
tions in a way that we did not consider. Finally, we did not 
consider confounding and selection biases.

CONCLUSION
Biomarker-based studies dealing with compounds 

with an ICC of 0.6 or less can be strongly biased and weakly 
powered if only one biospecimen per subject is collected. 
Such studies should collect repeated biospecimens per 
subject. Assessing biomarker concentrations in each bio-
specimen allows, if measurement error models are used, to 
efficiently correct for both the between-assay error and the 
error related to the individual, but entails higher assay cost. 
The within-subject pooling approach that we described 
appears efficient in situations with low between-assay error 
and provides a less biased and more powerful design than 
if only one sample had been collected, without increasing 
assay costs. If the number of biospecimens pooled is identi-
cal for each participant, the pooling approach can be cou-
pled with a posteriori bias disattenuation which, if a good 
estimate of the ICC is available for the studied chemical 
and under the assumption of a classical type error, further 
reduces bias.7,8
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