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Within-subject Pooling of Biological Samples to Reduce
Exposure Misclassification in Biomarker-based Studies

Flavie Perrier,*® Lise Giorgis-Allemand,*® Rémy Slama,*® and Claire Philippat®>*4

Background: For chemicals with high within-subject temporal vari-
ability, assessing exposure biomarkers in a spot biospecimen poorly
estimates average levels over long periods. The objective is to charac-
terize the ability of within-subject pooling of biospecimens to reduce
bias due to exposure misclassification when within-subject variabil-
ity in biomarker concentrations is high.

Methods: We considered chemicals with intraclass correlation coef-
ficients of 0.6 and 0.2. In a simulation study, we hypothesized that the
chemical urinary concentrations averaged over a given time period
were associated with a health outcome and estimated the bias of stud-
ies assessing exposure that collected 1 to 50 random biospecimens per
subject. We assumed a classical type error. We studied associations
using a within-subject pooling approach and two measurement error
models (simulation extrapolation and regression calibration), the lat-
ter requiring the assay of more than one biospecimen per subject.
Results: For both continuous and binary outcomes, using one sample
led to attenuation bias of 40% and 80% for compounds with intra-
class correlation coefficients of 0.6 and 0.2, respectively. For a com-
pound with an intraclass correlation coefficient of 0.6, the numbers
of biospecimens required to limit bias to less than 10% were 6, 2,
and 2 biospecimens with the pooling, simulation extrapolation, and
regression calibration methods (these values were, respectively, 35,
8, and 2 for a compound with an intraclass correlation coefficient of
0.2). Compared with pooling, these methods did not improve power.
Conclusion: Within-subject pooling limits attenuation bias with-
out increasing assay costs. Simulation extrapolation and regression
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calibration further limit bias, compared with the pooling approach,
but increase assay costs.

(Epidemiology 2016;27: 378-388)

Exposure assessment is a central issue in epidemiologic stud-
ies exploring the effects of environmental contaminants on
human health. For chemicals with multiple exposure sources,
biomarker measurements in biospecimens are often used to
assess an exposure proxy."> Such biomarker-based studies gen-
erally rely on few (often only one) biospecimens per subject.
However, for chemicals with a short half-life, such as bisphenol
A, phthalates, and pyrethroid pesticides, within-subject bio-
marker concentrations strongly vary over time.> Consequently,
a biomarker assay based on a single biospecimen is likely to
imperfectly reflect the average exposure throughout long time
periods (typically, a week to several years). In this setting, the
biomarker concentration measured in a spot biospecimen varies
around the true unmeasured value (corresponding to the aver-
age biomarker level during the toxicologically relevant exposure
window) in a way such that the average of many replicate mea-
surements is expected to approximate the true individual level.
This corresponds to what is termed classical error.® Classical
error is expected to bias dose—response relationships toward the
null in a predictable way’® and reduce statistical power.”!!
Performing repeated exposure measurements on each
study participant is generally a relevant option to reduce bias
due to exposure misclassification in environmental health
studies.”® This approach has so far little been used in epide-
miologic studies on the health effect of chemicals with short
half-lives.'?!3 This might be due to the increased assay costs,
and possibly to the assumption that increasing the number of
study subjects is more efficient than increasing the number of
biospecimens per subject (which is not always true'#). One
way to have some of the benefits of the reliance on repeated
biospecimens per subject without increasing the assay costs,
compared with the situation where only one biospecimen is
collected, would be to collect and pool several biospecimens
for each subject before assaying the chemical of interest
(within-subject pooling). Pooling biospecimens from different
subjects (between-subject pooling) has been applied since the
1940s to reduce the cost of identification of infectious cases in
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large populations.'>!® More recently, in the context of case—
control studies with expensive biomarker assays, between-sub-
ject pooling of biospecimens from random groups of cases and
controls has been used to estimate individual effect of exposure
while reducing assay costs.!” To the best of our knowledge, in
spite of its simplicity, within-subject pooling of biospecimens
has been very little used in biomarker-based environmental
epidemiology. Notably, within-subject pooling has been pro-
posed to limit the proportion of biospecimens with biomarker
concentrations below the limit of detection,'® and as a strategy
to estimate intraclass correlation coefficients (ICC).'¢

Our aim was therefore to assess the ability of within-
subject pooling of biospecimens to reduce bias due to expo-
sure misclassification occurring when biomarkers with strong
temporal variability are considered. We compared the perfor-
mance of this pooling approach to measurement error models,
as approaches supposed to make optimal use of the collection
of repeated biospecimens to adjust for measurement error.

METHODS

Overview of the Approach

We supposed that one is interested in estimating the
health effects of exposure during a specific time-window to two
distinct nonpersistent chemicals with different temporal vari-
ability in a biological matrix such as urine. We used different
approaches to study the associations between the biomarker
concentrations assayed with error in repeated biospecimens in
each subject and continuous (e.g., child weight at the age of
3 years) and binary (e.g., being overweight) health outcomes:
within-subject pooling of biospecimens before assaying the
chemical (or pooling method, possibly followed by a posteriori
disattenuation’”®) and two measurement error models relying on
the assay of the chemical in each biospecimen: regression cali-
bration and simulation extrapolation (SIMEX). We simulated
epidemiologic studies conducted in the general population and
estimated bias and statistical power for the four approaches.

Simulation of Exposures

For each subjecti (i = 1, ..., n) a variable X, drawn at
random from a normal distribution (mean, 0; standard devia-
tion (SD) o, = 1), was assumed to represent the real unob-
served average concentration (in pg/liter) of the considered
chemical in the biospecimens collected over a toxicologically
relevant exposure window, measured without error, after stan-
dardization and centering around 0.

For each subject, we generated 50 error-prone variables
w; (j=1, ..., 50) corresponding to exposure biomarker con-
centrations assayed in spot biospecimens collected at random
time points during the relevant exposure window. w; is an
error-prone estimate of X,. The within-subject error (Uij,within’
mean 0; SD, o, whhi") affecting W, was supposed to be related
to the individual and might be due to the variability in urinary
concentrations arising from the toxicokinetics of the studied

© 2016 Wolters Kluwer Health, Inc. All rights reserved.

compound, temporal variations in diluteness of the urine and
temporal variability in exposure itself. U within WS assumed
to correspond to random variations around the real value X,
to be additive and of classical type. The variance of the error

term U, .., Was computed as!
o, 2= oxz(#—l), M
within ICC

where ICC is the intraclass correlation coefficient, corre-
sponding to the expected correlation between biomarker con-
centrations in any pair of biospecimens W, and I, collected
at different time points during the exposure window of inter-
est. ICCs were set at 0.6 (moderate within-subject variability,
chemical A) or 0.2 (high within-subject variability, chemical
B). ICCs of about 0.6 have been typically reported for benzo-
phenone-3, parabens, and a butylbenzylphthalate metabolite,
while ICCs of 0.1-0.2 have been reported for bisphenol A and
di-(2-ethylhexyl) phthalate (DEHP) metabolites.?0!

In additional analyses, we also considered between-
assay error (Ul.j’assay) due to the biomarker measurement and
arising from the technician and from analytical error (see
eTables 1, 2; http:/links.lww.com/EDE/B27).

In most simulations, we assumed the number of biospeci-
mens to be the same for each subject (balanced design). We
additionally specifically considered the situation of an unbal-
anced number of biospecimens per subject keeping constant the
total number of subjects (n = 3,000) as well as the total number
of biospecimens available in the population (n = 9,000).

Simulation of Health Outcomes
We simulated the continuous outcome Y, as

Y=o+ B X +eg, 2)
where 3, the “real” effect of the chemical on Y, was assumed
to be —100 g for each increase by 1 in X and € was a normally
distributed random error (mean = 0). The values of o (14,900 g)
and of the standard deviation of € (1,650 g) were based on the
values observed for the weight at 3 years in a mother-child
cohort (Eden cohort,??). To study the impact of measurement
error on the risk of type 1 error, we also conducted simulations
assuming a lack of effect of exposure (8, = 0).

We also simulated the case of a binary heath outcome
(see eTables 3, 4; http://links.lww.com/EDE/B27).

Characterizing Bias in Studies Relying on Error-
prone Estimates of Exposure

Within-subject Pooling

This method consisted of regressing the outcome ¥ over
an exposure variable corresponding to the biomarker con-
centration measured in the pool of £ (k =1, ..., 50) random
(error-prone) biospecimens from each subject. We assumed
that all individual specimens were pooled in equal volume,
and errors that could arise from pooling volumes of individual
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specimens that were not exactly equal were not considered.
Associations between the concentration measured in the pool
(average of W...W,) and each health outcome were charac-
terized by linear and logistic regression models for the con-
tinuous and binary health outcomes, respectively.

In the situations of unbalanced numbers of biospecimens
pooled per participant, we used weighted linear and logistic
regression models to assess associations between exposure
and outcome. We used analytical weights depending on the
number of biospecimens available for each participant; these
weights were inversely proportional to the variance of the sub-
ject-specific exposure average (option aweight in Stata).

A Posteriori Disattenuation
In the balanced design, we additionally corrected the
effect estimates from the pooling method”®:

~ A k-1 1
=B | —+——], 3
ﬁcorr obs ( k kICC) ()
whereB

s Was the observed effect estimate with the pooling
method, ICC the intraclass correlation coefficient, and k the
number of biospecimens pooled per subject. The same correc-
tion was applied to the standard deviation.

Measurement Error Models

We considered two measurement error models (SIMEX
and regression calibration!!->*), which make use of the assay of
several biospecimens per subject to correct the dose—response
function. For SIMEX, we used a quadratic model for the extrap-
olation step. We used bootstrap with 100 replications to esti-
mate the variance of the estimated effects for both models. The
models were implemented in Stata using the commands rcal
for regression calibration®* and simex for simulation extrap-
olation®  (http://www.stata.com/merror; see eAppendix 1
for more details; http://links.lww.com/EDE/B27).

For each of the two chemicals considered, 1,000 studies
were simulated. For each method, we quantified the average
effect estimate () and the statistical power, defined as the pro-
portion of studies in which the P value of the parameter charac-
terizing the association between the error-prone variables and
the health outcome was below 0.05. Results are presented for a
sample size of 3,000 subjects and with the default assumption
of lack of between-assay error, unless otherwise specified.

Simulations and analyses were performed using
STATA/SE, version 13 (StataCorp, College Station, TX).
Our code for the continuous outcome is provided in the Sup-
plemental Material (eAppendix 2, the code for the binary
outcome is available upon request; http://links.lww.com/
EDE/B27).

RESULTS
Distributions of X', W, and Uij’Within and the simulated
concentrations for three subjects are shown in eFigures 1

and 2 (http://links.Iww.com/EDE/B27).
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Bias Resulting from the Use of One Urine
Sample to Assess Exposure

For chemical A (ICC of 0.6), the reliance on one
urine sample to assess exposure led to an estimated
effect of —60g (average over 1,000 studies), correspond-
ing to an attenuation by 40% compared with the real effect
(B, = —100g). Statistical power was 71% with a sample size
of 3,000 subjects (Table 1). For chemical B (ICC of 0.2),
when using one sample, the average effect estimate was —20 g
(attenuation bias of 80%) and power was 32% (Table 2). Bias
in the logarithm of the estimated odds-ratio associated with
the exposure variable and power were similar for the binary
outcome (¢Tables 3, 4; http://links.lww.com/EDE/B27).

For the continuous outcome, dividing the observed
effect estimates by the ICC (a posteriori disattenuation’®)
yielded corrected effect estimates of —100g on average
(i.e., no bias) for both chemicals. A posteriori disattenuation
did not improve power (Tables 1, 2).

Increasing the Number of Biospecimens

Using the concentration assayed in the pool of several
biospecimens per subject as a proxy of exposure decreased
bias (Figure) and increased power, compared with the situa-
tion where one biospecimen was used per participant and no a
posteriori disattenuation was applied. For both the continuous
(Tables 1, 2) and binary (eTables 3, 4; http://links.lww.com/
EDE/B27) outcomes, the number of biospecimens per subject
required to limit the bias in the health effect estimate to 10%
was 6 for chemical A (ICC of 0.6, Table 1, eTable 3; http://
links.lww.com/EDE/B27) and 35 for chemical B (ICC of 0.2,
Table 2, eTable 4; http://links.lww.com/EDE/B27). These val-
ues were reduced to 1 biospecimen when a posteriori disat-
tenuation correction was applied.

Applying Measurement Error Models

For a given number of biospecimens, SIMEX and
regression calibration drastically reduced bias compared with
pooling without disattenuation (Figure). As an example, for an
ICC of 0.6 and considering a continuous health outcome, using
two biospecimens per subject led to effect estimates biased
by 25%, 5%, and 0% with pooling, SIMEX, and regression
calibration, respectively (Table 1); these values were respec-
tively 66%, 45%, and 2% for a compound with an ICC of 0.2
(Table 2). Statistical power was similar (slightly higher) for
SIMEX, regression calibration, and the pooling approach: for
chemical B (ICC of 0.2) and considering a continuous health
outcome, collecting two biospecimens led to a power of 50%
for the pooling method, 52% for SIMEX, and 53% for regres-
sion calibration (study sample size of 3,000, Table 2).

Impact of Exposure Misclassification on
Type 1 Error

When the real effect of exposure was assumed to be null
and one biospecimen was used to assess exposure, the P value
of the parameter associated with exposure was below 0.05 for
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FIGURE. Bias in the health effect estimate (%) according to the number of biospecimens collected per subject to assess exposure
(1,000 simulations of studies with 3,000 subjects each; continuous health outcome, real effect g, = =100g, (assuming lack of
between-assay error, 0, 2=0). A, Compound A (ICC of 0.6). B, Compound B (ICC of 0.2).

assay

5% of the simulated datasets, whatever the ICC considered
(eTables 5, 6; http://links.lww.com/EDE/B27), suggesting that
under the hypotheses of our simulations, using one biospeci-
men to assess exposure did not increase the risk of type 1 error.
For a given number of biospecimens, the risk of type I error
was slightly higher with SIMEX and regression calibration
(range: 5%—8%) compared with the pooling approach (range:
4%—6%, eTables 5, 6; http:/links.lww.com/EDE/B27).

Unbalanced Number of Biospecimens Between
Subjects

For chemical A (ICC of 0.6), and for a given total num-
ber of biospecimens collected (9,000 samples among 3,000
subjects), bias in the effect estimate was slightly higher when
the design was unbalanced (different numbers of biospeci-
mens per subject, bias 20%—22%) than when the design was
balanced (bias of 18%, Table 3). For chemical B (ICC of
0.2), the effect estimate tended to be less biased with unbal-
anced (47%—-52%) compared with balanced (58%) designs
(Table 3). When measurement error models were applied, bias
was always lower with a balanced design than with unbal-
anced designs (Table 3).

Impact of Study Sample Size

Opverall, for a given number of biospecimens per partici-
pant, varying study sample size did not affect bias but impacted
statistical power (Table 4). For both ICCs, we observed higher
bias and higher statistical power in studies relying on one bio-
specimen per subject compared with studies with two pooled
biospecimens and half the sample size (Table 4). For com-
pounds with an ICC of 0.2, the loss of power when recruiting
half as many subjects with twice as many biospecimens was
sometimes limited: power was 37% for a study of 4,000 sub-
jects with one biospecimen per subject, and 33% in a study of

© 2016 Wolters Kluwer Health, Inc. All rights reserved.

2,000 subjects in which two biospecimens were pooled by sub-
ject; bias was lower (67%) in the latter study with 2,000 sub-
jects than in the former one with 4,000 subjects (80%, Table 4).

Impact of Between-assay Error

For a given number of biospecimens, with the pooling
method, bias increased with increasing between-assay error
(eTable 1; http://links.lww.com/EDE/B27). When several bio-
specimens were available per subject, performance of a poste-
riori disattenuation was reduced with increasing between-assay
error. For a compound with an ICC of 0.6, when five biospeci-
mens were available per subject, a posteriori disattenuation led
to effect estimates biased by 1%, 8%, and 31% for between-
assay variances of 0.01, 0.1, and 0.5, respectively. With regres-
sion calibration, the between-assay variance did not affect bias
while with SIMEX, bias increased with increasing between-
assay error (eTable 1; http:/links.lww.com/EDE/B27). This
increase in bias is likely to result from the effect of the ICC
decrease (from 0.60 to 0.46 and from 0.20 to 0.18) that resulted
from the increase in the between-assay error, rather than result
from a direct effect of the between assay error. Indeed, in simu-
lations in which ICCs were kept constant whatever the value of
the between-assay error, with SIMEX, bias was not affected by
increases in the between-assay variance (eTable 2; http://links.
Iww.com/EDE/B27).

2

In situations of substantial between-assay error (o, 2,
assay

0.1 and 0.5), power was lower with pooling compared with
SIMEX and regression calibration (eTables 1, 2; http://links.
lww.com/EDE/B27).

DISCUSSION
Our simulation study confirmed that relying on one
biospecimen to assess exposure to short half-life chemicals
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TABLE 3. Unbalanced Designs: Effect Estimates and Statistical Power When the Numbers of Biospecimens Available Differed
Between Subjects (Continuous Outcome, 1,000 Simulations for Each Design; Real Effect 5, = =100, Assuming a Lack of
Between-assay Error)

Within-subject Pooling® SIMEX Regression Calibration
True Effect Effect Effect Effect
Design Estimate® Estimate® Power® Bias (%)¢ Estimate” Power® Bias (%)¢ Estimate” Power* Bias (%)¢
Chemical A, intraclass correlation coefficient of 0.6
a -102 81 0.81 21 -95 0.84 7 —-101 0.85 1
b —-101 =79 0.83 22 =97 0.85 4 -102 0.86 1
c -99 =79 0.82 20 -96 0.85 3 -102 0.85 3
d -100 -80 0.78 20 -93 0.81 7 —-101 0.82 1
e —-100 -82 0.85 18 -98 0.86 2 —-100 0.86 0
Chemical B, intraclass correlation coefficient of 0.2
a -99 —48 0.62 51 —61 0.59 38 —-105 0.64 6
b -102 =55 0.69 47 —65 0.62 37 -96 0.71 6
c -100 =50 0.63 50 =53 0.53 47 —87 0.65 13
d -100 —48 0.62 52 =52 0.50 48 -107 0.59 7
e -100 —43 0.58 58 —66 0.61 34 —-100 0.62 1

Design a: 600 subjects with one sample, 1,500 with two samples, and 900 with six samples; design b: 600 subjects with one sample, 1,800 with three samples, and 600 with five
samples; design c: 900 subjects with one sample, 1,200 with three samples, and 900 with five samples; design d: 1,200 subjects with one sample, 1,200 with two samples, and 600 with

nine samples; design e: 3,000 subjects with three biospecimens each (balanced design).

*Weighted linear regression models were used to assess associations between exposure and outcome.

"Mean of 1,000 effect estimates.

“Statistical power, proportion of studies in which the P value of the parameter characterizing the association between the error-prone variables (W) and the continuous outcome

was below 0.05.

dDifference between the real effect and the effect estimate, divided by the real effect.

ij

yields biased dose—response functions. Increasing the number
of biospecimens per subject and pooling them was efficient
in decreasing bias and increasing statistical power without
affecting assay costs, compared with the usual approach in
which only one biospecimen per subject is collected. When
the number of biospecimens pooled is identical for each sub-
ject, bias due to classical-type error could be further reduced
by applying an a posteriori correction (disattenuation) to the
effect estimate obtained with the pooling method.”?

Bias and Power in Studies Relying on One
Biospecimen

The attenuation in the effect estimates observed in our
study has been previously described in situations of measure-
ment error of classical type.”®!%!! When one biospecimen
per subject was used to assess exposure, our results were in
line with the property that the ICC corresponds to the mul-
tiplicative attenuation factor in the parameter of the regres-
sion model.”? Consequently, if the ICC is known, dividing the
observed effect estimate by the ICC (a posteriori disattenua-
tion) provided unbiased estimate of the real effect. Such a cor-
rection did not improve power. For compounds with low ICCs,
such as bisphenol A, DEHP metabolites and some pesticides
(ICC below 0.3),212627 the bias in studies relying on a single
biospecimen per subject appears very large (more than 70%
attenuation), making such studies of limited informative value
regarding the dose—response function whatever the number of
subjects. Bias remains large with an ICC of 0.6.
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The decrease in power observed with decreasing ICC
was coherent with the fact that the bias in the health effect
estimates corresponded to attenuation.!! As discussed else-
where,”® when several chemicals with different ICCs are
simultaneously considered,?*3? interpretation of results should
consider these ICCs, in particular when no association is high-
lighted. Without bias correction, such studies cannot easily be
used to identify which exposure, among those tested, is most
harmful, because the amplitude of the bias is likely to differ
between exposures.

Increasing the Number of Biospecimens Per
Subject

Collecting repeated biospecimens per subject is an effi-
cient method to decrease bias. The number of biospecimens that
has to be collected to restrict attenuation of the health effect
estimate can be estimated from the formula from Brunekreef
et al.,’ and Rappaport et al.” (Eq. 3), which predicts that six and
36 biospecimens per participants would be needed to limit the
attenuation factor to 0.9 for chemicals with ICCs of 0.6 and
0.2, respectively. This was in line with our estimations based
on a simulation approach (six and more than 35 biospecimens,
respectively). Most epidemiologic studies relying on biomark-
ers to assess exposure to short half-life compounds relied on
a small number of biospecimens per subject.'3?23! A possible
explanation lies in the increased cost incurred by the assessment
of biomarkers in several biospecimens per subject. This is not a
justification to refrain from collecting several biospecimens per
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subject. Indeed, the within-subject pooling approach described
here allows to decrease bias and increase power without increas-
ing assay costs, compared with the situation when one spot
biospecimen is collected. When the number of biospecimens
pooled is identical for each subject, a posteriori disattenuation’:?
can be used to further reduce attenuation bias. If the number of
samples collected varies between subjects (unbalanced design),
then the formula to disattenuate effect estimates a posteriori
cannot rigorously be used anymore, but, as we have illustrated,
the within-subject pooling approach still applies.

When no a posteriori correction of the effect estimate
was performed, for a given number of biospecimens collected,
studies relying on one biospecimen were more biased but had
higher power than studies with two pooled biospecimens and
half the sample size. For a compound with an ICC of 0.2, the
gain in power was sometimes limited. For such compounds,
compared with studies with a single biospecimen, studies with
two or more samples per subject and possibly fewer subjects
are an alternative worth considering. These would moreover
have a lower assay cost.

Limitations of the Within-subject Pooling
Approach

For chemicals with high intraindividual variability (ICC
of 0.2), without a posteriori disattenuation, a large number of
biospecimens (above 30) was required for the pooling approach
to limit bias to 10%. Collecting more than 30 samples per sub-
ject outside of a clinical setting is cumbersome for the subjects
(possibly limiting participation rate and inducing selection bias)
and in terms of collection, storage and processing of the bio-
logical samples, which might impact the total cost of the cohort.

Caution is required in attempting to correct biomarker
levels for creatinine concentration when pooling is done. The
mathematical average of the creatinine-standardized bio-
marker concentrations (biomarker concentration/creatinine
concentration) assessed in two biospecimens will indeed gen-
erally differ from the creatinine-standardized concentration
assessed in the pool made of these two biospecimens; this fea-
ture might limit the efficiency of creatinine correction through
standardization in the pooling approach. Other approaches
could be considered to take into account urine dilution.*?

If the toxicologically relevant exposure window is
unknown, pooling biospecimens over long exposure windows
should be considered with caution, as pooling biospecimens
collected during the relevant exposure window with biospeci-
mens collected in another exposure window may increase
exposure misclassification instead of decreasing it, in particu-
lar if exposure varied between the two windows considered.

Use of Measurement Error Models to
Decrease Bias

Compared with the pooling approach used without
a posteriori disattenuation, for a given number of biospeci-
mens per subject, SIMEX and regression calibration strongly
reduced bias. In our simulations, for chemicals with moderate
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intraindividual variability (ICC of 0.6), both measurement
error models behaved similarly and two biospecimens were
enough to limit bias to 10%. For chemicals with high vari-
ability (ICC of 0.2), SIMEX appeared to be less able than
regression calibration to reduce bias. In line with our results,
studies relying on linear and logistic models overall observed
more biased effect estimates with SIMEX than with regres-
sion calibration in the case of high intraindividual variability
in exposure.’33*

The slight gain in power observed with SIMEX and
regression calibration compared with pooling is likely to
result from the fact that, under the assumptions of our simula-
tion, SIMEX and regression calibration led to inflated type I
error, compared with pooling. The fact that, compared with
pooling, measurement error models did not strongly improve
power while reducing bias, is a manifestation of the bias ver-
sus variance tradeoff'!: measurement error models led to
effect estimates that were less attenuated (further away from
the null), but with larger variances than the effect estimates
from the pooling approach.

SIMEX and regression calibration corrected for both
the between-assay error and the error related to the individ-
ual, while the within-subject pooling method was inefficient
in correcting for the between-assay error. An explanation is
that, in contrast to the individual error, which tends to cancel
out when several biospecimens are pooled, the between-assay
error occurs after the pooling is done and remains the same
whatever the number of biospecimens pooled. Conversely,
SIMEX and regression calibration methods identified the total
error (including the intraindividual and between-assay error)
through the repeated assays and corrected for it.

Although measurement error models have been applied
in air pollution®>3® and nutritional*’*® epidemiology, they
have so far little been used in biomarker-based studies in the
general population. Repeated measurements of exposure for
each subject are needed to use these models; an option to limit
the cost incurred by these repeated assessments is to perform
them among a subsample of study subjects rather than the
entire population.?®

Model Assumptions

Although no study actually tried to characterize the
statistical nature (i.e., classical or Berkson-type errors) of
the error entailed by within-subject biomarker variability,
we believe that the assumption we made regarding the clas-
sical nature of error is plausible for biomarkers of exposure
to widely used chemicals with short half-life in the general
population. We assumed the correlation between two repeated
measurements to be the same whatever the time elapsed
between biospecimen collections, which might not be true
for some short half-life compounds (correlation levels might
for example decrease with time?"). This might limit generaliz-
ability of our results. We assumed that all biomarker levels
were above the limit of detection, which will generally not
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occur for all populations nor chemicals considered with the
currently available bioassays. The proportion of samples with
a concentration below the limit of detection will be lower in
pooled than unpooled samples,'”'® which may have caused us
to overestimate the relative efficiency of measurement error
models, compared with the pooling approach.

We assumed that the average of the concentrations mea-
sured in all biospecimens collected during the considered time
window corresponded to the toxicologically relevant dose (or
was a good proxy thereof). For some exposure—health out-
come pairs, the toxicologically relevant measure of exposure
may rather be the dose to a specific organ, of which the urinary
concentration is only a proxy. These sources of exposure mis-
classification will possibly further bias dose—response rela-
tions in a way that we did not consider. Finally, we did not
consider confounding and selection biases.

CONCLUSION

Biomarker-based studies dealing with compounds
with an ICC of 0.6 or less can be strongly biased and weakly
powered if only one biospecimen per subject is collected.
Such studies should collect repeated biospecimens per
subject. Assessing biomarker concentrations in each bio-
specimen allows, if measurement error models are used, to
efficiently correct for both the between-assay error and the
error related to the individual, but entails higher assay cost.
The within-subject pooling approach that we described
appears efficient in situations with low between-assay error
and provides a less biased and more powerful design than
if only one sample had been collected, without increasing
assay costs. If the number of biospecimens pooled is identi-
cal for each participant, the pooling approach can be cou-
pled with a posteriori bias disattenuation which, if a good
estimate of the ICC is available for the studied chemical
and under the assumption of a classical type error, further
reduces bias.”?
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