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Abstract

Background: EPHX1 is a key enzyme in metabolizing some exogenous carcinogens such as products of cigarette-smoking.
Two functional polymorphisms in the EPHX1 gene, Tyr113His and His139Arg can alter the enzyme activity, suggesting their
possible association with carcinogenesis risk, particularly of some tobacco-related cancers.

Methodology/Principal Findings: A comprehensive systematic review and meta-analysis was performed of available
studies on these two polymorphisms and cancer risk published up to November 2010, consisting of 84 studies (31144 cases
and 42439 controls) for Tyr113His and 77 studies (28496 cases and 38506 controls) for His139Arg primarily focused on lung
cancer, upper aerodigestive tract (UADT) cancers (including oral, pharynx, larynx and esophagus cancers), colorectal cancer
or adenoma, bladder cancer and breast cancer. Results showed that Y113H low activity allele (H) was significantly associated
with decreased risk of lung cancer (OR = 0.88, 95%CI = 0.80–0.96) and UADT cancers (OR = 0.86, 95%CI = 0.77–0.97) and
H139R high activity allele (R) with increased risk of lung cancer (OR = 1.18, 95%CI = 1.04–1.33) but not of UADT cancers
(OR = 1.05, 95%CI = 0.93–1.17). Pooled analysis of lung and UADT cancers revealed that low EPHX1 enzyme activity,
predicted by the combination of Y113H and H139R showed decreased risk of these cancers (OR = 0.83, 95%CI = 0.75–0.93)
whereas high EPHX1 activity increased risk of the cancers (OR = 1.20, 95%CI = 0.98–1.46). Furthermore, modest difference for
the risk of lung and UADT cancers was found between cigarette smokers and nonsmokers both in single SNP analyses (low
activity allele H: OR = 0.77/0.85 for smokers/nonsmokers; high activity allele R: OR = 1.20/1.09 for smokers/nonsmokers) and
in combined double SNP analyses (putative low activity: OR = 0.73/0.88 for smokers/nonsmokers; putative high activity:
OR = 1.02/0.93 for smokers/ nonsmokers).

Conclusions/Significance: Putative low EPHX1 enzyme activity may have a potential protective effect on tobacco-related
carcinogenesis of lung and UADT cancers, whereas putative high EPHX1 activity may have a harmful effect. Moreover,
cigarette-smoking status may influence the association of EPHX1 enzyme activity and the related cancer risk.
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Introduction

Human microsomal epoxide hydrolase (EPHX1 or mEH, EC

3.3.2.9) plays an important role during xenobiotic detoxification of

exogenous chemicals such as polycyclic aromatic hydrocarbons

(PAHs) which are produced during the use of coal tar, coke,

bitumen, or during cigarette smoking [1–3]. On the other hand, it

is also involved in the xenobiotic activation of some carcinogens

[4–6]. EPHX1 also hydrolyzes arene, alkene, and aliphatic

epoxides, which are metabolic products from PAHs and aromatic

amines by cytochrome P450 and other phase I enzymes catalysis

[1].

The human EPHX1 gene is 35.48 kb with nine exons and eight

introns on chromosome 1q42.1. To date, more than 110 single

nucleotide polymorphisms (SNPs) have been identified according

to the NCBI’s dbSNP database. Two SNPs among them,

Tyr113His (rs1051740, in exon 3) and His139Arg (rs2234922, in

exon 4), have been well characterized both in vitro studies and

epidemiological investigation. Early in vitro studies showed that

EPHX1 enzymatic activity was decreased by approximately 40%

in subjects with the His113 allele (low EPHX1 activity allele) and

increased by at least 25% with the Arg139 allele (high EPHX1

activity allele) [7,8]. Given the known differential effect of EPHX1
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alleles in the detoxification of procarcinogens, it has been proposed

that these polymorphisms may affect cancer risk. Later population

studies found that these two functional polymorphisms were

strongly associated with susceptibility to a number of cancers, such

as lung cancer [9–12], upper aerodigestive tract (UADT) cancers

[13,14], colorectal cancer or adenoma [15,16], bladder cancer

[17], breast cancer [18]. Based on the genotype combination of

these two functional polymorphisms, Benhamou and colleagues

[9] classified EPHX1 activity as putative low activity (113HH/

139HH, 113HH/139HR and 113YH/139HH), intermediate

activity (113HH/139RR, 113YY/139HH and 113YH/139HR)

and high activity (113YH/139RR, 113YY/139HR and 113YY/

139RR). They also found a significant association with lung cancer

risk between cases exhibiting putative high and intermediate

EPHX1 activity compared to low activity cases in Caucasian

cigarette smokers [9]. A previous meta-analysis of the association

of these SNPs with lung cancer revealed that the low-activity

genotype (HH) of EPHX1 polymorphism Y113H was associated

with decreased risk of lung cancer while the high-activity genotype

(RR) of polymorphism H139R was associated with a modest

increase risk of lung cancer among Caucasians. Moreover, the

predicted low activity by genotype combination of two polymor-

phisms was associated with a modest decrease of lung cancer risk

[19]. However, it has not been well clarified whether EPHX1

enzymatic activity is associated with cancer risk.

The present comprehensive meta-analysis of published epide-

miological studies aims to systematically evaluate putative EPHX1

enzyme activity and risk of cancers predicted by single

polymorphism of Y113H/H139R and by combined double

polymorphisms, and to identify the association between these

two functional polymorphisms and risk of some tobacco-related

cancers.

Materials and Methods

Search strategy
All case-control studies of EPHX1 polymorphisms and cancer

risk published up to November 1, 2010 were identified through

comprehensive searches in PubMed, EMBASE, ISI Web of

Science and Google Scholar. The search terms used were: EPHX1,

microsomal epoxide hydrolase and mEH in combination with polymor-

phism, variation, genotype, genetic and mutation, and in combination with

cancer, tumor, tumour, carcinoma, adenoma and adenocarcinoma. For each

identified study, additional studies were sought from its references,

citations and from the PubMed option ‘Related Articles’.

Selection
The following criteria were employed to determine inclusion of

a study in this meta-analysis: 1) a case–control study evaluating at

least one of these two polymorphisms (Y113H and H139R) and

cancer risk; 2) no overlapping data. All data were independent of

each other. For the same or overlapping data in the studies

published by the same researchers, we selected the most recent

study with a larger number of participants; 3) full-text articles; 4)

published in English language journals.

Data Extraction
The collected data items included: first author, published year,

cancer type, study design, original country, sample ethnicity,

sample size, genotype counts and genotyping method. The data

Figure 1. Flow chart of study selection.
doi:10.1371/journal.pone.0014749.g001
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Table 1. Summary ORs for association of EPHX1 polymorphisms Y113H and H139R with different cancers.

Y113H H139R

Cancer group Low vs. Random effects P-value P-value for I2 High vs.
Random
effects P-value P-value for I2

(Studies and
cases/controls) Intermediate OR (95% CI) heterogeneity Intermediate OR (95% CI) heterogeneity

Overall (N = 84; 31144/
42439)

(N = 77; 28496/
38506)

H vs. Y 0.99 (0.95–1.03) 0.574 ,0.001 61.4% R vs. H 1.02 (0.98–1.06) 0.470 0.002 35.5%

YH vs. YY 0.94 (0.90–0.99) 0.016 ,0.001 43.2% HR vs. HH 1.00 (0.95–1.04) 0.868 0.011 29.1%

HH vs. YY 1.02 (0.94–1.12) 0.592 ,0.001 59.2% RR vs. HH 1.08 (0.98–1.20) 0.141 0.043 23.0%

Lung cancer (N = 18; 4819/
9049)

(N = 18; 6742/
9151)

H vs. Y 0.88 (0.80–0.96) 0.005 0.033 41.7% R vs. H 1.18 (1.04–1.33) 0.010 , 0.001 68.3%

YH vs. YY 0.86 (0.78–0.95) 0.003 0.272 15.2% HR vs. HH 1.19 (1.04–1.36) 0.012 0.001 59.4%

HH vs. YY 0.81 (0.65–1.00) 0.048 0.037 41.9% RR vs. HH 1.22 (0.92–1.63) 0.162 0.018 45.7%

UADT cancers (N = 15; 3285/
5324)

(N = 14; 2963/
4867)

H vs. Y 0.86 (0.77–0.97) 0.014 0.002 58.8% R vs. H 1.05 (0.93–1.17) 0.447 0.110 33.1%

YH vs. YY 0.77 (0.66–0.90) 0.001 0.027 45.9% HR vs. HH 1.00 (0.87–1.17) 0.874 0.138 29.9%

HH vs. YY 0.82 (0.66–1.03) 0.084 0.010 51.8% RR vs. HH 1.34 (0.98–1.82) 0.065 0.252 18.5%

Colorectal
cancer

(N = 11; 5283/
6903)

(N = 10; 4456/
5669)

H vs. Y 1.04 (0.96–1.13) 0.310 0.089 40.3% R vs. H 0.95 (0.88–1.02) 0.144 0.857 0.0%

YH vs. YY 1.05 (0.97–1.14) 0.199 0.820 0.0% HR vs. HH 0.91 (0.84–1.00) 0.041 0.806 0.0%

HH vs. YY 1.11 (0.89–1.39) 0.351 0.005 61.8% RR vs. HH 1.01 (0.82–1.26) 0.897 0.545 0.0%

Colorectal
adenoma

(N = 8; 4012/
4057)

(N = 9; 4857/
4929)

H vs. Y 0.95 (0.88–1.03) 0.224 0.259 21.4% R vs. H 1.05 (0.98–1.13) 0.193 0.490 0.0%

YH vs. YY 0.94 (0.86–1.04) 0.239 0.510 0.0% HR vs. HH 1.04 (0.95–1.13) 0.418 0.696 0.0%

HH vs. YY 0.92 (0.78–1.09) 0.319 0.212 27.1% RR vs. HH 1.13 (0.92–1.38) 0.233 0.460 0.0%

Breast cancer (N = 6; 6090/
7797)

(N = 4; 4543/
6899)

H vs. Y 0.98 (0.90–1.07) 0.696 0.123 42.3% R vs. H 0.96 (0.89–1.02) 0.200 0.835 0.0%

YH vs. YY 0.97 (0.90–1.04) 0.411 0.618 0.0% HR vs. HH 0.95 (0.87–1.03) 0.202 0.749 0.0%

HH vs. YY 1.06 (0.81–1.39) 0.680 0.002 72.8% RR vs. HH 0.94 (0.78–1.15) 0.557 0.634 0.0%

Bladder cancer (N = 5; 1810/
1869)

(N = 4; 1614/
1656)

H vs. Y 1.17 (0.92–1.49) 0.192 0.002 76.6% R vs. H 0.89 (0.76–1.05) 0.168 0.262 25.0%

YH vs. YY 1.25 (0.90–1.75) 0.183 0.006 72.1% HR vs. HH 0.91 (0.78–1.06) 0.240 0.610 0.0%

HH vs. YY 1.27 (0.84–1.92) 0.266 0.015 67.4% RR vs. HH 0.73 (0.40–1.32) 0.300 0.155 42.8%

Blood cancers (N = 7; 1844/
2028)

(N = 10; 2217/
3067)

H vs. Y 0.98 (0.86–1.11) 0.743 0.255 22.8% R vs. H 0.95 (0.86–1.05) 0.318 0.426 1.3%

YH vs. YY 0.78 (0.60–1.00) 0.046 0.059 50.6% HR vs. HH 0.96 (0.82–1.12) 0.607 0.241 22.0%

HH vs. YY 1.08 (0.85–1.37) 0.513 0.329 13.2% RR vs. HH 0.96 (0.62–1.48) 0.838 0.136 35.2%

Liver cancer (N = 4; 368/
859)

(N = 3; 212/
556)

H vs. Y 1.05 (0.74–1.48) 0.790 0.036 65.0% R vs. H 1.11 (0.80–1.54) 0.537 0.222 33.6%

YH vs. YY 0.90 (0.59–1.39) 0.639 0.087 54.4% HR vs. HH 1.18 (0.83–1.68) 0.366 0.738 0.0%

HH vs. YY 1.16 (0.57–2.40) 0.681 0.049 61.8% RR vs. HH 1.05 (0.34–3.29) 0.927 0.116 53.6%

UADT, upper aerodigestive tract; N, number of studies.
doi:10.1371/journal.pone.0014749.t001
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were independently extracted by two investigators (Li and Zhu)

and rechecked by Hu. All item-specific ambiguities were clarified

by investigators’ consultation. Different case-control groups in

one study were considered as independent studies. Cigarette

smoking status was strategically classified as current smokers and

nonsmokers.

Quantitative data synthesis
To evaluate the association of EPHX1 polymorphisms with

carcinogenesis risk, we treated wild-type Y of Y113H and H of

H139R as intermediate activity alleles and treated wild-type YY of

Y113H and HH of H139R as intermediate activity genotypes.

They are the comparison references for calculating odds ratios.

Thus comparisons are Low activity vs. Intermediate activity (H vs.

Y, YH vs. YY and HH vs. YY) and High activity vs. Intermediate

activity (R vs. H, HR vs. HH and RR vs. HH) (Table S1).

EPHX1 enzymatic activity was also predicted by double

polymorphisms based on the method of Benhamou 1998 [9]

namely low activity (113HH/139HH, 113HH/139HR and

113YH/139HH), intermediate activity (113HH/139RR, 113YY/

139HH and 113YH/139HR) and high activity (113YH/139RR,

113YY/139HR and 113YY/139RR) (Table S1).

Random-effects methods [20] were used to calculate pooled odds

ratios (ORs) and the associated 95% confidence intervals (CIs).

The Cochran’s Q statistic [21] and the inconsistency index I2

[22] were used to evaluate the between-study heterogeneity.

Random effect meta-regression models with restricted maximum

likelihood estimation were employed to evaluate the different

variance among the individual ORs when heterogeneity was

detected. The pre-specified possible sources of inter-study

heterogeneity were: cancer type, ethnicity of population (Cauca-

sian, East Asian, South Asian, African or Mixed population), study

design (hospital-based case-control study, population-based case-

control study or nested case-control study), sample size ($500 or

,500) and HWE violation (violated or not violated). Furthermore,

the sensitive analysis method proposed by Patsopoulos et al. was

implemented to identify studies which may be the main source of

the measured heterogeneity [23].

To detect potential publication bias, funnel plots [24] were

applied by plotting individual study log OR against the standard

error of the log OR. Plots should resemble a symmetrical inverted

funnel if ascertainment bias was absent. Publication bias was also

assessed using Egger’s test [25], by which asymmetry in a funnel

plot could be tested.

Except for heterogeneity statistics (where significance was

declared if P-value , 0.10), all results were considered

‘‘significant’’ if the corresponding P-value was , 0.05. All P-

values were 2-sided. The statistical analyses were performed using

STATA 11.0 (STATA Corp, College Station, Texas).

Results

Flow of included studies
Initially a total of 315 potentially relevant publications up to

November 1, 2010 were identified through PubMed, EMBASE,

ISI Web of Science and Google Scholar. 227 studies were

excluded because of insufficient information related to pre-

specified inclusion criteria. Further six studies were excluded

because of a duplicated publication or for not providing complete

genotypes data [26–31]. The reasons for exclusion of each case-

control study were detailed in Text S1. Finally, 82 articles [9–

18,32–103] were selected in the meta-analysis, of which 9 articles

[14,34,37,42,61,64,71,84,88] had two independent studies and

were considered separately. Therefore, a total of 91 studies, of

which 84 studies (31144 cases and 42439 controls) for Tyr113His

and 77 studies (28496 cases and 38506 controls) for His139Arg

Table 2. Summary ORs for association of EPHX1 polymorphisms Y113H and H139R with pooled lung and upper aerodigestive tract
(UADT) cancers.

Y113H H139R

Study group N
Random effects OR
(95% CI) P-value

P-value
for I2 N

Random effects OR
(95% CI) P-value P-value for I2

Low vs. Intermediate
(H vs. Y)

heterog-
eneity

High vs. Intermediate
(R vs. H) heterogeneity

Overall

Lung + UADT 33 0.87 (0.81–0.94) 0.0002 0.001 49.3% 32 1.12 (1.03–1.22) 0.011 ,0.001 58.0%

Ethnicity

Caucasian 21 0.87 (0.81–0.94) 0.0005 0.015 44.5% 24 1.07 (0.97–1.15) 0.228 0.001 58.7%

Asian 6 1.02 (0.89–1.16) 0.806 0.553 0.0% 3 1.52 (1.13–2.05) 0.006 0.438 0.0%

African 3 0.83 (0.63–1.09) 0.175 0.619 0.0% 3 1.26 (1.01–1.57) 0.040 0.741 0.0%

Study design

Population-based 21 0.88 (0.80–0.96) 0.006 0.026 41.3% 18 1.15 (1.01–1.31) 0.033 ,0.001 64.2%

Hospital-based 9 0.82 (0.68–0.98) 0.031 0.004 64.3% 10 1.09 (0.96–1.25) 0.187 0.310 14.5%

Sample size

$500 10 0.91 (0.84–0.98) 0.022 0.061 44.7% 10 1.02 (0.92–1.13) 0.695 0.001 67.6%

,500 23 0.85 (0.76–0.95) 0.004 0.005 48.5% 22 1.21 (1.07–1.37) 0.002 0.038 38.0%

Smoke status *

Nonsmokers 7 0.85 (0.69–1.06) 0.152 0.942 0.0% 4 1.09 (0.70–1.68) 0.709 0.130 46.9%

Smokers 7 0.77 (0.65–0.91) 0.002 0.664 0.0% 7 1.20 (0.93–1.55) 0.152 0.119 40.8%

N, number of studies; * YH+HH vs. YY for Y113H; HR+RR vs. HH for H139R.
doi:10.1371/journal.pone.0014749.t002
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dominated by lung cancer, UADT, colorectal cancer, colorectal

adenoma, bladder cancer, breast cancer, liver cancer and blood

cancers (leukemia, lymphoma and multiple myeloma) were

included in the meta-analysis based on our search strategy and

eligibility criteria (Table S2 and Figure 1).

Study characteristics
Detailed characteristics of the aggregated data for 91 case-

control studies are listed in Table S2. Minor allele frequency of

Y113H and H139R of controls in different populations graphed as

Figure S1. Among overall studies, 24 studies (6418 cases and 9516

controls) that further evaluated the putative EPHX1 enzyme

activity and cancer risk by the method described by Benhamou

et al. [9] are characterized in Table S3.

Quantitative data synthesis
EPHX1 polymorphisms Y113H and H139R and cancer

risk. The associations of each of EPHX1 Y113H and H139R

Figure 2. Forest plots describing the association of EPHX1 polymorphism Y113H with lung and upper aerodigestive tract (UADT)
cancers. ORs were calculated by comparing the low activity allele H vs. the intermediate activity allele Y in lung and UADT cancers. P-values of the
ORs are calculated with the DerSimonian-Laird method using a random effects model and measurements of heterogeneity are based on Cochran’s Q-
test and the inconsistency index I2.
doi:10.1371/journal.pone.0014749.g002
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polymorphisms with cancer risk were analyzed. Summary ORs for

cancer risk of EPHX1 Y113H and H139R polymorphisms in

different cancer types were shown in Table 1. The overall OR by

the random-effects model showed no significant association

between Y113H or H139R and cancer risk except between the

heterozygote versus wild-type Y113H allele (YH vs. YY), which

exhibited a slightly decreased cancer risk (OR = 0.94,

95%CI = 0.90–0.99; P = 0.016). Results of analyzing these two

polymorphisms in different cancer types revealed that the low

activity allele (H) of Y113H was highly associated with decreased

risk of lung cancer (OR = 0.88, 95%CI = 0.80–0.96; P = 0.005)

and UADT (OR = 0.86, 95%CI = 0.77–0.97; P = 0.014); the high

activity allele (R) of H139R was significantly associated with

increased risk of lung cancer (OR = 1.18, 95%CI = 1.04–1.33;

P = 0.010) but not of UADT (OR = 1.05, 95%CI = 0.93–1.17,

P = 0.447). However, the homozygous variant (RR) of H139R

showed increased risk of UADT cancers (OR = 1.34,

95%CI = 0.98–1.82, P = 0.065). Towards other assessed cancers,

i.e., colorectal cancer, colorectal adenoma, breast cancer, bladder

cancer, blood cancers (leukemia, lymphoma and multiple

myeloma) or liver cancer, the study revealed only modest

decreased or increased effects on cancer risk: Y113H for blood

cancers (YH vs. YY: OR = 0.78, 95%CI = 0.60–1.00) and H139R

for colorectal cancer (HR vs. HH: OR = 0.91, 95%CI = 0.84–

1.00). No statistically significant association was observed for each

polymorphism with other cancer cases. Interestingly, though not

significant, the low activity of Y113H showed increased risk of

bladder cancer (H vs. Y: OR = 1.17, 95%CI = 0.92–1.49; HH vs.

YY: OR = 1.27, 95%CI = 0.84–1.92) whereas high activity of

H139R showed decreased risk of bladder cancer (R vs. H:

OR = 0.89, 95%CI = 0.76–1.05; RR vs. HH: OR = 0.73,

95%CI = 0.84–1.92) (Table 1).

As lung and UADT cancers share a similar etiology and

association with tobacco usage [104], we pooled lung and UADT

cancers together to further explore the cancer risk of polymor-

phisms Y113H and H139R. We found that the low activity allele

(H) of Y113H presented a significant association with decreased

cancer risk (OR = 0.87, 95%CI = 0.81–0.94; P = 0.0002) (Table 2

and Figure 2), whereas the high activity allele (R) of H139R

presented a modest association with increased cancer risk

(OR = 1.12, 95%CI = 1.03–1.22; P = 0.011) (Table 2).

The ethnicity, study design, sample size and smoke status of

pooled lung and UADT cancer risk carrying the low enzymatic

activity allele (H) of Y113H or the high enzymatic activity allele

(R) of H139R was calculated and a modest difference between

cigarette smokers and nonsmokers was observed (Table 2). The

odds ratio for the low activity allele (H) of polymorphism Y113H

in smokers was 0.77 (95%CI = 0.65–0.91, P = 0.002) and 0.85

(95%CI = 0.69–1.06, P = 0.152) in nonsmokers. The odds ratio for

high activity allele (R) of polymorphism H139R was 1.20

(95%CI = 0.93–1.55, P = 0.152) in smokers and 1.09

(95%CI = 0.70–1.68, P = 0.709) in nonsmokers.

Putative EPHX1 enzyme activity and risk of lung and

UADT cancers. In order to evaluate the association of these two

functional polymorphisms and their enzyme activity with

carcinogenesis risk, we analyzed the association of EPHX1

enzyme activity predicted by genotype combination of

polymorphism Y113H and H139R with risk of lung and UADT

cancers. In an overall comparison to the putative intermediate

EPHX1 activity, low EPHX1 activity decreased risk of lung and

UADT cancers significantly (OR = 0.83; 95%CI = 0.75–0.93,

P = 0.001) and high EPHX1 activity increased the cancer risk

(OR = 1.20; 95%CI = 0.98–1.46; P = 0.081) (Table 3 and Figure 3).

The association of EPHX1 enzyme activity predicted by the

combination of these two polymorphisms with the risk of cigarette

smoker or nonsmoker in pooled lung and UADT cancers was

further assessed. Similar results with the single SNP analysis were

obtained: modest, non-significant differences of ORs of putative

EPHX1 enzyme activity between cigarette smokers and nonsmok-

ers. The odds ratio of putative low enzyme activity was 0.73

(95%CI = 0.58–0.93; P = 0.009) in smokers and 0.88

(95%CI = 0.61–1.28) in nonsmokers while the odds ratio of

Table 3. Summary ORs for association of putative EPHX1 enzyme activity by Y113H/H139R genotype combination with lung and
upper aerodigestive tract (UADT) cancers.

Low vs. Intermediate High vs. Intermediate

Study group N (cases/controls) Random effects P value P-value for I2 Random effects P value P-value for I2

OR (95%CI)
heterog-
eneity OR (95%CI)

heterog-
eneity

Overall

Lung + UADT 17 (2928/5436) 0.83 (0.75–0.93) 0.001 0.584 0.0% 1.20 (0.98–1.46) 0.081 0.005 53.5%

Ethnicity

Caucasian 15 (2692/5072) 0.83 (0.74–0.94) 0.002 0.483 0.0% 1.20 (0.95–1.51) 0.125 0.002 58.9%

African 2 (236/364) 0.85 (0.54–1.35) 0.497 0.427 0.0% 1.22 (0.86–1.76) 0.287 0.625 0.0%

Study design

Hospital-based 6 (959/1063) 0.75 (0.59–0.95) 0.016 0.273 21.3% 1.30 (0.96–1.76) 0.087 0.177 34.6%

Population-based 11 (1969/4373) 0.88 (0.77–1.00) 0.050 0.799 0.0% 1.15 (0.88–1.50) 0.303 0.004 60.9%

Sample size

$500 5 (1296/3606) 0.83 (0.71–0.97) 0.020 0.633 0.0% 0.85 (0.63–1.13) 0.263 0.074 53.1%

,500 12(1632/1830) 0.84 (0.70–0.99) 0.036 0.393 5.3% 1.44 (1.20–1.73) 0.0001 0.411 3.5%

Smoke status

Nonsmokers 2 (191/1719) 0.88 (0.61–1.28) 0.517 0.535 0.0% 0.93 (0.58–1.51) 0.777 0.866 0.0%

Smokers 4 (620/1132) 0.73 (0.58–0.93) 0.009 0.825 0.0% 1.02 (0.68–1.53) 0.928 0.136 46.0%

doi:10.1371/journal.pone.0014749.t003
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putative high enzyme activity was 1.02 (95%CI = 0.68–1.53) in

smokers and the 0.93 (95%CI = 0.58–1.51) in nonsmokers

(Table 3).

Between-study heterogeneity. Obvious Between-study

heterogeneity was detected among pooled lung and UADT

cancer studies on I2 measures of 49.3% (P = 0.001) and 58.0%

(P,0.001) for H vs. Y of Y113H and R vs. H of H139R,

respectively. After subgroup analysis by ethnicity, we found

heterogeneity was only obvious in Caucasian (H vs. Y of

Y113H: I2 = 44.5%, P = 0.015; R vs. H of H139R: I2 = 58.7%,

P = 0.001) but not in Asian and African descents (Table 2).

By further univariate meta-regression analysis, we identified that

it is population ethnicity (b coefficient = 0.12 (0.03–0.21),

P = 0.021) that was a significant source of heterogeneity for R vs.

H of H139R but not cancer type, study design, sample size,

genotyping method or HWE-violation (Table S4). Actually, it has

shown that the high activity allele (R) of H139R significantly

increased the cancer risk in Asians (OR = 1.52, 95%CI = 1.13–

2.05) and Africans (OR = 1.26, 95%CI = 1.01–1.57) but not in

Caucasians (OR = 1.07, 95%CI = 0.97–1.15) in pooled analysis.

These results emphasized that the population heterogeneity of

polymorphism H139R was associated with cancer risk. None of

cancer type, ethnicity, study design, sample size, genotyping

method or HWE-violation was found to be the source of

heterogeneity for H vs. Y of Y113H (Table S4).

In the analysis of putative EPHX1 enzyme activity and risk of

lung and UADT cancers, obvious between-study heterogeneity

was identified for high vs. intermediate (I2 = 53.5%, P = 0.005)

(Table 3). Sample size was found the main source of heterogeneity

(b coefficient = 0.53 (0.19–0.88), P = 0.005). When the studied

samples were classified into large size subgroup ($500, OR = 0.85,

95%CI = 0.63–1.13) and small size one (,500, OR = 1.44,

95%CI = 1.20–1.73), unexpectedly, it brought about the results

that heterogeneity was still obvious in large sample subgroup

(I2 = 53.1%, P = 0.074) but not in small sample subgroup

(I2 = 3.5%, P = 0.411) (Table 3).

Sensitive analysis. Applying sensitive analysis method of

Patsopoulos et al [23], we found studies of Jourenkova-Mironova

[13], Benhamou [9] and Voho [41] contributed mostly to the

heterogeneity in comparison of H vs. Y of Y113H in Caucasians.

After excluded these three studies, the index I2 decreased

significantly from 44.5% (P = 0.015) to 18.5% (P = 0.232) and

odds ratio became 0.92 (95%CI = 0.87–0.98). In comparison of R

vs. H of H139R, studies of Zienolddiny [12] and Graziano [44]

contributed the most to heterogeneity in Caucasians. After

excluded them, the index I2 decreased from 58.7% (P = 0.001) to

20.0% (P = 0.202) and odds ratio became 1.00 (95%CI = 0.94–

1.06). These results indicated that the high activity allele (R) of

H139R may be not associated with lung and UADT cancer risk in

Caucasians when considering omitting heterogeneity-caused

studies.

Three studies of Cajas-Salazar [40], Voho [41] and London a

[34] were identified to contribute to the heterogeneity for high vs.

intermediate of putative EPHX1 enzyme activity. After excluded

them, the index I2 decreased from 53.5% (P = 0.005) to 0.0%

(P = 0.42) and odds ratio became 1.23 (95% = 1.06–1.42).

Interestingly, the both studies of Cajas-Salazar [40] and Voho

[41] were belong to the large sample subgroup ($500). Therefore,

though in large sample subgroup putative high activity showed

decreased risk of lung and UADT caners, the studies were quite

heterogeneous and the authentic role of EPHX1 high activity

might increase risk of lung and UADT caners as data showed

above.

Publication bias. By Begg’s funnel plot and Egger’s test, the

results revealed a significant publication bias for H vs. Y of Y113H

(P = 0.003) in the pooled analysis of lung and UADT cancers but

not for R vs. H of H139R (P = 0.141) (Figure S2). Among all

studies, four studies of Zienolddiny [12], Ihsan [56], Graziano [44]

and Wu a [37] were detected to deviate remarkably from other

symmetrically distributed studies in the funnel plot (Figure S2).

These four studies were exactly the source of heterogeneity from

Patsopoulos et al’s sensitive analysis in pooled dataset of lung and

UADT cancers. When omitted these four studies, Egger’s test P-

value turned into 0.124, and I2 decreased from 57.6% (P for

heterogeneity ,0.001) to 12.6% (P for heterogeneity ,0.276).

Discussion

The present meta-analysis provides the most comprehensive

and up-to-date evidence on putative EPHX1 enzyme activity

predicted from two genetic polymorphisms, Y113H and H139R,

and risk of developing cancers. Though a number of early studies

showed the two polymorphisms functionally affect the EPHX1

enzymatic activity [7,8] and are associated with certain cancers

[9–18], our systematic analyses revealed that both Y113H low

enzymatic activity allele (H) and putative low EPHX1 enzyme

activity, predicted by the combination of Y113H and H139R,

were significantly associated with decreased risk of lung and

UADT cancers, while the putative high EPHX1 enzyme activity

was associated with increased risk of these cancers. Certainly, the

actual EPHX1 enzyme activity should be measured in cancer

case-control population to confirm cancer susceptibility of EPHX1

activity. Moreover, it showed modest difference of the risk of lung

and UADT cancers between cigarette smokers and nonsmokers

both in single SNP analyses and in combined double SNP

analyses. Thus, cigarette-smoking status may influence the

association of EPHX1 enzyme activity and the related cancer risk.

These findings are consistent with the known roles for EPHX1

enzyme in the detoxification and activation of exogenous

carcinogens such as PAHs during tobacco smoking [3]. Lung

and UADT cancers have been well characterized as causally

related to cigarette smoking [104]. Smoking products such as

tobacco-specific nitrosamines (4-(methylnitrosamino)-1-(3-pyridyl)-

1-butanone, N’-nitrosonornicotine, etc.), polycyclic aromatic

hydrocarbons (e.g. benzo[a]pyrene) and aromatic amines (e.g. 4-

aminobiphenyl) are strongly toxic to epithelial cells and are

potential carcinogens [105]. The EPHX1 enzyme has been

proposed to transform epoxide intermediates from PAHs into

more reactive carcinogens, such as benzo[a]pyrene-7,8-diol-9,10

epoxide (from benzo[a]pyrene), which is the most mutagenic and

carcinogenic metabolite [4–6]. Thus, high EPHX1 enzymatic

activity could increase the concentrations of carcinogens in the

tissue. Hence, the EPHX1 variants, individually or collectively with

other metabolic enzymes, may lead to cancer susceptibility.

Figure 3. Forest plots describing the association of putative EPHX1 enzyme activities with lung and upper aerodigestive tract
(UADT) cancers. ORs were calculated as (A) putative low activity vs. putative intermediate activity, and (B) putative high activity vs. putative
intermediate activity predicted by genotype combination of polymorphisms Y113H/H139R in lung and UADT cancers. P-values of the ORs are
calculated with the DerSimonian-Laird method using a random effects model and measurements of heterogeneity are based on Cochran’s Q-test and
the inconsistency index I2.
doi:10.1371/journal.pone.0014749.g003
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EPHX1 enzyme activity is affected by single or combination of

polymorphisms Y113H and H139R [7,8]. The present cancer

meta-analysis was motivated by the idea that performing both

single-SNP analysis and two-SNP analysis may provide insights

into the relationship between EPHX1 enzyme activity and cancer

risk. In single SNP analysis, we performed per-allele comparisons

(H vs. Y; R vs. H) and pairwise comparisons (YH vs. YY, HH vs.

YY; HR vs. HH, RR vs. HH) regardless of the inheritance model

(dominant, co-dominant, recessive). Our combination analysis of

two SNPs using the method of Benhamou et al. [9] assumed that

the inheritance model was co-dominant, as the classification of

low, intermediate and high activity was based on the counts of the

high activity allele (H both for Y113H and H139R) of

combination genotypes. We have additionally tested the inheri-

tance model of these two polymorphisms by the Bayesian model-

free approach [106,107]. For lung cancer the results suggested a

co-dominant inheritance model for the polymorphisms Y113H

(l= 0.64, 0.22–0.99) and H139R (l= 0.62, 0.27–0.99). But in

UADT this method suggested near dominant for Y113H

(l= 0.77, 0.34–1.00) and near recessive model for H139R

(l= 0.12, 0.08–0.90).

The xenobiotic metabolism of smoking products is carried out

by both Phase I (e.g. cytochrome P450 family, EPHX1) and Phase

II (e.g. glutathione-S-transferases) enzymes since Phase I enzymes

induce the formation of active carcinogens from procarcinogens,

whereas Phase II enzymes conjugate these compounds and make

them suitable for excretion [108]. It is reasonable to think that the

overall carcinogenic effect of tobacco compounds should be

measured as the final result of the combined action of the two

categories of enzymes. Further study is necessary to confirm the

qualitative gene-gene interaction of these xenobiotic metabolism

enzymes as well as their interaction with tobacco smoking dose in

relation to susceptibility of tobacco-related cancers.

The dispersion extent of effect sizes or between-study hetero-

geneity in a meta-analysis determines the difficulty in drawing

overall conclusions to a great extent [109]. Because the dispersion

in observed effects is partly spurious (it includes both real

difference in effects and also random error), before trying to

interpret the variation in effects we need to determine what part of

the observed variation is real. A critical meta-analysis should

appropriately quantify the heterogeneity and thoroughly ascertain

the caused reasons [110] such as using subgroup analysis, sensitive

analysis and meta-regression. In the present study, both meta-

regression and subgroup analysis by ethnicity revealed that

ethnicity is a source of heterogeneity and have a major influence

on the cancer risk of these two EPHX1 polymorphisms. For

instance, the Y113H low enzymatic activity allele (H) showed

significant association with decreased risk of lung and UADT

cancers in Caucasian (OR = 0.87, 95%CI = 0.81–0.94) but not

significant in Asian (OR = 1.02, 95%CI = 0.89–1.16) (Table 2).

The H139R high enzymatic activity allele (R) showed a more

significant association with increased risk of cancer in both Asian

(OR = 1.52, 95%CI = 1.13–2.05) and African (OR = 1.26,

95%CI = 1.01–1.57) than that in Caucasian (OR = 1.06,

95%CI = 0.97–1.15) (Table 2). The minor allele frequency of

these polymorphisms in controls showed significant differences

among different populations (Figure S1), which may have an

impact on the statistical association analysis.

Study sample size was found to be the main source of

heterogeneity for putative high vs. intermediate activity (Table

S4) and the results are inconsistency when the studies were divided

into subgroups of large sample size and small sample size (Table 3).

Intuitively, larger samples studies should reach more convincing

results. However, the large studies still exhibited as quite

heterogeneous. Moreover, two large studies [40,41] contributed

mainly the between-study heterogeneity by applying method of

Patsopoulos et al’s sensitive analysis [23]. After omitted the

heterogeneity-caused studies, putative high activity was signifi-

cantly associated with increased risk of lung and UADT cancers

(OR = 1.23, 95%CI = 1.06–1.42). Thus, putative high EPHX1

enzyme activity was supposed to increase risk lung and UADT

cancers rather than decrease the risk as results from overall large

sample subgroup analysis suggested.

Publication bias is another main limitation of meta-analysis

which may arise from selective publication or selective inclusion of

literatures. Obvious publication bias was detected from the

analysis for R vs. H of H139R in pooled lung and UADT

cancers. Studies of Zienolddiny [12], Ihsan [56], Graziano[44]

and Wu a [37] were found remarkably deviated from other

symmetrically distributed studies in the Begg’s funnel plot (Figure

S2). These four studies were exactly the source of heterogeneity by

using Patsopoulos et al’s sensitive analysis, which suggests that

omitting heterogeneity-caused studies could reach relatively

pertinent conclusions.

Supporting Information

Table S1 Definition of EPHX1 activity predicted by single

polymorphism Y113H/H139R and by combination of double

polymorphisms.

Found at: doi:10.1371/journal.pone.0014749.s001 (0.05 MB

RTF)

Table S2 Characteristics of published studies included in the

meta-analysis.

Found at: doi:10.1371/journal.pone.0014749.s002 (0.73 MB

RTF)

Table S3 Characteristics of the studies evaluated putative

EPHX1 enzyme activity predicted by genotype combination of

Y113H/H139R and cancer risk.

Found at: doi:10.1371/journal.pone.0014749.s003 (0.17 MB

RTF)

Table S4 Results of random-effect meta-regression for search of

the source of heterogeneity.

Found at: doi:10.1371/journal.pone.0014749.s004 (0.10 MB

RTF)

Figure S1 Minor allele frequency of polymorphisms Y113H and

H139R among ethnicity of African, Caucasian, East Asian and

South Asian in controls.

Found at: doi:10.1371/journal.pone.0014749.s005 (0.03 MB TIF)

Figure S2 Begg’s funnel plot with pseudo 95% confidence limits

for publication bias detection. Each point represents a separate

study and is plotted by individual study log OR again the standard

error of the log OR. A, H vs. Y of Y113H; B, R vs. H of H139R.

Found at: doi:10.1371/journal.pone.0014749.s006 (0.06 MB TIF)

Text S1 Six case-control studies of EPHX1 polymorphisms and

cancer risk were excluded for the following reasons.

Found at: doi:10.1371/journal.pone.0014749.s007 (0.03 MB
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