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Introduction

Oestrogen receptor (ER) is a transcription factor that 
regulates gene expression events that culminate in cell 
division, an important property that contributes to its 
critical role in mammary gland development. ER is a 
member of the nuclear receptor superfamily, which 
comprises 48 proteins (1) that have a diversity of roles 
and are major contributors to the functioning of the 
endocrine system. As a nuclear receptor, ER has a DNA-
binding domain (DBD) that enables it to directly regulate 
gene expression events and a ligand-binding domain 
(LBD) that renders it responsive to an activating ligand, 
namely oestrogen. The role of ER in initiating timely 
and controlled cell division during mammary gland 
development and during post-pubertal physiological 

functions, such as pregnancy, is a co-ordinated process 
that involves other hormones and their nuclear receptor 
transcription factors, including progesterone and 
prolactin (2).

The ability of ER to associate with DNA and initi-
ate gene transcription is subverted in disease, where ER 
becomes a driving transcription factor that is no longer 
regulated by control mechanisms, and this results in an 
oestrogen-induced tumour. Essentially, ER continues to 
operate in its normal role as a gene regulating transcrip-
tion factor, but the ER-mediated cell division occurs in 
an uncontrolled manner, resulting in tumour initia-
tion and cancer progression. Three quarters of all breast 
cancers (~37 000 out of 50 000 new cases in the UK per 
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annum) (source: Cancer Research UK) are character-
ized by the presence of ER. These cancers are therefore 
defined as ER+ and these women as candidates for spe-
cific treatments that block ER activity. One of the first 
targeted agents in the treatment of cancer was the selec-
tive oestrogen receptor modulator (SERM) tamoxifen, 
which is an effective treatment for ER+ breast cancers 
(3) because it can mimic oestrogen and bind to the LBD 
pocket of the ER, but unlike oestrogen, it alters the struc-
ture and function of ER so that this transcription factor 
is no longer capable of regulating gene expression (4). It 
has been estimated that almost half a million women are 
alive today because of the use of tamoxifen in the treat-
ment of ER+ breast cancer (5) and although tamoxifen 
has been the mainstay for the treatment of ER+ disease 
for numerous years, many women develop endocrine 
resistance and tamoxifen subsequently fails. This led 
to the development of novel agents that block ER func-
tion, resulting in pure steroidal antioestrogens, such as 
Fulvestrant (Faslodex) and a class of compounds termed 
aromatase inhibitors (AIs). Fulvestrant binds to the LBD 
of ER, but unlike tamoxifen, it induces degradation of 
the ER protein, and this drug has been an effective treat-
ment in tamoxifen-resistant contexts (6). In pre-meno-
pausal women, the major source of oestrogen is ovarian 
production, but in post-menopausal women, the bulk of 
the oestrogen is metabolized from chemical precursors 
by an enzyme called aromatase. AIs work by blocking 
this metabolic step, essentially starving the cancer of its 
ligand, oestrogen. These different classes of drugs inhibit 
ER function, but they take distinct routes, meaning that 
resistance to one type of drug does not necessarily ren-
der other classes of compounds redundant and as such, 
different endocrine agents are used sequentially for the 
treatment of ER+ breast cancer.

The majority of women with ER+ disease will ben-
efit from targeted drugs that block the ER pathway, but 
one-third of women will develop drug resistance (7). 
Understanding the mechanisms of drug resistance is a 
long-standing question and it is clear that cancers can 
circumvent ER-blocking agents via a number of differ-
ent mechanisms. During the process of drug resistance, 
the tumour continues to grow and metastasizes to a 
secondary organ, particularly the bone, liver, brain and 
lung, where survival is compromised. A small fraction of 
tumours (~10 – 20%) lose ER expression (8) and there is 
evolving evidence that additional nuclear receptors can 
substitute for ER in this situation. Specifically, andro-
gen receptor (AR) is known to be expressed in 80 – 90% 
of ER+ breast cancers (9) and there is a recent evidence 

showing that in the absence of ER, AR can substitute 
for ER and initiate cell division in an ER-independent, 
but nuclear receptor-dependent manner (10, 11). The 
bulk of drug-resistant breast cancers retain the expres-
sion of ER (8) and this transcription factor complex 
gets re-engaged even in the presence of an endocrine 
agent that inhibits the ER pathway. There are a number 
of mechanisms a cancer cell can utilize to circumvent 
either an ER-blocking chemical (i.e. tamoxifen), low 
levels of ER (i.e. Fulvestrant) or low levels of oestrogen 
(i.e. AIs), and these include: 1) changes in the levels 
of associated proteins that are required for ER tran-
scriptional activity, termed co-factors (these will be dis-
cussed later); 2) upregulation of growth factor pathways 
that can initiate or promote ER transcriptional activity 
via kinase signalling pathways that phosphorylate tar-
get proteins to render them more active; 3) changes in 
drug metabolism and cellular secretion and 4) changes 
in the fidelity of the key proteins involved in the ER 
complex. Excellent reviews on the mechanisms of 
endocrine resistance have been described in other stud-
ies (12, 13). Recent findings have shown that 18 – 55% 
of metastatic samples harbour mutations in ER (ESR1) 
and these mutations occur in predictable amino acid 
residues in the LBD of ER, decreasing the dependence 
on oestrogen and the response to targeted treatments 
(14, 15, 16). Given the highly fecund nature of cancer 
cells and the general genomic instability of these cells, 
it is unsurprising that mutations and genomic altera-
tions accumulate at a regular rate in cancer, making the 
disease a constantly evolving, moving target.

Mechanisms of ER association with DNA in breast cancer

Understanding how ER initiates tumour formation 
is of paramount importance since it is likely that 
the underlying mechanisms that govern ER tumour 
formation are altered during the transition to drug 
resistance and metastasis. Decades of research have 
revealed extraordinary insights into how ER functions, 
with a complex picture emerging. Many of the facets of 
this mechanism of ER transcriptional activity are retained 
and conserved with other nuclear receptors in cancer. 
This is particularly the case in prostate cancer, where 
AR is the driving nuclear receptor and consequently, 
substantial parallels exist between AR-mediated prostate 
cancer development in men and ER activity in breast 
cancer in women.

For many years, ER was thought to be a stand-alone 
transcription factor, which in response to oestrogen 
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was able to directly interact with DNA. A well-estab-
lished ER consensus DNA sequence is composed of two 
inverted sequences separated by three random nucleo-
tides (GGTCAnnnTGACC) (17). Once on the DNA, it 
was purported that ER could initiate gene transcription, 
hence making the ligand (oestrogen) and the receptor 
(ER) the sole determinants of its activity. The discovery 
of ER-associated co-factors (18, 19, 20) and the subse-
quent characterization of these factors revealed extraor-
dinary insight into the complexes that form with ER to 
permit transcriptional regulation. It is now clear that 
ER activity requires the co-ordinated accumulation of 
dozens of co-factors that perform a multitude of func-
tions. These include the ability to ‘open’ chromatin, 
making the compacted DNA accessible for ER to bind, 
proteins that provide platforms for other essential fac-
tors and numerous co-factors that have enzymatic 
properties that are required for optimal protein assem-
bly and activity. A number of reviews describe the dif-
ferent co-factors and their roles in ER+ breast cancer 
(21, 22). The levels of key co-factors can be altered such 
that ER transcriptional activity is pushed in a positive 
or negative way by changes in critical but rate-limiting 
co-factors (20, 23), and this has been a documented way 
of circumventing the anti-proliferative action of endo-
crine therapies.

The study of a small number of ER target genes 
revealed insight into how ER can interact with DNA 
and regulate transcription (24, 25), but the advent of 
genomic technologies provided the first opportunity to 
assess ER function in an unbiased manner. By purifying 
ER-associated DNA (i.e. the genomic binding sites) by a 
method called chromatin immunoprecipitation (ChIP) 
and identifying the associated DNA by tiling microarrays 
and subsequently by high-throughput DNA sequencing, 
unknown ER binding sites were identified from breast 
cancer cell line models (26, 27, 28, 29). ER was thought 
to associate with the promoters of target genes, but 
unbiased mapping approaches showed that ER typically 
associates with enhancer elements that can be at 
considerable distances from the putative target gene (26). 
Interrogation of the thousands of ER-DNA interaction 
sites uncovered novel ER-associated proteins, which 
also interact with DNA and contribute to stabilizing 
the ER complex on the chromatin. These factors were 
identified by the over-representation of their consensus 
DNA binding motifs within the regions bound by ER, 
implying a functional connection at the enhancer 
elements occupied by ER. These included a number of 
transcription factors that can assist in tethering ER to 

the DNA, including FOXA1, GATA3, PBX1 and AP2γ 
(26, 30, 31, 32). It is unclear if all of these proteins are 
required or what degree of redundancy exists between 
these factors (33), but when any one of these individual 
protein is specifically inhibited in breast cancer cells, 
ER–DNA interactions are perturbed. As such, they all 
contribute, to some degree, in creating or maintaining 
ER interactions with the chromatin.

Given that most (~95%) ER binding sites are not at 
promoter proximal regions and instead occur at distal 
enhancers (27), a challenge was to identify whether all ER 
binding events were active and which gene targets were 
regulated. An indicator of a transcriptionally active ER 
binding enhancer is the presence of associated co-factors, 
such as AIB1, p300 and CBP (25, 34, 35). The presence 
of these (and other) important co-factors demarcate a 
functional, transcriptionally active ER binding element 
and genome-wide mapping of these factors has revealed 
that a subset of the many tens of thousands of ER–DNA 
contact sites are transcriptionally active. Identifying what 
target genes are induced or repressed by a specific ER bind-
ing site (that is typically far from any coding gene) has 
been an additional challenge that has been approached 
by exploiting methods for identifying chromatin loops 
(36) that form between enhancers (ER binding sites) 
and promoters of putative target genes. Candidate-based 
approaches can be made to investigate specific chromatin 
interactions, such as an ER-binding domain and the clos-
est oestrogen-regulated gene promoter (26, 37). Unbiased 
approaches have been developed, which provide a the 
global snapshot of the interactome that occurs between 
ER binding events and their target gene (38). To add com-
plexity to this system, it is now clear that not only can 
the ER complex reach over significant distances to regu-
late coding genes, but the ER–DNA binding complex that 
associates with enhancer elements can also contribute 
to localized transcription of non-coding RNAs, includ-
ing enhancer RNAs (eRNA) that are produced from the 
actual site of ER occupancy (39, 40). A surprisingly large 
proportion of the genome of a breast cancer cell line is 
transcribed in response to oestrogen stimulation, much of 
which become RNAs that are not translated to proteins, 
but potentially play functional roles. Defining what non-
coding RNAs are important and what their potential roles 
are, is an important question for future research.

FOXA1 and GATA3 in breast cancer

FOXA1 was discovered by the enrichment of Forkhead 
motifs within ER binding sites (26, 41). FOXA1 is 



www.eje-online.org

Eu
ro

p
ea

n
 J

o
u

rn
al

 o
f 

En
d

o
cr

in
o

lo
g

y
175:1 R44Open Access J S Carroll ER gene regulation in breast 

cancer

termed a pioneer factor (42) since it has the ability to 
occupy compacted DNA without the requirement for 
any additional proteins (43, 44) and can subsequently 
facilitate interactions between additional factors (such as 
ER) and the DNA (26). FOXA1 was shown to be required 
for all ER binding sites in models of ER+ breast cancer, 
and was also shown to be required for ER binding and 
growth of endocrine-resistant breast cancer cell line 
models (45). Immunohistochemistry of ER and FOXA1 
in metastatic tumour material showed that FOXA1 is 
expressed in almost all solid distant metastases, and that 
correlation between ER and FOXA1 protein expression is 
high (46). The dependence on FOXA1 for ER function, 
even in endocrine-resistant contexts (45) creates a novel 
opportunity for therapeutic intervention, whereby 
targeting the pioneer factor, namely FOXA1, instead of 
the nuclear receptor (ER) might provide an opportunity 
for blocking ER transcriptional activity. Acquisition of 
activating ESR1 mutations, changes in co-factors levels or 
upregulation of growth factor pathways can all enable ER 
to activate gene expression in the presence of drugs, but 
all are dependent on ER making contact with the DNA. 
Inhibition of FOXA1 would theoretically circumvent 
these mechanisms associated with drug resistance, by 
destabilising ER–chromatin interactions. However, 
transcription factors are notoriously difficult to drug 
and a more realistic option might be the identification 
and subsequent therapeutic manipulation of upstream 
regulatory enzymes that influence FOXA1 function. The 
related protein, FOXA2, is known to be phosphorylated by 
the AKT pathway, which influences its cellular localization 
and function (47), although it is known that FOXA1 is not 
regulated by AKT (47). A concerted effort in identifying 
and characterizing FOXA1 regulatory enzymes is of 
paramount importance, given the evolving information 
linking FOXA1 with ER activity and the opportunity to 
block ER via its critical and necessary pioneer factor.

The third protein in the triumvirate of the ER complex 
is GATA3. ER, FOXA1 and GATA3 are three of the defining 
signature genes consistently observed in ER+ breast can-
cers (48, 49), and all three proteins have been shown to be 
required for the establishment of an oestrogen-responsive 
ER complex (50). Insights into the architecture within 
the ER DNA-binding domain was revealed by fine resolu-
tion transcription factor mapping (51). This showed pre-
dictable spacing between the motifs for ER, FOXA1 and 
GATA3, suggesting that all three proteins must be able  
to associate with the adjacent pieces of DNA for them to 
co-operate and form an oestrogen-responsive complex 
that is capable of generating a stable DNA interaction. 

Specific inhibition of GATA3 in breast cancer cells pushes 
ER towards new DNA binding sites that are demarcated 
by FOXA1 (52), suggesting that GATA3 might function 
as a rheostat, dictating possible ER–FOXA1 interactions. 
Total loss of GATA3 in mice mammary glands results in 
tumour progression and GATA3 was proposed to be a criti-
cal protein influencing cellular differentiation and tumor-
igenesis (53, 54). Interestingly, FOXA1 was shown to be 
a downstream target of GATA3 in the murine mammary 
gland (53). GATA3 has been shown to be required for the 
morphogenesis of normal mammary glands (55), sug-
gesting an important role in promoting cellular differen-
tiation, inhibiting proliferation and contributing towards 
the development of functional mammary glands. In ER+ 
breast cancer cells, silencing of GATA3 inhibited prolifera-
tion (30), suggesting a dependence on GATA3 for main-
tained proliferation of ER+ cancer cells. These findings 
provide a complex picture of GATA3 function, whereby 
it mediates cellular differentiation in normal mammary 
gland, but becomes an essential component within the ER 
complex during tumour formation.

As discussed above, ESR1 (ER) is commonly mutated 
in the metastatic context, but it is rarely mutated in  
primary tumours within the breast. FOXA1 and GATA3 
on the other hand are mutated in primary breast cancer 
(56, 57, 58). GATA3 is one of the most frequently mutated 
genes in breast cancer, with 14% of ER+ cases harbouring 
GATA3 mutations. Recent data have shown that tumours 
that enrich cells with GATA3 mutations tend to be ductal 
cancers, whereas tumours that possess FOXA1 mutations 
tend to be of the lobular subtype (58). This distinction 
suggests that specific breast cancer subtypes are more tol-
erant of mutations in certain ER components and func-
tionally do not benefit, or survive, from mutations in 
other components. It is currently unclear what the muta-
tions in FOXA1 and GATA3 do to the function of these 
proteins and what effects these perturbations have on ER 
transcriptional activity. FOXA1 mutations tend to occur 
in the DNA-binding domain (57), and preliminary data 
from prostate cancer suggest that mutations in FOXA1 
decrease AR signalling and increase tumour growth (59). 
GATA3 mutations can be roughly divided into two major 
classes: the first being within the second zinc finger DNA-
binding domain of GATA3 and the second class being 
C-terminal mutations that commonly induce frame shifts 
and an altered GATA3 protein (56). Whether both classes 
of GATA3 mutations have the same effect on ER transcrip-
tional activity and tumour outcome is currently unclear, 
but recent gene editing tools, such as CRISPR technolo-
gies, will permit investigation of these questions.
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Models of ER+ breast cancer and the complexity of 
hormonal crosstalk

The ER+ breast cancer research field is hampered by the 
scarcity of models. A limited number of ER+ PR+ cell lines 
that are responsive to endocrine drug treatment exists. 
The ‘workhorse’ in the field is the MCF-7 breast cancer cell 
line, which has helped to resolve a substantial amount 
of information around ER function. This included the 
discovery of the most robust oestrogen-regulated genes 
(60, 61, 62), which are validated as important signature 
genes in primary tumours (63, 64, 65). The co-factors and 
associated transcription factors discovered in these cell 
line models are critical factors in primary tumours, and 
the properties associated with ER binding events from this 
cell line model accurately reflect the observations made 
from ER ChIP-seq experiments carried out in primary 
tumour samples (46). More complex models representing 
ER+ cancer are becoming available, in the form of 
patient-derived xenograft (PDX) tumours, which provide 
numerous additional models for the investigation of ER+ 
disease, although the primary tumours that typically 
engraft in mice, such as PDX tumours, tend to be the 
more aggressive ER+ cancers (66). That said, the advent 
of PDX models has created an outstanding opportunity 
for discovering the mechanisms that contribute to drug 
resistance and for evaluating novel agents using in vivo 
systems that better represent ER+ disease.

The use of cell line models has permitted the ability to 
‘strip’ out all hormones from the growth media, in order 
to study a single hormone and the downstream conse-
quences. This has proven to be useful for studying a specific 
nuclear receptor and almost all the literature characteriz-
ing ER function, or PR function in breast cancer models 
have been conducted in the presence of oestrogen alone or 
progesterone alone, respectively. However, ER+ breast can-
cer is exposed to a complex milieu of hormones, growth 
factors and other stimuli, and the study of a single-nuclear 
receptor, such as ER, in the absence of all hormones other 
than its cognate ligand (oestrogen) does not accurately 
reflect the physiological situations. Recent findings have 
shown a substantial degree of nuclear receptor crosstalk in 
ER+ breast cancer, with both PR and AR converging on the 
ER pathway (9, 67, 68, 69, 70). The impact of AR or PR in  
ER transcriptional activity can occur in a number of dif-
ferent ways, including direct alteration of ER–DNA inter-
actions by AR or PR (69, 70), through sequestration of 
rate-limiting co-factors or potentially through regulation 
of ER protein levels (Fig.  1). Similar observations have 
been made between glucocorticoid and ER (71), where 

GR is able to influence ER–DNA binding sites and subse-
quently the target genes that are regulated by the ER com-
plex. The ability of nuclear receptors to interact within 
the same cellular environment is highlighted by the fact 
that different nuclear receptors can sometimes substitute 

Gene 

ERER

FoxA1 GATA3

PRPR ARAR

= muta�on

Figure 1

Oestrogen receptor (ER) uses pioneer factors to associate with 

DNA. Two critical proteins involved in tethering ER to the DNA 

include FOXA1 and GATA3. Both FOXA1 and GATA3 are 

mutated in primary cancers, whereas ER is mutated in 

metastases. The impact that these mutations have on ER 

activity is not known. Recently, the crosstalk between 

different nuclear receptors has become apparent. 

Progesterone receptor (PR) and androgen receptor (AR) are 

commonly expressed in ER+ breast cancer and both are known 

to impinge on ER transcriptional activity. A major challenge 

involves identifying how we can exploit existing PR and AR 

ligands for therapeutic use and how the mutations in ER, 

FOXA1 and GATA3 influence this hormonal crosstalk.
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for one another. A subtype of breast cancer called molec-
ular apocrine, which comprise ~4% of all breast cancers, 
is characterized by gene expression signatures that are 
similar to ER+ subtypes (72, 73), but these cancers are ER 
negative. In this specific subtype of cancer, it is believed 
that AR can substitute for ER and can become the driv-
ing transcription factor, where it continues to regulate ER 
target genes because FOXA1 recruits AR (instead of ER) to 
the enhancers normally occupied by ER. Similarly, there is 
evidence that following AI treatment, a resistance mech-
anism involves down regulation of ER and subsequent 
mobilization of AR as the driving factor (10, 11). These 
findings provide the impetus to study ER in the presence 
of physiologically accurate hormonal conditions. The 
existence of hormonal crosstalk also reveals novel oppor-
tunities for therapeutic intervention, whereby parallel 
pathways are potentially drugged to indirectly regulate 
ER activity. Future work will identify who would gain the 
most benefit from PR or AR-targeted drugs for the treat-
ment of specific ER+ breast cancer cases, a hypothesis that 
is supported by a wealth of clinical data showing that  
PR agonists have efficacy in breast cancer patients selected 
only based on ER+ status (74, 75, 76, 77, 78, 79, 80, 81, 82).

Concluding remarks

The research community has studied the ER pathway 
for decades and the findings have revealed a complex 
picture, where ER associates with hundreds of proteins, 
interacts with thousands of regions in the genome and 
can regulate a multitude of target genes and non-coding 
RNAs, many of which are only now being identified. The 
findings from the study of this pathway have identified 
the mechanisms of drug resistance and novel ways of 
targeting this disease, which has translated to improved 
survival rates in women with this disease. The advent of 
immunotherapy in combination with existing and novel 
targeted agents is likely to improve the survival rates 
even more, but women with ER+ breast cancer continue 
to die and as such, the research community needs to 
continue the exploration of this important pathway. The 
use of better models (i.e. PDX) will contribute to this 
and, importantly, our ability and motivation to study 
drug resistance by analysing metastatic material and 
using models of metastasis is of paramount importance, 
as evidenced by the recent observation that ER itself is 
frequently mutated in metastases, something that was 
largely overlooked for decades. The substantial parallels 
between different hormonal cancers mean that insights 
generated from one system (such as breast cancer) will 

inform our understanding of other diseases (such as 
prostate and ovarian cancers), and the tools, technologies 
and biological observations need to be translated 
and exploited in diseases with common underlying 
pathological properties.
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