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Abstract

By analyzing multi-tissue gene expression and genome-wide genetic variation data in samples 

from a vervet monkey pedigree, we generated a transcriptome resource and produced the first 

catalogue of expression quantitative trait loci (eQTLs) in a non-human primate model. This 

catalogue contains more genome-wide significant eQTLs, per sample, than comparable human 

resources, and reveals sex and age-related expression patterns. Findings include a master 

regulatory locus that likely plays a role in immune function, and a locus regulating hippocampal 

long non-coding RNAs (lncRNAs), whose expression correlates with hippocampal volume. This 

resource will facilitate genetic investigation of quantitative traits, including brain and behavioral 

phenotypes relevant to neuropsychiatric disorders.

Efforts to understand how genetic variation contributes to common diseases and quantitative 

traits increasingly focus on the regulation of gene expression. Most loci identified through 

genome-wide association studies (GWAS) lie in non-coding genome regions1, and are 

enriched for eQTLs; SNPs regulating transcript levels, primarily of nearby genes2. This 

observation suggests that eQTL catalogs may signpost variants responsible for GWAS 

signals3.

Normal function of complex organisms depends on tightly regulated gene expression at 

specific developmental stages in specific cell types. Existing human eQTL datasets likely 

miss information relevant to understanding disease, as most known human eQTLs have been 

identified in adults, largely from lymphocytes or lymphoblastoid cell lines4,5. This lack is 

particularly striking for neuropsychiatric disorders, given the inaccessibility of brain in 

living individuals and the enormous modifications occurring in it across development6.

The Genotype Tissue Expression (GTEx) project, using samples from post-mortem donors7, 

has begun to remedy the lack of human data connecting genotypic variation and multi-tissue 

transcriptome variation. The GTEx eQTL catalog is the most extensive such resource 

available7. However limitations of GTEx, inherent to human research, motivate the 

generation and investigation of equivalent resources from model organisms. Advantages of 

model systems include: (1) feasibility of controlling for inter-individual heterogeneity in 

environmental exposures and minimizing the interval between death and tissue preservation; 

(2) practicability of obtaining sizable numbers of multi-tissue samples across development; 

and (3) opportunity to systematically phenotype individuals carrying particular eQTL 
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variants. The similarities between humans and non-human primates (NHP) in behavior, 

neuroanatomy, and brain circuitry8,9,10, make NHP eQTLs particularly valuable for 

illuminating neuropsychiatric disorders.

We report here, in Caribbean vervets (Chlorocebus aethiops sabaeus) from the Vervet 

Research Colony (VRC) extended pedigree, the first NHP resource combining genotypes 

from whole genome sequencing (WGS)11, multi-tissue expression data across post-natal 

development, controlled environmental exposures (Online Methods), and quantitative 

phenotypes relevant to human brain and behavior. Caribbean vervets are Old World monkeys 

whose population expanded dramatically from a founding bottleneck occurring when West 

African vervets were introduced to the Caribbean in the 17th Century10; genetic variation 

has drastically declined in Caribbean vervet populations, enriching them for numerous 

deleterious alleles.

Through necropsies performed under uniform conditions, we obtained brain and peripheral 

tissue samples from captive VRC vervets. Using these resources we have delineated cross-

tissue RNA sequencing (RNA-Seq) based expression profiles for seven of these tissues, 

across multiple developmental stages from birth to adulthood. We identified numerous local 

and distant eQTLs in each tissue, and validated a locus associated with multiple distant 

eQTLs, observed previously using pedigree-wide microarrays12. Additionally, we 

demonstrated the relevance of vervet eQTLs to higher-order traits; hippocampus-specific 

local eQTLs regulate a set of lncRNAs associated with hippocampal volume, a phenotype 

related to neuropsychiatric disorders13.

Results

We investigated two datasets. Dataset 1, described previously12, consists of gene expression 

levels obtained by hybridizing all available VRC, whole blood-derived, RNA samples 

(N=347) to Illumina HumanRef-8 v2 microarrays, which we used because no vervet arrays 

are available. After filtering out probe sequences not represented in the vervet genome14 or 

containing common vervet SNPs11, we estimated expression levels at 6,018 probes, 

corresponding to 5,586 unique genes (Supplementary Data 1, Supplementary Table 1). 

Dataset 2 consists of RNA-Seq reads from seven tissues collected under identical conditions 

from each of 58 VRC monkeys (representing 10 developmental stages, from birth through 

adulthood, Online Methods). Five of these tissues play prominent roles in cognitive and 

behavioral phenotypes15–17: Brodmann area 46 [BA46], a cytoarchitectonically defined 

region encompassing most of dorsolateral prefrontal cortex (DLPFC); hippocampus; caudate 

nucleus, a component of dorsal striatum; pituitary gland; and adrenal gland. The other two 

tissues (cultured skin fibroblasts and whole blood) are relatively accessible, and thus widely 

used in studies aimed at identifying biomarkers. We assessed expression of 33,994 annotated 

genes, but minimized spurious signals by excluding genes expressed in < 10% of individuals 

or at lower than one read per tissue(Supplementary Table 2). Principal components analysis 

(PCA) of Dataset 2 showed that, overall, expression levels clustered more by tissue than by 

individual (Supplementary Fig. 1). In hierarchical clustering, however, adrenal, pituitary, and 

fibroblasts cluster separately from brain and blood (data not shown); in GTEx, in contrast, 

blood clusters separately from other tissues. While most genes were expressed in multiple 
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tissues, 137 genes demonstrated strong expression in only one tissue (Supplementary Table 

3).

Sources of Variation in Multi-tissue Expression Data

The availability (Dataset 2), of multiple samples from both sexes at each age point enabled 

us to examine developmental trajectories and sex differences in gene expression. To 

maximize our ability to observe patterns, we conducted PCA on the expression of the 1,000 

most variable genes, separately by tissue (Fig. 1). Comparison of the ranks of expression of 

the orthologs of these genes in matched tissues in humans and rhesus macaques yielded 

Spearman correlations of between ~0.5-0.8 and ~0.3-0.4, respectively (Supplementary Note 

and Supplementary Tables 4-6).

Among the seven vervet tissues, the patterns in BA46 and caudate display the clearest 

association with development; PC1 (20.1% of BA46 variability and 18.5% of caudate 

variability) distinguishes the vervets, nearly linearally, by age. All tissues except fibroblast 

show sharply demarcated expression patterns between males and females; on PC1 

(hippocampus and pituitary, 19.3% and 16.2% of variability, respectively), on PC2 (BA46, 

caudate and blood, 15.5%, 17.4%, and 3.2% of variability, respectively), and on PC3 

(adrenal, 8.2% of variability).

As an initial, descriptive exploration of the biology underlying these patterns, we identified, 

in brain and endocrine tissues, the genes in the top and bottom 10% of the distribution of PC 

loadings on PCs 1, 2, and 3 (200 genes per tissue, per PC). We evaluated the known 

functions of these genes, which contribute most to the variance explained by the PCs in 

relation to sex (BA46, caudate, hippocampus, pituitary, and adrenal, Supplementary Table 7, 

Supplementary Note) or age (BA46 and caudate, Supplementary Table 8).

Age-related expression patterns in BA46 and caudate highlight numerous genes essential for 

nervous system development or implicated in human diseases. For example, three 

thrombospondin genes controlling synaptogenesis show a clear developmental pattern in 

BA46; THBS1 and THBS2 are upregulated in neonates, while THBS4, a gene upregulated 

during human brain evolution18, shows increasing expression across development (Fig. 2). 

Striking age-related expression patterns in BA46 and caudate are observed for other notable 

genes (Supplementary Fig. 2, Supplementary Note); orthologs of these genes in human and 

rhesus macaque brain tissues that are most equivalent to vervet BA46 and caudate (Online 

Methods) show patterns are similar to, but less pronounced than those in vervet 

(Supplementary Fig. 3, 4). Given the PCA results showing an age-related component to gene 

expression variation that differs by tissue, we conducted a differential expression analysis, 

using age as both a continuous and a categorical predictor in two different linear models. 

Nearly 8,000 genes across all seven tissues show significant differential expression by age 

for either analysis, mostly with very small effects (Supplementary Table 9)

To evaluate whether cell-type heterogeneity influences interpretation of our expression and 

eQTL results for blood and brain tissues, we conducted a transcriptional deconvolution 

analysis of these tissues, using published data19,20 (Supplementary Fig.5). We estimated the 

diversity of cell types per sample in each tissue by calculating entropy, observing that blood 

Jasinska et al. Page 4

Nat Genet. Author manuscript; available in PMC 2018 April 30.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



has substantially higher diversity of cell types than do the three brain tissues (Supplementary 

Fig. 5).

We also examined the relationship between the proportion of specific cell types and 

developmental stage. For BA46 and hippocampus, the proportion of Oligodendrocyte 

Precursor cells decreases as age increases, as observed previously in human21; in caudate, 

the proportion of this cell type increases with age. Similarly, the proportion of neurons 

increases with age in BA46 and hippocampus, and decreases with age in caudate. 

(Supplementary Fig. 6-9). We found no correlation between estimated cell proportions and 

major PC axes in any tissue. These estimated proportions may not fully reflect in vivo 
cellular composition, but any bias would remain relatively systematic across animals and so 

unlikely to confound other analyses.

We evaluated the effect of RNA-Seq sample batch on transcriptomic profiles and PC patterns 

(Supplementary Note). As batch showed association with expression profiles in pituitary and 

adrenal (PC2) and caudate and pituitary (PC3), we included it as a covariate in eQTL 

analyses.

Identification of eQTLs

Whole genome sequencing (WGS) of 721 VRC monkeys provided the first NHP genome-

wide, high-resolution genetic variant set11: 497,163 WGS-based SNPs that tag common 

variation genome-wide. Using these SNPs we conducted separate GWAS of Datasets 1 and 2 

to identify local (probes/genes < 1 Mb from an associated SNP) and distant (all other probe/

gene-SNP associations) eQTLs in each dataset. Covariates in all eQTL analyses included 

age, sex, and batch.

Using SOLAR22, we identified significant estimated heritability for 3,417 probes in Dataset 

1 (out of the 6,018 filtered probes that we evaluated, corresponding to 5,586 unique genes) 

at a false discovery rate (FDR) threshold < 0.01 (Supplementary Data 1, 2). A GWAS of 

each heritable probe identified one or more significant eQTLs at 461 local and 215 distant 

probes (Bonferroni-corrected thresholds of 4.8 x 10-8 for local and 1.5 x 10-11 for distant 

eQTLs, Table 1, Supplementary Data 3). Approximately 35% of probes with a significant 

eQTL (173/498) displayed at least one local and one distant significant association.

In Dataset 2 we observed, for each of the five solid tissues, between 361-596 genes with 

local eQTLs and 30-80 genes with distant eQTLs. For blood and fibroblasts, 60 and 239 

genes showed local eQTLs and 4 and 43 genes showed distant eQTLs, respectively, all at 

Bonferroni corrected thresholds (6.5 x 10-10 [local] and 5.3 x 10-13 [distant], Table 1, 

Supplementary Data 4). The paucity of eQTLs in blood likely reflects heterogeneity in the 

proportions of different cell types in this tissue, as identified in deconvolution analyses 

(Supplementary Fig. 1, 5). The paucity of eQTLs in fibroblasts has no obvious explanation, 

although we analyzed fewer genes, overall in fibroblasts than in tissues with cellular 

heterogeneity. At Bonferroni thresholds, we had 80% power to detect a significant local 

eQTL accounting for 11% of variability in expression in Dataset 1, and accounting for 55% 

of variability in expression in Dataset 2. For about 70% of Bonferroni-significant eQTLs 
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(local and distant and in all tissues), the SNPs demonstrating association had minor allele 

frequency > 30% (Supplementary Table 10).

We considered whether genotypic variation within the vervet pedigree could confound the 

effects of age in generating the strong loadings on genes in age-associated PCs in BA46 and 

caudate. Among the 200 genes with such loadings, in caudate, 37 genes showed evidence of 

eQTLs, using the more liberal FDR controlling procedure. For these 37 genes, we modeled 

expression as a function of both age and genotype, using the most significant eQTLs, and 

found that genotype could not account for the age-association (data not shown). Similarly, in 

BA46, 26 genes showed evidence of an eQTL, for only one of which (LOC103219658) 

could genotype partially account for the age-association. Using genes without age effects as 

reference (Supplementary Table 9), we observed that genes with age-related patterns are 

depleted for eQTLs (Supplementary Table 11); this finding agrees with predictions that 

purifying selection causes such depletion in genes that are important at specific 

developmental timepoints23.

Comparison to Human eQTLs

While the eQTLs summarized in Table 1 are genome-wide significant at Bonferroni 

thresholds, we also applied FDR-controlling procedures, to expand the list of local eQTLs 

for more exploratory investigations, and to make our results comparable to those of GTEx 

(Table 2). We controlled FDR for eGenes at 0.05 (Online Methods), accounting for multiple 

testing using a hierarchical error controlling procedure developed for multi-tissue eQTL 

analysis24. We applied this same procedure to GTEx eQTLs to facilitate comparisons 

between the datasets.

Despite having a smaller sample size than GTEx V6, we identify more local eQTLs (at FDR 

thresholds applied to both datasets, Online Methods) for the five solid tissues evaluated in 

both resources (Table 2). The larger number of local eQTLs in the vervets likely reflects the 

more homogenous environment of colonied NHPs compared to humans, and the more 

uniform tissue collection process in this study. Specific vervet and GTEx eQTLs overlap, 

substantially. All vervet genes with a genome-wide significant eQTL (FDR <0.05) also 

display a human eQTL in the same tissue (p< 0.05), given that the gene has a known human 

ortholog and was tested in GTEx. Using instead GTEx’s defined significance threshold for 

orthologous genes (FDR < 0.05), an average of 19% of vervet eQTLs display a human eQTL 

(Table 2). Restricting the comparison to Bonferroni-significant local eQTLs, an average of 

23% of vervet eQTLs also have an eQTL in the same tissue in GTEx (Supplementary Table 

12).

We additionally compared our local eQTL results for brain tissues to the Open Access 

version of human eQTLs from DFPLC, available from CommonMind Consortium 

(CMC)25. Almost 90% of vervet brain local eQTL genes with human orthologs in the CMC 

dataset have a local eQTL at FDR<0.05 in that dataset (Supplementary Note and 

Supplementary Table 13).
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eGene Sharing Among Tissues

In all tissues except blood, tissue-specific locally regulated eGenes (genes with a significant 

local eQTL, see Online Methods) are more common than local eGenes shared among tissues 

(Supplementary Fig. 10). Adrenal and pituitary, organs inter-regulated in the same 

neuroendocrine pathway, display the largest number of shared local eGenes (300). The three 

brain regions share 239 such eGenes, while 229 eGenes are shared across all tissues but 

blood, and 82 eGenes are shared across all seven tissues.

Genomic Distribution of eQTLs

Regulatory variants occur most frequently in functional genomic regions26. Vervet local 

eQTLs are clearly enriched in regions encompassing exons, introns and adjacent flanks and 

depleted in intergenic regions (Supplementary Fig. 11, Supplementary Table 14). As in other 

primates27, vervet eQTLs are enriched around gene boundaries (transcription start site 

[TSS] and transcription end site [TES]) (Supplementary Fig. 12).

We used previously published chromatin immunoprecipitation with DNA sequencing (ChIP-

Seq) data28,29 to evaluate eQTL distribution in H3K4me3 enriched regions (promoters) and 

H3K27ac enriched regions (which include acetylated promoters and enhancers). As 

H3K4me3 marks are typically conserved across tissues we analyzed them using vervet liver 

data29. As enhancer marks are more tissue specific29–31 we analyzed H3K27ac marks in 

both vervet liver and available brain data (caudate and prefrontal cortex) from rhesus 

macaque28,29. The promoter regions show stronger enrichment for vervet local eQTLs than 

either genic or H3K27ac-enriched regions (Supplementary Fig. 11, Supplementary Table 

14).

Validation of Distant eQTLs

Dataset 1 is well-powered for discovery of distant eQTLs. Among 215 genes for which we 

observed genome-wide significant associations to one or more distant eQTLs, a locus on 

CAE9 in which 76 SNPs across a ~500 Kb region displayed genome-wide significant local 

eQTL signals, stood out for showing association to multiple unlinked genes. For each of 

these 76 SNPs we identified genome-wide significant distant eQTLs at between five and 14 

genes, on different vervet chromosomes (2,127 total distant SNP-gene associations, Fig. 3, 

Supplementary Table 15).

Because we obtained Dataset 2 using a different platform from Dataset 1, and from a mostly 

non-overlapping sample (only 6 vervets were in both datasets), we evaluated it for 

replication of the CAE 9 distant eQTLs, recognizing the limited power of this smaller 

dataset. Considering the percent of variance accounted for by the distant eQTLs in Dataset 1 

(Supplementary Table 15), we have 82% power to identify eQTLs in Dataset 2, with 58 

animals, when the SNP accounts for ≥35% of expression variance, using a significance 

threshold (p<2.35 x 10-5) accounting for 2,127 tests. Two genes, ST7 (31 SNPs) and YPEL4 
(22 SNPs) replicate association at this threshold, with estimated regression coefficients for 

these 53 SNP-gene associations being similar in magnitude and direction in the two datasets 

(Supplementary Table 16). We confirmed eight distant associations (RANBP10, LCMT1, 
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ST7, TMEM57, YPEL4, NARF, STXBP1, DEDD2) across the two datasets, with at least 

one SNP demonstrating association at p<0.05 (Supplementary Table 15).

These results indicate that the CAE 9 eQTL is a master regulatory locus (MRL). This 

genomic segment contains a cluster of acid lipase genes and interferon-inducible genes, 

including IFIT1B (Interferon-Induced Protein With Tetratricopeptide Repeats 1B), a gene 

implicated in viral resistance in vervets, but not humans32. The same SNPs contributing to 

the MRL are also genome-wide significant local eQTLs for IFIT1B; GTEx reports no 

significant local eQTLs for IFIT1B in human blood.

Expression of IFIT1B correlates strongly with expression of the distant genes regulated by 

this eQTL (Supplementary Note, Supplementary Table 17). We conducted mediation 

analyses in Dataset 1 for a SNP (CAE9_82694171) that, at Bonferroni corrected significance 

thresholds, is both a distant eQTL for all 14 genes and a local eQTL for IFIT1B 
(Supplementary Table 18). This SNP accounts for 19-37% of the variance in expression 

level of the 14 genes not on CAE 9. When we conditioned these analyses on IFIT1B 
expression, the magnitude of distant associations diminished substantially, the variance 

accounted for by this SNP dropping to ≤10% for all 14 genes. These results indicate that 

IFIT1B, under direct control of a local eQTL on CAE 9, influences expression of 14 other 

genes spread across the genome. Such mediation by local eQTLs of distant eQTLs provides 

a further validation of the latter loci33.

Hippocampus eQTLs in a Region Linked to Hippocampal Volume

As an initial investigation of the impact of vervet eQTLs on higher order traits we focused 

on MRI-based hippocampal volume, a highly heritable trait in the VRC (h2 =0.95)34, for 

which the strongest QTL signal genome-wide (peak LOD score 3.42) lies in an ~8.3 Mb 

segment of CAE 18. Power simulations (SOLAR) indicate that, in the VRC pedigree, 

quantitative trait data for 347 vervets (the number with hippocampal volume data) provide 

80% power to detect a locus with LOD=2 when locus-specific heritability is > 45%.

In the center of the broad region around this linkage peak, two hippocampus-specific local 

eQTLs were genome-wide significant (Bonferroni threshold, Fig. 4). These SNPs reside in, 

and regulate expression of, two lncRNAs located 168 Kb apart: LOC103222765 (nine 

associated SNPs) and LOC103222769 (three associated SNPs). An additional lncRNA, 

LOC103222771, situated two bp from LOC103222769, shows hippocampal specific 

association to six SNPs at a significance level (p < 10-9) just above the genome-wide 

threshold. While all three genes display hippocampus-specific eQTLs, the genes themselves 

are expressed across all seven tissues that we analyzed, and show no significant sex or age 

specific differences in expression patterns (data not shown). The incomplete database 

annotation of lncRNAs35 limits comparative analyses of such genes among primates; a 

BLAST search found a homolog for LOC103222765 in the white-tufted-ear marmoset and 

one for LOC103222771, in the crab-eating macaque. While LOC103222765 overlaps a 

coding gene (RAB31), LOC103222769 and LOC103222771 do not overlap exons of any 

coding genes36.
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Given the physical proximity of these lncRNAs, we used multivariate conditional analyses to 

evaluate whether the regulation of these genes depends on a single or multiple independent 

eQTLs. For each lncRNA we designated a “lead SNP” (the SNP most significantly 

associated to its expression, Supplementary Table 19). For both LOC103222769 and 

LOC103222771, modeling expression as a function of both lead SNPs diminished the 

significance levels for both SNPs (Supplementary Table 19), suggesting that one eQTL 

regulates both genes. Modeling LOC103222765 expression as a function of its lead SNP and 

the lead SNP of the other two genes, the lead SNP for LOC103222765 remains significant, 

while the other two lead SNPs are non-significant, confirming the “distinctness” of this 

signal (Supplementary Table 19). This analysis suggests two eQTLs in this region; one 

associated with LOC103222765, and the second associated with LOC103222769 and 

LOC103222771.

We observed, in six vervets with both MRI and RNA-Seq data, a positive correlation 

between hippocampal expression of LOC103222765, LOC103222769 and LOC103222771, 

and hippocampal volume. To extend this observation, we assessed, using an independent 

platform, quantitative real-time PCR, LOC103222765, LOC103222769 and LOC103222771 
hippocampal expression in these six vervets and 10 additional vervets with both 

hippocampal RNA and MRI. In this expanded sample, we identified significant positive 

correlations (Fig. 5) between LOC103222765, LOC103222769 and LOC103222771 
expression and hippocampal volume. While the above data suggest that genetic variation in 

this region regulates these lncRNAs and also has a strong impact on the MRI phenotype, 

colocalization analysis37 does not support the hypothesis that a single variant accounts for 

both the genome-wide linkage (MRI) and GWAS (eQTL) findings (8.2% posterior 

probability).

Discussion

We describe here the first NHP resource for investigating the genetic contribution to inter-

individual variation in multi-tissue gene expression across development. This resource 

complements GTEx38,39, but is differentiated from it by study designs that are infeasible in 

human research. Notably, the age-based sampling enabled delineation of tissue-specific 

expression profiles in relation to developmental trajectories. These profiles illuminate 

biological processes associated with expression patterns of particular genes. For example, 

several genes critical in synapse formation and postnatal myelination of the central nervous 

system40–43 contribute to the near linear age-related pattern observed in BA46 and caudate, 

and suggest that the observed expression pattern reflects this process. Conversely, the lack of 

such a developmentally specific pattern in the hippocampus may relate to the lifelong 

generation of functional neurons in this tissue that underpins its functions in learning and 

memory44,45.

Three factors increased the signal-to-noise ratio of vervet eQTL analyses, relative to human 

studies: (i) homogeneity of environmental exposures; (ii) greater control over necropsy 

conditions; and (iii) restricted genetic background of the population. These factors enabled 

us to identify 385 genes with genome-wide significant distant eQTLs, including the MRL at 

IFIT1B.
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The function of IFIT1B, one of a cluster of five IFIT genes, is poorly understood. It is a 

paralog of IFIT1, which is involved in innate antiviral immunity in mammals, broadly46, 

and in regulation of gut microbiota in mouse47. In some mammals IFIT1B contributes to 

discrimination between “self versus non-self” transcripts based on the lack of 2’ O-

methylation on mRNA 5’ caps in viruses, a so-called cap0 structure32. Vervet IFIT1B 
recognizes and inhibits replication of viruses with cap0-mRNAs, while human IFIT1B lacks 

this function32. This functional divergence of IFIT1B antiviral activity may reflect the 

divergence of the human lineage from that of other primates, in exposures and adaptations to 

particular pathogens, including arboviruses responsible for diseases such as encephalitis, 

dengue, and yellow fever.

Investigations of genes regulated by IFIT1B in vervet might reveal mechanisms for its role 

in defense against viral pathogens. While these genes do not act together in any annotated 

pathway, the products of several of them have immune functions. For example, RANBP10, a 

transcriptional coactivator, promotes viral gene expression and replication in HSV-1 infected 

cells48. SUGT1, a cell cycle regulator, is the homolog of SGT1, an essential component of 

innate immunity in plants and mammals49,50, while TMEM57 shows genome-wide 

significant association in human to blood markers of inflammation51.

Just as GTEx data help refine signals from human GWAS of complex traits5, we used vervet 

hippocampal eQTLs to identify a set of lncRNAs as candidate genes for hippocampal 

volume. The genetic and environmental homogeneity of the relatively small vervet study 

sample likely facilitated these findings, and supports multi-tissue vervet eQTL studies as a 

strategy for identifying loci with a large impact on higher-order phenotypes, generally. The 

tissues examined to date are a fraction of those available from the same vervets; the 

investigations reported here can be extended to an additional 60 brain regions and 20 

peripheral tissues.

Expanding tissue resources in NHPs, generally, will create additional opportunities to 

identify biomedically relevant eQTLs9,52. The abundance of natural Caribbean vervet 

populations, and their genetic near-identity to the samples we analyzed, make them uniquely 

valuable for maximizing the value of our eQTL resource 10,12. Each lead SNP for the 

eQTLs associated with hippocampal volume in the VRC is common in Caribbean 

populations (Supplementary Note). We anticipate that our eQTL database will enhance 

interpretation of well-powered GWAS that can be conducted in these populations for a wide 

range of complex traits.

Online Methods

Study Sample

The monkeys in this study were from the Vervet Research Colony (VRC), established by 

UCLA during the 1970’s-1980’s from 57 founder animals wild-captured in St. Kitts and 

Nevis10. MRI phenotypes were obtained before the VRC moved to Wake Forest School of 

Medicine in 2008 (Supplementary Note). All vervets in this study were captive-born, 

mother-reared and socially-housed in large, indoor-outdoor enclosures, in matrilineal groups 
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that approximated the social structure of wild vervet populations. They had a uniform 

exposure to light and darkness and were fed a standardized diet.

Gene Expression

Two gene expression datasets were collected. Dataset 1 consisted of microarray (Illumina 

HumanRef-8 v2) assays of whole-blood RNA in 347 vervets. Dataset 2 consisted of RNA-

Seq data from seven tissues assayed in 60 animals. Six vervets were in both Datasets. No 

randomization was applied in allocating animals to Datasets and investigators were not 

blinded to the allocation of animals to Datasets.

Dataset 1: Microarrays From Whole Blood—The microarray dataset has been 

described previously12. For details on RNA extraction, cDNA synthesis, and initial data 

processing, see Supplementary Note. To obtain a set of probes usable in vervet from the 

Illumina HumanRef-8 v2 microarray, we used the vervet reference sequence to select probes 

containing no vervet indels and demonstrating ≤ five mismatches, with a maximum of one 

mismatch in the 16 nt central portion of the probe. To prevent bias in expression 

measurement due to SNP interference with hybridization, we excluded probes targeting 

sequences with common SNPs identified in the VRC. A total of 11,001 probes passed these 

filters (Supplementary Table 1). Illumina provides a “detection p-value” for detection of a 

given probe in a specific individual (with p<0.05 considered significant). We analyzed 6,018 

probes with detection p-values of p<0.05 in at least 5% of vervets, and tested 3,417 

significantly heritable probes for eQTL association. Expression data were inverse-normal 

transformed prior to analysis.

Dataset 2: RNA-Seq Data from Seven Tissues—Tissues harvested during 

experimental necropsies (Wake Forest School of Medicine IACUC protocol A09-512) were 

obtained from 60 vervets representing 10 developmental stages, ranging from neonates (7 

days), through infants (90 days and one year), young juveniles (1.25, 1.5, 1.75, 2 years old), 

subadults (2.5, 3 years old) to adults (4+ years old), with six vervets (3 male and 3 female) 

from each developmental time point. Two vervets (a 1.75 year old female and a 7 day old 

male) for which we did not have WGS data were excluded from this study. Altogether, we 

included 11 vervets below one year old, 23 vervets between one to two years old, and 24 

vervets between two and four years old, 29 males and 29 females. For details regarding 

tissue collection and RNA preparation procedures, see Supplementary Note.

For all vervets we conducted RNA-Seq in seven tissues: three brain tissues (BA46, caudate 

and hippocampus), two neuroendocrine tissues (adrenal and pituitary) and two peripheral 

tissues (blood and fibroblasts). From purified RNA, we created two types of cDNA libraries 

(Supplementary Note); poly-A RNA (fibroblasts, adrenal and pituitary) and total RNA 

(blood, caudate, hippocampus, BA46) libraries (Supplementary Table 20, Supplementary 

Note). For one vervet in which the RNA-Seq data indicated a mix-up between the caudate 

and BA46 samples, we excluded data from these two tissues in all analyses.

RNA-Seq reads were aligned to the vervet genomic assembly Chlorocebus_sabeus 1.1 by 

the ultrafast STAR aligner53 using our standardized pipeline. STAR was run using default 

parameters, which allow up to ten mismatches. Gene expression was measured as total read 
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counts per gene. For paired-end experiments we considered total fragments. Fragment 

counts aligning to known exonic regions (based on NCBI Chlorocebus sabaeus Annotation 

Release 100) were quantified using the HTSeq package54. The counts for all 33,994 genes 

were then combined; lowly expressed genes (mean in raw counts of < 1 across all samples) 

and genes detected in < 10% of individuals were filtered out. The calcNormFactors function 

in the edgeR package55 was applied to normalize counts. Finally, an inverse-normal 

transform was applied to counts per million, prior to analysis.

Deconvolution analysis was performed in vervet brain and blood tissue using available 

references for these tissues. For brain tissues, gene signatures were obtained from Zhang et 

al.20; for blood, cell type specific markers were taken from datasets built into the CellMix 

package19. Cell type composition for each tissue was evaluated using the CellMix R 

package.

Datasets for comparative expression analysis between species—We performed 

comparative analysis of gene expression between vervet brain samples, GTEx, and age-

matched samples from Allen Brain Atlas (ABA) datasets; BrainSpan (human RNA-seq data, 

see URLs) and the NIH Blueprint NHP Atlas (rhesus macaque microarray data, see 
URLs)6,52, (Supplementary Tables 21, 22) Matching the three vervet brain tissues to the 

most closely corresponding available tissues in the other species (Supplementary Table 23), 

we compared overall expression profiles between these species, and inspected 

developmental expression patterns of selected genes.

Overall mean levels of expression were compared between species using a rank correlation. 

GTEx and BrainSpan were compared to vervet, independently. For the GTEx comparison, 

vervet tissues were matched to the five available corresponding tissues: adrenal, blood, 

caudate, hippocampus and pituitary. Analyses involving the two ABA datasets were limited 

to the three brain regions most closely related to the brain tissues analyzed in vervets 

(Supplementary Table 23). As the rhesus macaque dataset included only males, we limited 

comparisons to male vervets.

For each of the three dataset comparisons, vervet raw counts were first converted to RPKM 

values using the edgeR R package55. GTEx and human ABA counts were already 

normalized to RPKM values; rhesus macaque counts had been normalized using an RMA 

approach52. Mean expression was then calculated by tissue for each dataset. For ABA 

datasests, mean expression was calculated by tissue type and time point, according to 

matched age groups (Supplementary Tables 21, 22). Vervet gene names were converted to 

their corresponding human orthologs to ensure gene names matched between vervet and 

comparison datasets; Genes with no human ortholog were excluded. Additionally, genes not 

URLs
Vervet genomic assembly: http://www.ncbi.nlm.nih.gov/assembly/GCF_000409795.2
R version 3.2.3 https://www.R-project.org
Treeqtl software http://www.bioinformatics.org/treeqtl/
Rhesus macaque microarray data: © 2015 Allen Institute for Brain Science. Blueprint Non-Human Primate (NHP) Atlas. Available 
from: http://www.blueprintnhpatlas.org/
Human RNA-Seq brain data: © 2015 Allen Institute for Brain Science. BrainSpan Atlas of the Developing Human Brain. Available 
from: http://www.brainspan.org/
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present in both vervet and the comparison species dataset were also removed. Variances 

were then calculated for each gene across the five or three different vervet tissues, for GTEx 

and ABA comparisons, respectively. The top 1,000 genes with the highest variances were 

then selected for rank-rank correlation testing. The base R function cor.test was used to 

perform correlation testing.

Real-time quantitative PCR (qPCR)—Real-time quantitative PCR was performed in 

two steps. First, reverse transcription (RT) was performed using the SuperScript® III First-

Strand Synthesis System (Life Technologies) following the manufacturer’s protocol for 

priming with random hexamers. Custom primers and hydrolysis probes were designed for 

each lncRNA and three candidate reference genes (Hypoxanthine phosphoribosyltransferase 

1, HPRT1; Glyceraldehyde 3-phosphate dehydrogenase, GAPDH; and Beta-2-

Microglobulin, B2M) using the Custom TaqMan® Assays Design Tool (Applied 

Biosystems, Supplementary Table 24). Expression analyses were conducted on the 

LightCycler™ 480 platform (Roche) using the iTaq® Universal Probes Supermix (Bio-Rad). 

All qPCR reactions were carried out in triplicate; reactions containing water instead of 

cDNA were included as negative controls. cDNA samples were diluted 1:5 with water, and a 

five-point standard curve of four-fold dilutions was prepared for each gene using pooled 

cDNA as the template. Stability of each candidate reference gene was evaluated using the 

NormFinder software (v5) in R56. Quantification was performed using the relative standard 

curve method, with the geometric mean of the most stably expressed reference genes 

(GAPDH and HPRT1) used as an endogenous control for normalization of the interpolated 

lncRNA quantities. Finally, relative expression levels were generated by dividing the 

normalized lncRNA quantities by the corresponding quantity in one experimental sample 

which served as a calibrator. For additional experimental details and complete primer and 

probe sequence information see Supplementary Note.

Hippocampal Volume

Estimates of hippocampal volume were measured in 347 vervets >2 years of age using MRI. 

Details of the image acquisition and processing protocol were described previously34 and 

are outlined in Supplementary Note. Prior to genetic analysis, hippocampal volume was log 

transformed, regressed on sex and age (SOLAR22), and residuals used as the final 

phenotype.

Genotype Data

Genotypes were generated through WGS, as described previously11. Genotypes from 721 

VRC vervets that passed QC procedures can be queried via the EVA at EBI. Two genotype 

data sets were used11: (1) The Association Mapping Set consists of 497,163 SNPs on the 29 

vervet autosomes. This set has, on average, 198 SNPs per Mb of vervet sequence, with a 

maximal gap of 5 Kb between adjacent SNPs. (2) The Linkage Mapping Set consists of 

147,967 SNPs on the 29 vervet autosomes. This set has, on average, 58.2 SNPs per Mb of 

vervet sequence, with an average gap of 17.5 Kb between adjacent SNPs.

The software package Loki57, which implements Markov Chain Monte Carlo methods, was 

used to estimate multipoint identical by decent (MIBD) allele-sharing among all vervet 
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family members from the genotype data. As long stretches of IBD were evident among these 

closely related animals, density 9,752 SNPs of the 148K set were sufficient to evaluate 

MIBD at 1cM intervals. The correspondence between physical and genetic positions of 

vervet SNPs was established by interpolation using 360 markers from the vervet STR 

linkage map58, for which physical and genetic position was known.

Statistical Analysis

Principal Components Analysis (PCA)—The top 1,000 most variable genes were 

selected for each tissue (Dataset 2), and PCA applied to log2-transformed counts per 

million, using the singular value decomposition and the prcomp function in. Expression was 

mean-centered prior to analysis. We examined genes in the top and bottom 10% of the 

distribution of PC loadings on PCs 1, 2, or 3 (200 genes per tissue, per PC) where these 

loadings are taken from the eigen-decomposition of the expression matrix. The gene 

loadings represent the amount that gene contributes to the PC value for that sample on the 

axis in question.

Differential Expression Analysis of Age—We conducted a differential expression 

analysis, using age as both a continuous and a categorical predictor in two different linear 

models, and inverse-normal transformed gene expression as the outcome. Both analyses 

were performed separately by tissue; sample size was 60 animals for adrenal, blood, 

fibroblasts, and pituitary and was 59 for BA46, caudate, and hippocampus.

Mapping of Gene Expression and Hippocampal Volume Phenotypes—For the 

higher-order phenotype, hippocampal volume, we anticipated having power only to detect 

loci with a strong effect, and therefore evaluated it using linkage analysis. For gene 

expression traits we expected power to identify relatively small effects and therefore applied 

genome-wide association analyses.

Heritability and Multipoint Linkage Analysis: We estimated familial aggregation 

(heritability) of traits using SOLAR, which implements a variance components method to 

estimate the proportion of phenotypic variance due to additive genetic factors. This model 

partitions total variability into polygenic and environmental components. The environmental 

component is unique to individuals while the polygenic component is shared between 

individuals as a function of their pedigree kinship. If the variance in phenotype Y due to the 

polygenic component is designated as σg
2 and the environmental component as σe

2, then in 

this model Var(Y) = σg
2 + σe

2, and the covariance between phenotype values of individuals i 
and j is Cov(Yi,Yj)=2 φij σg

2, where φij is the kinship between individuals i and j.

Genome-wide multipoint linkage analysis of hippocampal volume was also implemented in 

SOLAR, which further partitions the genetic covariance between relatives for each trait into 

locus-specific heritability and residual genetic heritability. Linkage analysis was performed 

at 1cM intervals using the likelihood ratio statistic.

Association Analysis: Association between specific SNPs and gene expression phenotypes 

was evaluated using EMMAX59. EMMAX employs a linear mixed model approach, where 

SNP genotype is a fixed effect, and correlation of phenotype values among individuals is 
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accounted for using an identity-by-state approximation to kinship. Association analyses used 

497,163 SNP markers, and for both Dataset 1 and Dataset 2 included age (in Dataset 2, age 

corresponds to developmental stage), sex, and sample batch as covariates. It is common to 

try to account for unmeasured factors influencing global gene expression by including 

probabilistic estimation of expression residuals (PEER) factors as covariates60. We 

considered the controlled nature of the study environment and experimental design to 

preclude the need for this adjustment.

Colocalization of eQTL and Hippocampal Volume QTL—We evaluated the posterior 

probability that the hippocampal volume QTL and the hippocampus local eQTLs on CAE 18 

share a single, common causal variant using COLOC37. The same variants were tested in 

both analyses; six vervets overlapped between the two data sets.

Multiple Testing Considerations in eQTL—As our primary error-controlling strategy 

for eQTL discovery we used a Bonferroni correction to account for multiple testing across 

genes, SNPs, and tissues. Thresholds for Dataset 2 were more stringent, as it included 

analysis of multiple tissues and tested more genes than in Dataset 1 (~25K vs. ~3K). In 

Dataset 1 we analyzed association to 3,417 heritable probes. The local eQTL significance 

threshold (4.8 x 10-8) was corrected for testing of SNPs within 1 Mb of 3,417 probes. The 

distant eQTL significance threshold (1.5 x 10-11) accounted for genome-wide. Dataset 2 

significance thresholds were constructed in a similar fashion, but also accounted for testing 

of 191,263 gene-tissue combinations (see Table 1). The RNA-Seq local eQTL threshold was 

6.5 x 10-10, and the distant eQTL threshold was 5.3 x 10-13.

To identify multi-tissue eGenes, the tissues in which they are active, and the associated SNPs 

in each of these tissues, we used TreeBH, a hierarchical testing approach24 which extends 

the error-controlling procedure characterized in Peterson et al.61 to multi-tissue eQTLs. To 

apply this method, the hypotheses are grouped into a tree with three levels: genes in level 1, 

tissues in level 2, and SNPs in level 3. Testing proceeds sequentially starting from the top of 

the tree in a manner that accounts for each previous selection step. This method controls the 

FDR of local eGenes (genes whose expression is regulated in at least one tissue by some 

genetic variants located within 1 Mb of the gene) and of the expected average false 

discovery proportion of the tissues in which we claim this regulation is present across the 

discovered eGenes. P-values are defined by building up from the bottom of the tree. 

Specifically, to obtain a p-value for the null hypothesis of no local regulation for a given 

gene in a given tissue (corresponding to a hypothesis in level 2 of the tree), we applied 

Simes’ combination rule62 to the p-values obtained via EMMAX for the hypotheses of no 

association between the expression of the gene in the tissue and each of the SNPs in the 

local neighborhood (corresponding to the hypotheses in level 3 of the tree). To obtain a p-

value for the null hypothesis of no local regulation for a given gene in any of the tissues 

under study (corresponding to a hypothesis in level 1 of the tree), we applied Simes’ 

combination rule to the gene x tissues p-values just described. We then tested the global null 

hypotheses of no local regulation in any tissue for all the genes in our study, applying the 

Benjamini Hochberg procedure63 to control the FDR at the 0.05 level. For those genes for 

which we were able to reject the null hypotheses of no local regulation, we examined the 
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tissue-specific p-values, applying the Benjamini Bogomolov procedure that allows 

identification of significant findings, controlling for the initial selection64. Finally, the 

individual SNPs responsible for regulation of the gene in each tissue were identified, again 

using a selection-adjusted threshold as previously described.24 An R package implementing 

this procedure is available.65

We compared the number of eGenes identified in each tissue using the above procedure with 

the results of GTEx (Analysis Release V6; dbGaP Accession phs000424.v6.p1). We 

downloaded all eQTL association results for tissues in common with our study, and applied 

this same hierarchical procedure to the GTEx results to identify eGenes.

Association between local eQTLs and genomic features—We estimated possible 

enrichment of eQTLs in exons, introns, flanking regions, intergenic regions, and regulatory 

regions using logistic regression in a generalized linear mixed model (GLMM), using the 

GMMAT software66. We categorized each SNP in two binary dimensions (local eQTL and 

located in or near a given region). A SNP was considered a local eQTL if it was associated 

(at Bonferroni thresholds) to gene expression of a gene within 1 Mb, in any tissue, in either 

Dataset. Local eQTL status was the outcome variable, and a separate GLMM logistic 

regression performed for each region. A matrix of r2 values among all SNPs was included as 

a random effect to account for lack of independence among SNPs. GLMMs are 

computationally demanding and the full set of 497,163 SNPs could not be analyzed in one 

model. We LD-pruned the SNP data, agnostic to eQTL status and region, and used 18,464 

genome-wide SNPs based on LD-pruning 497,163 SNPs at r2<0.6 in 14 unrelated 

individuals. This SNP set included 1,202 local eQTLs.

Enrichment of local eQTLs in near TSS/TES—Our examination of potential 

enrichment of local eQTLs near TSS/TES gene regions was descriptive, involving no 

hypothesis testing. We restricted our summary to the 27,196 genes that were <0.5 Mb in 

size, and the 426,403 SNPs within 200kb of the TSS/TES of these genes (or in between the 

TSS/TES). In this set of SNPs, 17,595 were local eQTLs to ≥ 1 of the 27,196 genes (at 

Bonferroni thresholds), in > 1 tissues in either Dataset, and were within 200 Kb of the 

TSS/TES of the gene(s) to which they were associated. For each gene, we created 10 Kb 

distance bins on either side of the TSS/TES, and tallied the proportion of SNPs in the bin 

that were local eQTLs for the gene. As the distance between TSS and TES varied by gene, 

we binned distances in this area by deciles of the total distance.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
PCA of 1,000 genes with the most variable expression levels. Analysis was performed 

separately by tissue; sample size was 60 animals for adrenal, blood, fibroblasts, and pituitary 

and 59 for BA46, caudate, and hippocampus. Numbers in the labels for x and y axes indicate 

the proportion of total variance accounted for by that PC.
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Fig. 2. 
Boxplot of log counts per million (CPM) expression in samples of BA46 from 58 animals 

vs. timepoint, for three genes with a strong relationship between expression pattern and age. 

The inter-quartile range defines the height of the box, and whiskers extend to 1.5x the inter-

quartile range. Outliers are indicated as individual points. In each box, the median is 

represented by the horizontal black bar.
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Fig. 3. 
Master regulatory locus on vervet chromosome CAE 9. Upper panel: Ensembl view of the 

CAE 9 region. Lower panel: The minimum –log10(p-value) for each SNP in association 

analyses vs. expression in 347 animals of microarray probes on different chromosomes. The 

symbols are color-coded to represent the number of probes significantly associated to each 

SNP: 1-2 probes (black), 3-4 probes (yellow), 5-6 probes (blue), 7-10 probes (purple), 11-14 

probes (red). Symbols indicate the p-value from analysis of expression in Dataset 2 (RNA-

Seq). Cross: p<2.35e-05; X: p<0.001; circle: p>0.001. The large red X at the top of the plot 

is CAE9_82694171.
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Fig. 4. 
Hippocampal volume QTL and local hippocampal eQTLs in RNA-Seq analysis. Top panel: 

purple dotted line is the multipoint LOD score for hippocampal volume (measured in 347 

animals). Circles represent evidence for association of SNPs to hippocampal expression in 

58 animals of three genes: LOC103222765 (red), LOC103222769 (blue) and 

LOC103222771 (gold). Solid circles indicate genome-wide significant associations. The 

region between the black vertical lines is blown up in the middle and bottom panels. The 

horizontal dotted line represents the genome-wide significant threshold for local eQTLs. 

Middle panel: SNPs with –log10(p-value)>8 for association to expression in hippocampus, 

color codes are as in the top panel. Bottom panel: Genes sited between 68.7 and 69 Mb (the 

eQTL region). Color codes are as in the top panel. The Pearson correlations for expression 

between these three genes are: LOC103222765-LOC103222769 r=-0.16; LOC103222765-

LOC103222771 r=0.32; LOC103222769-LOC103222771 r=0.60.
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Fig. 5. 
Correlation in 16 animals of hippocampal volume (MRI) with hippocampal expression of 

LOC103222765 (left), LOC103222769 (middle) and LOC103222771 (right). The 

expression data are from qRT-PCR. Quantification was performed using the relative standard 

curve method, with the reference gene HPRT1 used as an endogenous control for 

normalization of the interpolated lncRNA quantities. Hippocampal volume measurements 

are residuals from a regression on covariates of age and sex. “r” is the Pearson correlation 

coefficient, and the p-value tests the null hypothesis that r=0. The Pearson correlation 

between expression of these three genes are: LOC103222765-LOC103222769 r=0.56; 

LOC103222765-LOC103222771 r=0.64; LOC103222769-LOC103222771 r=0.63.
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Table 1
Gene expression data sets. The number of probes/genes with at least one significant local 
and distant eQTL (at Bonferroni corrected thresholds) are presented. We have 80% 
power to detect distant eQTLs accounting for 15% of the variability in expression in 
Dataset 1 and 66% of the variability in Dataset 2

Tissue Probes/genes analyzeda Local eQTLb Distant eQTLc %Distant eQTL on same chr

Dataset 1:
Microarray

Blood   3,417 461 215   80.8%

Dataset 2:
RNA-seq

Adrenal 25,187 555   80   54.5%

BA46 27,530 307   30   81.8%

Blood 33,776   60     4 100.0%

Caudate 28,249 441   47   69.0%

Fibroblast 22,328 239   43   33.2%

Hippocampus 26,957 361   45   70.6%

Pituitary Gland 27,236 596   80   77.5%

a
microarray dataset (Dataset 1) with an initial set of 22,184 probes on Illumina HumanRef-8 v2 (6,018 probes passed filters described in 

Supplementary Table 1; 3,417 were heritable); RNA-Seq (Dataset 2) with an initial set of 33,994 genes annotated in vervet

b
Local eQTL are eQTL that are within 1 Mb of the gene. Bonferroni threshold for Dataset 1: 4.8 x 10-8; Bonferroni threshold for Dataset 2: 6.5 x 

10-10

c
Distant eQTL are more than 1 Mb away from the gene, and may be on the same or a different chromosome. Bonferroni threshold for Dataset 1: 

1.5 x 10-11; Bonferroni threshold for Dataset 2: 5.3 x 10-13
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