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Abstract: A new type of remote red quantum-dot (QD) component was designed and fabricated to
improve the color-rendering properties of conventional white LED (light-emitting diode) lightings.
Based on an optical simulation, the rectangular cavity-type QD cap was designed with an opening
window on the top surface. Red QD caps were fabricated using a typical injection molding technique
and CdSe/ZnS QDs with a core/shell structure whose average size was ~6 nm. Red QD caps
were applied to conventional 6-inch, 15-W white LED downlighting consisting of 72 LEDs arrayed
concentrically. The red QD caps placed over white LEDs enhanced the red components in the long-
wavelength range resulting in the increase of the color rendering index (CRI) from 82.9 to 94.5. The
correlated color temperature was tuned easily in a wide range by adopting various configurations
consisting of different QD caps. The spatial and angular homogeneities were secured on the emitting
area because QD caps placed over the white LEDs did not exhibit any substantial optical path length
difference. The present study demonstrates that adopting QD caps in conventional LED lightings
provides a flexible and efficient method to realize a high color-rendering property and to adjust
correlated color temperature appropriately for a specific application.

Keywords: quantum dot; LED; color rendering index; remote; quantum-dot cap

1. Introduction

The invention of blue light-emitting diodes (LEDs) based on GaN in the 1990s has
been revolutionizing current lighting technologies. The combination of blue LEDs and
color conversion materials has been used to generate white light for general lighting and
display backlight applications [1]. The most conventional color conversion material is
Ce-doped yttrium aluminum garnet (YAG, Y3Al5O12), which converts part of the blue
light into yellow light via Stokes shift [2]. This approach is very cost-effective and efficient,
while the insufficient deep red component makes the color-rendering property of this white
LED worse than other typical light sources, such as incandescent lamps or fluorescent
lamps. During the COVID-19 period, people have spent a much longer time in buildings or
houses; thus, indoor activity has become more important than before. As a result, the color
rendering characteristics of general lighting have arisen as one of the important factors that
determine quality of life in civil architecture.

Adopting green and red phosphors instead of a single-component yellow phosphor in
the white LED is one approach to secure good color rendering properties [3]. In this case,
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the red phosphor absorbs blue and green photons and then emits red photons in the long-
wavelength range resulting in a high color rendering index (CRI). CRI is a standard metric
whereby the color appearance of objects can be estimated in comparison with standard
light sources [4]. Another way to increase the CRI of white LEDs is to add red quantum
dots (QDs) as a color conversion material [5,6]. QD is a nanometer-sized semiconductor
and its quantum confinement effect plays an important role in its emitting properties [7–9].
The emitting wavelength of QD increases with decreasing size; thus, it is easy to tune
the emitting wavelength by only changing the dimension of QD. QD has attracted great
attention due to its easy processibility, broad color tunability, high photoluminescent
quantum efficiency, and flexibility in its application to the lighting technology. Surface
treatment can easily be conducted for reliability, high quantum efficiency, and homogeneous
dispersion in various matrices. Due to the high color purity, QDs have penetrated the
display market, mainly in backlights for liquid crystal displays [10–16].

QD can be mixed with phosphors and coated over the blue LEDs. However, QD is
vulnerable to the high temperature generated from the LED chips. Various remote QD
components have been adopted to overcome this degradation problem. Nowadays, QD
films are widely used in backlights for liquid crystal displays to increase the color gamut.
Other types of remote QD components have also been studied and applied to various
lighting structures [17–23]. These efforts showed that the color rendering characteristics can
be improved substantially by adopting QD materials [24]. From the early stage of research
of QD applications in lightings and displays, QD-polymer or QD-glass composites have
been widely investigated by various groups [25–38]. Successful fabrication of large-size QD
films accelerated their applications in display backlights and general lighting. However,
the optical path length difference in the QD component sometimes causes color dispersion
problems displaying different color properties depending on the viewing angle [39].

Despite all these previous efforts, it is not easy to tune the optical properties of the QD-
adopted lighting once the QD is applied and set up completely in the lighting fixture. Once
the QD component is set up in the lighting fixture, for example, QD films, the luminous
flux, and the color properties are fixed and exhibit very slow changes over the usage time.
Improving the flexibility of the QD-based lightings is a prerequisite for expanding the
application of QD in the lighting area. Our previous simulation study revealed that one
possible solution may be to adopt a QD cap structure in conventional LED lightings [40].
The combination of the red QD caps and commercially available lightings could be adopted
to improve the color-rendering property substantially. The purpose of the present study is
to suggest a new type of QD component—so-called QD caps—experimentally, which can
be incorporated easily in a commercial white LED lighting fixture. The remote design was
adopted for the long-term stability of QD-adopted lighting. This research demonstrates
that the emitting properties, especially the color properties, of the LED lighting can be
controlled in a wide range by adopting the present QD caps.

2. Materials and Methods

Figure 1a shows the fabrication process of the QD cap. First, the injection molding was
designed based on the simulation results described in the next section and the required
dimensions for white LED packages over which the QD cap will be placed. Polycarbon-
ate was used to make sample QD caps, which were arranged periodically on the petri
dish with an area of 100 × 100 mm2. The fabricated QD cap has outer dimensions of
7.4 × 5.3 × 4.2 mm3 and two lateral thicknesses of 0.9 and 1.8 mm. The upper surface has
a rectangular opening with an area of 5.6 × 1.7 mm2. The QD was a red CdSe/ZnS with a
core/shell structure and an average size of ~6 nm, which was mixed with irregular hollow
silica (SG-HS40, Sukgyung AT Co., Ansan, Korea) for homogeneous dispersion. The shape
of the hollow silica was irregular with an approximate average size of 40 ± 10 nm, a BET
(Brunaue–Emmett–Teller) area of 400–500 m2/g, and a density of 2 g/cm3. In addition to
the homogeneous dispersion, silica is known to be stable against moisture and air, which
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enhances the long-term stability of QDs. The details of the preparation of QD particles
were described elsewhere [39].
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Figure 1. A schematic process of fabrication of red QD caps (a) and a picture of the fabricated red QD
cap (b).

The PDMS (Polydimethylsiloxane) hardener with the ratio of 10:1 between the base
material and the curing agent was poured in the petri dish on which the cap samples were
periodically arranged. After hardening for 24 h under ambient conditions, the cap samples
were removed. The UV curing agent (Miracle UV Resin) and red CdSe/ZnS QD particles
were mixed at an appropriate ratio and then poured (0.15 mL) into the mold by using the
dispensing equipment (Super Sigma CMIII-V5, Musashi Engineering Inc., Tokyo, Japan).
The QD cap was irradiated at the irradiance of 50 mW/cm2 for one min. by using the UV
curing system (MSUV-L400L, MS Tech Co., Hwaseong, Korea), which hardened the QD
cap. Due to the different functional groups of the PDMS mold and the urethane acrylate
UV resin, the QD cap could be easily detached from the mold. Figure 1b shows the photo
of the fabricated QD cap together with the dimensions.
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Two QD caps have been fabricated with the center wavelengths of 623 (denoted as
QD cap <A>) and 652 nm (denoted as QD cap <C>) with a QD concentration of 5 wt%. In
the case of the QD caps with 623 nm, additional QD caps with a concentration of 7.5 wt%
were fabricated (which will be denoted as QD cap <B>). Figure 2a shows the picture of
the emitting QD cap <A>, which was placed over a blue LED (IWS-L5056-UB-K3, Itswell
Co. Ltd., Incheon, Korea). The overall color is purple due to the overlap of the blue and
the red light. Figure 2b shows the emitting spectra of the three QD caps excited by the
same blue LED. The spectra were normalized with respect to the blue peak. The emitting
spectrum of the QD cap shows a slight red-shift when the concentration increases from
5 to 7.5%, which is attributed to the higher reabsorption at a larger concentration and is
known as fluorescent quenching. The QD cap <C> shows a rather broad emitting spectrum
at longer wavelengths.

Nanomaterials 2022, 12, x  4 of 15 
 

 

Two QD caps have been fabricated with the center wavelengths of 623 (denoted as 
QD cap <A>) and 652 nm (denoted as QD cap <C>) with a QD concentration of 5 wt%. In 
the case of the QD caps with 623 nm, additional QD caps with a concentration of 7.5 wt% 
were fabricated (which will be denoted as QD cap <B>). Figure 2a shows the picture of the 
emitting QD cap <A>, which was placed over a blue LED (IWS-L5056-UB-K3, Itswell Co. 
Ltd., Incheon, Korea). The overall color is purple due to the overlap of the blue and the 
red light. Figure 2b shows the emitting spectra of the three QD caps excited by the same 
blue LED. The spectra were normalized with respect to the blue peak. The emitting spec-
trum of the QD cap shows a slight red-shift when the concentration increases from 5 to 
7.5%, which is attributed to the higher reabsorption at a larger concentration and is known 
as fluorescent quenching. The QD cap <C> shows a rather broad emitting spectrum at 
longer wavelengths. 

 
(a) 

 
(b) 

Figure 2. The photo of the emitting red QD combined with blue LED chips (a) and the photolumi-
nescence emitting spectra of three kinds of red QD caps excited by blue LEDs at ~453 nm (b). 

These QD caps were combined with a commercially available 6-inch, 15-W white 
LED lighting (KE15DN61S57A1, Partner Co., Gimpo, Korea). It consists of 72 white LEDs 

Figure 2. The photo of the emitting red QD combined with blue LED chips (a) and the photolumines-
cence emitting spectra of three kinds of red QD caps excited by blue LEDs at ~453 nm (b).

These QD caps were combined with a commercially available 6-inch, 15-W white LED
lighting (KE15DN61S57A1, Partner Co., Gimpo, Korea). It consists of 72 white LEDs with
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an emitting area of 3.2 × 2.8 mm2 arranged concentrically. The lower and upper diameters
of the lighting frame were 97 and 184 mm, respectively. The inclination angle of the side
reflector was 131.5◦ with a reflectance of 76%. The reflectance of the PCB (printed circuit
board) on which white LEDs were located was 69%. The luminous efficiency of the lighting
is 105 lm/W (the total luminous flux is 1575 lm), and the color rendering index (CRI) is
83.1 with a correlated color temperature (CCT) of 5530 K. Figure 3a shows a photo of the
white LED lighting fixture used in this study. In general, white LEDs form bright spots,
which are the cause of glare phenomena, on the emitting plane; thus, a diffuser plate is
necessary for removing them. A polycarbonate (PC) diffuser plate with a radius of 147 mm
and a thickness of 2 mm was used, as shown in Figure 3b. The total transmittance and a
haze of the diffuser plate were measured to be 56.48% and 99.45%, respectively. The haze
property was measured by using a haze meter (NDH-2000N, Nippon Denshoku, Tokyo,
Japan). The distance between the PCB and the bottom surface of the diffuser plate was
32 mm. Detailed dimensions and optical properties are summarized in Table 1.
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Table 1. Dimensions and optical properties of the lighting frame and the PC diffuser plate.

Lighting Frame Polycarbonate (PC)
Diffuser Plate

Diameter (mm) 184 (upper) Diameter (mm) 147

Height (mm) 32 Thickness (mm) 2

PCB board
diameter (mm) 97 Transmittance (%) 56.48

Reflectance
Inner side reflectance: 76%

Inclination angle of the inner
side: 131.5◦

PCB board reflectance: 69%

Haze (%) 99.45

Parallel
transmittance (%) 0.31

Diffuse
transmittance (%) 56.17

Figure 4a shows the photo of the arrangement of white LEDs of the used lighting.
Figure 4b–d display three patterns of the red QD caps on the lighting. The emitting
spectrum, the luminance, and the color coordinates were recorded in terms of a spectrora-
diometer (PR670, PhotoResearch Co., Chatsworth, CA, USA). Both positional and angular
dependences of these properties were investigated. The CRI and the illuminance were
measured using an illuminance meter (SPIC-200A, Everfine, Hangzhou, China).
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3. Results and Discussion

First, we describe the reason why the open cap structure was adopted for the QD
cap design. The critical point is whether the opening window on the upper surface of the
cap is necessary or not. To design the shape parameters of the QD cap, optical software
(LightTools ver.9, Synopsis, Mountain View, CA, USA) was used to carry out the ray-tracing
simulation. All dimensions of the white LED lighting used in the experiment were included
in the simulation. Figure 5a,b show the simulation model of the lighting and the QD cap,
respectively. The dimensions of the open cap were the same as those of the fabricated QD
cap. An additional QD cap without any opening window was prepared for comparison.
The host material of the cap was set to be PDMS. The intensity distribution of the white
LED was set to be Lambertian. The diffuser plate was modeled by inserting TiO2 scatterers
with an average radius of 220 nm with a Gaussian distribution into the PC material. The
weight percent of TiO2 was 0.1 wt%, which was enough to prevent the formation of hot
spots. The reported absorption spectrum and the quantum yield of the red QD were used
for the simulation [41]. The measured emission spectra of two QD caps were also used
in the simulation. These simulation conditions are shown in Supplementary Materials
Figure S1a,b. All 72 LEDs were covered by the red QD caps in the simulation. The detailed
simulation conditions are summarized in Supplementary Materials Tables S1 and S2.
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Figure 5. Simulation models of (a) the lighting fixture and (b) the red QD cap.

Figure 6 shows the dependence of the luminous efficiency as a function of the mean
free path (MFP) of red QDs in the cap for the two designs, i.e., open cap and closed cap
structures. This simulation result clearly shows that the efficiency of the lighting where
open QD caps were applied is much higher than that where closed caps were adopted
at the same MFP. The transmittance of the closed QD cap is lower than that of the open
cap. Especially, the light generated from white LEDs may be trapped and absorbed in
the closed QD cap at a higher probability because the light cannot escape directly from
the inside cavity. Supplementary Materials Figure S2a,b show the dependence of the CCT
and the CRI, respectively, on the MFP of red QDs included in the cap. The CCT of the
lighting where closed QD caps were applied was higher than the other type under the same
condition, which indicates that the color conversion efficiency via the closed-type QD cap
is higher. This result is reasonable because the escaping light must pass through the QD
cap, whereby part of the light would be converted into a red color in terms of the red QDs.
On the other hand, the CRI of the open-type QD cap is higher than that of the closed-type
QD cap under the same MFP. It may be attributed to the fact that the balance among all
color components in the visible range becomes worse for the closed-type structure due to
the strong enhancement of the deep red color. Considering the high efficiency and high
CRI of the open-type QD cap, we decided to make a rectangular opening on the top of the
red QD cap, as described in Section 2.
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Figure 7 shows the positional dependence of the color coordinates (x, y) displaced
along the horizontal direction and measured for all four patterns shown in Figure 4.
<Cap A> was used for all these measurements. Compared with pattern 1, which does not
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adopt any QD cap, all other patterns show larger color coordinates indicating efficient color
conversion via red QD caps. Main changes in the color properties were associated with x
because it is directly related to the relative portion of the red component in the whole visible
range, which is enhanced by the red QD caps. The color coordinate x shows substantial
changes depending on the measurement position for patterns 2 and 3, which is attributed
to the inhomogeneous distributions of QD caps. Thus, we focus on the optical properties of
the QD lighting with pattern 4, which shows the highest color uniformity. For example, the
x values near the outer rim were significantly higher for pattern 2 where the QD caps were
arranged near the circumference. Other patterns were also investigated resulting in no
further improvement compared with pattern 4. Figure S3 in the Supplementary Materials
shows the positional dependence of the color coordinates (x, y) of the QD lighting adopting
pattern 4 along the horizontal (0◦), diagonal (45◦), and vertical (90◦) directions, which
exhibit nearly the same positional dependences. The standard deviations of x and y are
approximately 0.005 and 0.001, respectively, in these cases.
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Figure 8a shows the emitting spectra of the QD lighting adopting pattern 4, where
three kinds of red QD caps have been used. Without any QD cap, the spectrum consists of
a blue peak coming from the blue LED and a broad yellow peak emitted from the yellow
phosphor layer coated over the LED chips. The addition of red QD caps enhances the
intensity of the longer-wavelength region by forming a red peak in the 620–640 nm range.
This color conversion process reduces the heights of the blue and green peaks. The overall
shapes of the red peaks are nearly the same as the PL spectra shown in Figure 2b. Figure 8b
shows photographs of four LED lightings demonstrating different color shades depending
on the QD cap. Figure 9a displays the angular dependence of the luminance for the four
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configurations described above. The luminance is the largest along the on-axis direction
and decreases mildly as the viewing angle increases. The luminance of the cap-adopted
LED lighting is smaller than that of the original LED lighting without any QD cap by
~27%. This is mainly due to the reduced intensity in the green portion, which contributes
to the luminous flux most significantly. Figure 9b,c show the angular dependence of the
color coordinates x and y, respectively, which exhibit nearly no angular dependence. This
indicates that the diffuser plate mixes the light enough to remove any possible difference in
the optical path length depending on the viewing angle via the red QD cap. This result
contrasts with the case where red QD films are adopted on the diffuser plate in the direct-lit
white LED lighting [39]. When the QD film is on the diffuser plate, the optical path length in
the film depends on the propagation angle of the excitation light, resulting in significantly
higher color conversion at larger viewing angles. This kind of color dispersion problem is
absent in the present QD-cap design.
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Figure 10a,b show the CCT and the CRI of the four configurations. The CCT drops
from ~5550 K to 3500–4000 K depending on which QD cap we adopt. The substantial
change in the CCT is mainly due to the enhanced color conversion from blue/green to the
red light via red QD caps. The R9, which is related to the deep red component, increases
significantly when QD caps are adopted, as can be seen in Figure 8a, thanks to which the Ra
and Re increase as well. Both Ra and Re are higher than 90 except for the case of <Cap A>
where the Re is approximately 89. These values are a significant improvement compared
with, for example, Ra~82.9 of the original white LED lighting without any red QD cap.
These results clearly show that the adoption of red QD caps is an effective way to change
the CCT in a wide range and to increase the color-rendering properties of conventional
white LED lighting. The CRI of the lighting with <Cap C> is the highest, which is attributed
to the broad and rather even distribution of spectral components in the visible range, as
can be seen in Figure 8a.
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The present study suggests that the color properties including the CCT and the CRI
can be tuned in a wide range by adopting red QD caps. This modification can be easily
performed by just placing an appropriate number of QD caps over the conventional white
LEDs. The shape of the QD cap can be modified flexibly for various conventional LED
lighting fixtures when the approach shown in Figure 1 is adopted. More functionalities can
be attained by mixing different QD caps. To demonstrate this possibility, the QD <Cap B>
were arranged in pattern 4, and then, part of the QD caps were replaced by <Cap C> in
a concentric manner starting from the center of the lighting. The number of replaced QD
caps was 0, 4, 10, 22, and 29. Supplementary Materials Figure S4a,b show the positional
dependence of the color coordinates (x, y) along the horizontal direction measured for all
cases. The standard deviations of x and y are approximately 0.005 and 0.001, respectively.
The angular dependence of the color properties was investigated as well and there was no
color dispersion for all cases, i.e., the color coordinates were nearly the same irrespective of
the viewing angle. Figure 11a,b display the dependence of the emitting spectrum in the
red region and the CCT on the number of replaced caps, respectively. As the number of
<Cap C> increases, the peak height at ~610 nm decreases and the peak becomes broadened.
As a result, the portion of the red component among the whole visible spectrum decreases,
resulting in the increase in CCT. Figure 11b indicates that the CCT changes from ~3450 K
to ~4000 K as the number of <Cap C> increases. Figure 12a shows the change in the
color shade of all investigated LED lightings with different QD cap configurations. The
corresponding change in the color coordinates on the CIE1931 chromaticity diagram is
shown in Figure 12b as well. Compared with the original color coordinates where no QD
caps were used (the red point on the chromaticity diagram), they shift to the right direction,
i.e., larger x values when the number of replaced QD caps increases. The overall change
is not large, but it can be tuned easily by adopting different QD caps having different
spectral features.
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The most noteworthy advantage of applying the red QD caps is the large tunability
of the color property in a wide CCT range. Figure 10a shows that the CCT of ~5500 K
of the original lighting was drastically reduced to ~3500 K by adopting the red QD caps.
In addition, fine-tuning of CCT is also possible by mixing different QD caps. This is
a noticeable advantage because a simple change of the red QD cap controls the color
properties of the lighting in a wide CCT range. Especially, adopting red QD caps is an
effective way to realize warm white shade below 4000 K. Another advantage of applying
QD caps compared with applying the conventional remote QD film is that QD caps are
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incorporated directly over the LEDs. Thus, this design does not induce any serious problem
caused by optical path length difference, which usually induces color dispersion depending
on the viewing angle. A final advantage of this approach is that the long-term reliability of
QD materials is expected due to the remote design. A simple coating of QDs on the hot
LED chips induces degradation of the quantum efficiency of QDs, which is avoided in the
present design.

Finally, we discuss the aging properties of the QD cap-applied white LEDs. Figure S5
in the Supplementary Materials shows the dependence of the CRI (Ra) on the aging time
within 1500 h for the LED lighting where 12 QD caps are adopted. It clearly shows that the
CRI does not change appreciably with time demonstrating the color stability of the present
design. The luminous efficacy changed from 69.4 lm/W to 68.2 lm/W with a 1.7% decrease
within the same time window. The color coordinates and CCT were also stable. These
results indicate that the present remote design provides long-term color stability without
any noticeable degradation over time.

4. Conclusions

A conventional white LED lighting fixture consisting of blue LED chips and yel-
low phosphor materials suffers from insufficient deep red component resulting in low
color-rendering properties. To overcome this problem, a new concept of remote-type QD
components is suggested in this study. Rectangular-shaped QD caps with an appropriate
opening window were fabricated using a typical injection molding technique based on
CdSe/ZnS QDs with a core/shell structure, PDMS soft molding, and UV curing agent
together with hollow silica for homogeneous dispersion. The application of QD caps to a
conventional white LED downlighting clearly showed a substantial increase in the color
rendering index from 82.9 to 94.5 and significant controllability of the correlated color
temperature between 5525 to 3428 K thanks to the easy tunability secured by adjusting the
number of QD caps and their emitting spectra. Even though the CRI values of the present
design are comparable to those of other QD-based lightings such as QD film-adopted LEDs,
the present study revealed that QD caps are superior to other designs due to the negligible
color dispersion, which is attributed to the rectangular QD cap that surrounds each LED,
resulting in nearly no dependence of color properties on the optical path length difference.
The newly suggested QD-cap-based LED lighting provides a very flexible way to control
the color properties of commercially available white LED lighting by simply assembling
appropriate red QD caps over the white LEDs.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/nano12071097/s1, Figure S1: Simulation conditions, Figure S2: Simulation results, Figure S3:
Positional dependence of color coordinates along different directions, Figure S4: Positional depen-
dence of color coordinates for different configurations, Figure S5: Aging property of the CRI, Table S1:
Simulation conditions, Table S2: Simulation conditions.
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