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Abstract

Transport of organelles along microtubules is essential for the cell metabolism and morphogenesis. The presented analysis
derives the probability that an organelle of a given size comes in contact with themicrotubule aster. The question is asked how
this measure of functionality of the microtubule aster is controlled by the centrosome. A quantitative model is developed to
address thisquestion. It is shownthat for thegivensetofcellularparameters, suchassizeandtotal tubulincontent, a centrosome
nucleation capacity exists thatmaximizes theprobability of theorganelle capture. Thedevelopedgeneralmodel is then applied
to the capture of the female pronucleus by microtubules assembled on the sperm centrosome, following physiologically
polyspermic fertilization. This application highlights an unintuitive reflection of nonlinearity of the nucleated polymerization of
the cellular pool of tubulin. The prediction that the sperm centrosome should lower its nucleation capacity in the face of the
competition from the other sperm is a stark illustration of the new optimality principle. Overall, themodel calls attention to the
capabilities of the centrosomal pathway of regulation of the transport-related functionality of themicrotubule cytoskeleton. It
establishes a quantitative and conceptual framework that can guide experiment design and interpretation.
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Introduction

Intracellular transport is perhaps the best-characterized function

of the microtubule cytoskeleton. Organelles of various types are

continually ferried by molecular motors along the cell’s micro-

tubules [1,2]. The paradigmatic animal cell structure represented

by many cell types in culture involves a radial microtubule aster

and a dense aggregate of membranous organelles near its center.

The radial structure arises from assembly of the microtubules from

cytosolic tubulin, which is initiated (nucleated) at the centrosome

[3]. The aggregation of the organelles, including prominently the

assembly of the morphologically defined Golgi apparatus, arises

from the centripetal transport along the microtubules [4].

Transport between the periphery and the center is important,

for example, in biosynthetic pathways, where vesicles from the

peripheral endoplasmic reticulum are ferried to the centrally

located Golgi apparatus [4]. A widely different example is

provided by the mechanisms of animal color change, where

pigment granules are transported from the periphery to the center,

resulting in optical clearing of the cytoplasm [5].

To be transported, an organelle must come in contact with

a microtubule. The size of the comparatively large dynein motor

complex [6] can be estimated at ,100 nm, setting the limit for the

distance at which the organelle can engage with the microtubule.

100–1000 nm is also the characteristic size, to the order of

magnitude, of the transport vesicles and motile organelles. These

considerations establish a design constraint on the structure of the

microtubule cytoskeleton that will be efficient at its transport

function: The spatial density of the microtubules must be

sufficiently high in all regions between which the organelles are

transported. The density of microtubules near the center of the

aster is usually very high. On the order of one hundred

microtubules converge there on the pericentriolar material of the

centrosome, which has a diameter on the order of a micron [7].

The density of the radial microtubules on the periphery is much

lower. Not all microtubules are long enough to reach the

periphery, and the spatial density of the longer ones is lowered

by their radial divergence [8]. How is this density maintained at

levels that are functional? This paper presents a theoretical

analysis of how the density of microtubules is regulated by

nucleation of their assembly on the centrosome, in the light of the

kinetics of microtubule assembly from the cellular pool of tubulin.

The goal of this analysis is to establish a quantitative and

conceptual framework that makes specific predictions and can

guide design and interpretation of new experiments.

It should be noted that additional mechanisms appear to

facilitate loading of organelles onto the radial microtubules at the

periphery. Non-centrosomal microtubules exist, which are not

arranged radially, and which can be present at a higher density at

the periphery [8,9]. At least potentially, they can form a short-

distance and non-directional relay system that can supplement the

radial system by directing the cargo to the sparser radial

microtubules for subsequent long-range transport to the center.

An example where this is evidently the case will be considered in

detail below (karyogamy in Beroe). A similar role of transport along

actin filaments has been thoroughly documented in the color-
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change experimental models [10,11]. Short-range and nondirec-

tional transport along short actin filaments arranged in an

isotropic network is the first stage of pigment granule movement,

which is followed by their fast directional transport along the radial

microtubules. These short-range mechanisms (in systems where

they are active) raise the probability that loading onto the long-

range radial tracks eventually takes place. Irrespectively, it can be

accepted that the spatial density of the radial microtubules at the

periphery is an important parameter that affects the overall

efficiency of the transport. It should therefore be controlled by the

cellular regulation system.

Regulation of the extent of the microtubule aster has been the

subject of quantitative analysis for a long time. Transitions

between the asters of long microtubules in the interphase and short

ones in mitosis have served as the paradigm for this work. It was

determined already in the pioneering model by Mitchison and

Kirschner [12] that changes in the nucleation capacity of the

centrosome may explain the transition. This explanation is in

agreement with the experimental evidence for the inverse

correlation between the number and length of the microtubules

during the cell cycle and the linked changes in the microtubule

dynamics [13–17]. Subsequent models of tubulin polymerization

in the cell [18–22] have elaborated on the kinetic basis of this

number-length dependence. The nonlinearity of the kinetics

makes it impossible to summarize this effect simply and at the

same time fully consistently. Notwithstanding, it can be observed

that increased nucleation favors polymerization of tubulin, and the

polymerization depletes the cellular tubulin pool. The depletion of

the soluble fraction in turn favors depolymerization. Which of

these antagonistic effects should prevail, can only be predicted

through numerical analysis of the kinetic model. The cited models

differ in their detailed assumptions, but they have all predicted that

the new steady-state average microtubule length is shorter than it

was with the lower nucleation capacity.

Microtubule length can also be regulated by mechanisms that

directly affect the kinetic constants of microtubule elongation and

shortening [23–26]. The regulation through the centrosome

[17,27–29] presents a special interest however, because of its

indirect nature and the nonintuitive nonlinear behavior of the

steady-state tubulin polymerization that mediates it. Generally, the

regulation is likely to involve both pathways, further complicating

the analysis. Upon fertilization in Metazoa, however, the bulk of

the cytoplasm is commonly provided by the egg, and the

centrosome for the nucleation of the new aster is provided by

the sperm. In fertilized eggs, therefore, the tubulin pool and the

conditions that set the elongation and shortening rate constants are

established by the female component, and the nucleation capacity

for the new microtubules–by the male component. Fertilized eggs

may form a useful paradigm for research into the relative roles of

the two pathways of microtubule regulation.

Generally, the asters assembled in fertilized eggs guide the

movements of the male and female pronuclei that lead to

karyogamy [30]. In Ctenophora, this movement involves transport

of the female pronucleus along the microtubules radiating from

the sperm centrosome to the male pronucleus at the center of the

sperm aster [31–33]. This case presents special interest, because it

can be revealing of how the efficiency of capture and transport by

microtubules is controlled by the cell in general. Evidently, the

function of the sperm centrosome is to nucleate a microtubule

aster that will efficiently capture the female pronucleus. The

function of the egg tubulin system, including the tubulin pool and

the conditions that set the rate constants of microtubule elongation

and shortening, is to ensure that a functional sperm aster is

assembled. Thus, there is likely a degree of synergy between the

direct and indirect regulation pathways in the fertilized egg. Yet in

the case of physiologic polyspermia, such as in the ctenophore

Beroe ovata [32], the goals of the male and female components

become non-identical. The female component, evidently, aims to

achieve karyogamy through capture of the female pronucleus by

any male microtubule aster. Each male centrosome, however,

aims to achieve the capture of the female pronucleus specifically by

its own microtubule aster–not by any aster that is present in the

polyspermic egg. The control of the microtubule density through

nucleation in this case may work not merely independently of, but

potentially against the other regulatory mechanisms.

The question that the reviewed line of theoretical work on the

regulationof themicrotubule lengthbynucleationhasnotansweredis

how the spatial density is affectedwhen the number and length of the

microtubules co-vary as prescribed by the polymerization kinetics.

This question is addressed in the present paper. It is evident that

nucleation has a double-edged effect on the spatial density: more

numerous microtubules fill the space more efficiently even as they

diverge radially, but their shorter length tempers the increase in the

density. Quantitative analysis is necessary to determine which of the

antagonistic effects prevails under the given cellular conditions. One

of the recent quantitative models of tubulin polymerization [21] is

adapted here for this purpose, and some general predictions are

derived. The model is then applied to the uniquely revealing case of

the physiologic polyspermia.

Results

The Steady State
In a previous paper [21], we have demonstrated how the steady-

stateconcentration cofunpolymerized tubulin in thecellcanbe found

by solving the following equation (equation 6 in the cited paper):

c~ct{
1

lV

ðR

0

xpdx, ð1Þ

where ct is the total concentration of tubulin in the cell,l=0.612 nm

is the microtubule length increment per 1 tubulin subunit (ab dimer

[34]), and V is the cytoplasmic volume. R is the limit on the

microtubule length (for example, the cell radius, if the radial

microtubules abut on the cell margin). p is the steady-state number

density of microtubules whose length is x (equation 5 in the cited

paper):

p~
Nbe

b
ax

a e
b
aR{1

� � ð2Þ

Here, N is the nucleation capacity. In the terminology of the

referenced models [12,18,21,35], it equals the number of micro-

tubules, because unoccupied nucleation sites are counted as

microtubules of zero length. a is the apparent diffusion coefficient

of the dynamic microtubule ends (the second central statistical

moment of dynamic instability understood as a stochastic process of

microtubule length change). b is the apparent drift coefficient of the

dynamic microtubule ends (the first statistical moment of dynamic

instability). It is a function of the free tubulin concentration (equation

1 of the cited paper):

b~k c{ccð Þ, ð3Þ

where the rate constant k = 1 mm min–1 mM–1 and the critical

Microtubule Density Regulation
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concentration cc= 11.5 mMwere derived [21] from the experimen-

talmeasurements ofWalker et al. [36].Thevaluea= 7.5 mm2min–1

was accepted [21] as representative of the set of direct experimental

measurements [9,37–39].

The equation for the concentration was solved numerically in

the cited prior work. Here it is observed that when the microtubule

growth is not restricted geometrically, the equation admits an

analytical solution. This case is of interest, because in various cell

types, microtubules grow along the cell boundary instead of

abutting on it. The egg of Beroe, which is modeled in subsequent

sections, is one example. In the limit of RR‘ (microtubule length

unrestricted by the cell structure), Equation 2 becomes

p~{N
b

a
e
b
ax: ð4Þ

Evidently, for Equation 4 to be physical, b must be negative. This

stipulates that the steady-state concentration is lower than the

critical one, according to Equation 3. That it must be so in the

absence of a specially imposed limit on the length was observed

already by Oosawa [40] and Hill [41]. Substituting Equations 3

and 4 into Equation 1, we obtain

c~ctz
N

lV

a

k(c{cc)
ð5Þ

The solution is

c~
ctzcc{

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(ct{cc)

2z4 N
lV

a
k

q
2

ð6Þ

It can be observed from Equation 6 that the normalized deviation

of the steady-state concentration from critical obeys an especially

simple law:

c{cc

ct{cc
~

1

2
{

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
z

N

n

r
, n~lV (ct{cc)

2k
�
a ð7Þ

This form of the solution (Equation 7) also makes it obvious why

the other root of Equation 5, which would have a plus sign before

the square-root sign, is nonphysical. Indeed, assuming that the

total concentration is above critical, the steady-state concentration

would then be above critical, and Equation 4, invalid.

Equation 7 reveals the nonlinearity of the dependence of the

steady-state concentration of the unpolymerized tubulin on the

nucleation capacity. In the limit of zero nucleation capacity,

the unpolymerized concentration reaches critical. The rate of the

concentration change with N is controlled by n (Equation 7). This

dimensionless compound parameter can be regarded as the

natural unit of N, from the standpoint of how N regulates the state

of tubulin polymerization in the cell: Small deviations of the

concentration from critical are predicted when N is small

compared with n.
The derivative of the normalized concentration (Equation 7)

with respect to N is

{
1

n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1z4 N

n

q , ð8Þ

which equals –1/n, when N=0. Therefore, an especially simple

expression for the normalized concentration is valid when N is

small compared with n:

(c{cc)=(ct{cc)~{N=n ð9Þ

Figure 1 compares the calculation according to the fundamental

expression (Equation 7) and its approximation (Equation 9). It can

be seen that the approximation remains accurate throughout the

range of N that may be considered realistic for a generic animal

cell.

Microtubule Density
The spatial density of microtubules at the distance x from the

center of the flat radial array can be defined as the number of

microtubules that cross the circumference of radius x, per unit arc

length. The number of microtubules crossing such a circumference

is the number of microtubules whose length is greater than x. The

steady-state microtubule density can therefore be obtained as

follows:

m xð Þ~

Ð?
x

pdx

2px
~

Ne
{Nx

j

2px
, j~lV ct{ccð Þ ð10Þ

Here, Equation 4 was used as the expression for p, and Equations

3 and 9 were substituted to express the steady-state p as a function

of N. Equation 10 reveals that the only kinetic parameter that

controls the microtubule density is the critical concentration (cc).

Increasing the nucleation capacity raises the microtubule density

primarily closer to the centrosome, and reduces the microtubule

density primarily in the more distant regions (Figure 2).

The derivative of the microtubule density (Equation 10) with

respect to N is

1

2p

1

x
{

N

j

� �
e
{Nx

j ð11Þ

Figure 1. Dependence of the steady-state concentration of
unpolymerized tubulin c on the nucleation capacity N. Solid
curve, fundamental solution according to Equation 7. Dashed curve,
approximation according to Equation 9. One set of axes presents the
functions in their parameter-invariant form. The other presents them in
units that correspond to the parameter values derived previously for
a ‘‘generic’’ animal cell [21]. See Table 1 for parameter definitions and
values. For illustrative purposes, the abscissa range is extended beyond
values that should be realistic for the generic cell.
doi:10.1371/journal.pone.0037675.g001
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Its sign is determined by the expression in brackets. It is positive at

zero N, reflecting the intuitive expectation that the microtubule

density grows with the nucleation capacity of the centrosome.

However, the second term in it grows with N. This means that the

microtubule density will decline with N for sufficiently large N. The

transition from the growth to decline takes place when N is equal

to the root of the expression in brackets in Equation 11,

Nc~
j

x
ð12Þ

The optimal value of N (Nc, Equation 12) is inversely proportional

to the distance from the centrosome (Figure 3). Thus, the density

of microtubules in different parts of the cell can be differentially

regulated by the nucleation capacity of the centrosome. It is

possible to maximize the density at a certain position by setting the

nucleation capacity according to Equation 12, but this will be

achieved at the expense of the microtubule density elsewhere.

Organelle Capture
The capacity of the microtubule system to initiate the transport

of an organelle is determined by the probability that the organelle

is in contact with at least one microtubule. In the case of the

effectively two-dimensional array of microtubules, which was

considered in the last section, the probability of contact

(‘‘capture’’) can be approximated as the probability that at least

one microtubule crosses the circle that represents the dimensions

Table 1. Parameters.

Symbol Parameter Value

l microtubule length per tubulin subunit 0.612 nm [34]

a diffusion coefficient of microtubule ends 7.5 mm2/min [9,37–39]*

ct total concentration of tubulin 25 mM [42,43]*

cc critical concentration of tubulin 11.5 mM [36]*

de diameter of the Beroe egg 1 mm [32]

df diameter of the female pronucleus 15 mm [33]

h thickness of egg ectoplasm 5 mm [33]

k microtubule elongation rate constant 1 mm min–1 mM–1 [36]*

N number of microtubules nucleated at the centrosome varying

Nf number of acentrosomal microtubules in the egg varying

Nm number of microtubules nucleated at the sperm centrosome varying

n sperm number per egg varying

V cell volume 4 pL [18,43]*{

*Reference [21] derives this estimate from the experimental data in the papers cited here. See text.
{This typical value does not apply to the large Beroe eggs, whose ectoplasmic volume is calculated from de and h. See text.
doi:10.1371/journal.pone.0037675.t001

Figure 2. Regulation of the microtubule density profile m(x) by
the centrosome nucleation capacity N. Solid curve, N= 100; dashed
curve, N= 1000; dotted curve, N= 2000. Calculated according to
Equation 10 and accepting the parameter values from Table 1.
doi:10.1371/journal.pone.0037675.g002

Figure 3. Nucleation capacity Nc at which the microtubule
density at the distance x attains the maximum. Calculated
according to Equation 12. The bottom axis presents the function in its
parameter-invariant form. The top axis is in units that correspond to the
parameter values derived previously [21] and accepted here for
a ‘‘generic’’ animal cell (Table 1).
doi:10.1371/journal.pone.0037675.g003
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and the position of the organelle. The diameter of the circle, do,

can be assumed to be small compared with the dimensions of the

cell and with the mean microtubule length, as well as with

the distance from the centrosome. Under these conditions, the

probability in question is approximated well by the probability P(x)

that at least one microtubule crosses an arc length do of the

circumference whose radius x equals the distance between the

centrosome and the organelle. If the directions of the microtubules

are random, then the number of microtubules crossing such an arc

will have the Poisson distribution. Its mean will be m(x)do, where

m(x) is the microtubule density from Equation 10. The probability

that the number of the crossing microtubules is not zero will be

P(x)~1{e{m(x)do ð13Þ

The shape of this function and its control by N and do are

illustrated in Figure 4. Comparison of Figures 2 and 4

demonstrates that P approaches 1 (certainty of capture) near the

centrosome, where the microtubule density is very high. The

dependence of P on do is direct and qualitatively predictable

(Figure 4).

Figure 4 further demonstrates that increasing N raises the

probability of capture in regions closer to the centrosome and

reduces it in more distant regions. This is similar to how N controls

the microtubule density (Figure 2). Indeed, since P (Equation 13) is

a monotonically increasing function of m, the analysis presented in

the last section applies also to P: Specifically, the probability of

capture will increase with N for N,Nc, and decrease for N.Nc,

where Nc is defined as a function of x by Equation 12. Thus, the

structure of the radial microtubule array may be optimized for

capturing organelles at a given distance x by setting the nucleation

capacity of the centrosome.

In addition to the qualitative similarity between the regulation

of m and P, there is an important quantitative difference. Due to

the discussed saturation of P, regulation of m in regions near the

centrosome becomes comparatively inconsequential. This effect

reduces the practical significance of the dependence of the optimal

nucleation capacity on the distance from the centrosome, because

this function (Equation 12) changes most rapidly at the short

distances (Figure 3). Thus, as compared with the microtubule

density, the probability of organelle capture can be maximized

everywhere relatively uniformly by setting the appropriate value

of N.

The Egg of Beroe
The egg of Beroe ovata is approximately spherical and has

a diameter of approximately de = 1 mm [32]. Its volume is mostly

occupied by yolk. The thickness h of the outer layer of cytoplasm

(ectoplasm), which is occupied by microtubules and organelles, is

from 5 to 30 mm [33]. It can be tentatively accepted that the lower

bound of this range is representative of the average thickness

(h=5 mm), while the higher values are observed near the

comparatively large pronuclei and do not significantly affect the

volume of the ectoplasm. Given the size of the egg, the ectoplasm

may be considered effectively two-dimensional as far as the spatial

distributions are concerned. Its physical volume can be calculated

as pde
2h=15.7 nL. This volume is very large compared with the

volumes of typical cells in culture, which are ,1 pL [21]. It can be

tentatively accepted that the unpolymerized tubulin also is present

only in this volume, and not in the yolk. It can also be accepted as

a hypothesis that the total tubulin concentration ct in the ectoplasm

is the same as the average [21] between the experimental

measurements made in a variety of cells, 25 mM [42,43].

A large number of acentrosomal microtubules are present,

which are arranged isotropically under the egg surface within

the ectoplasmic layer [33,44]. Since these belong entirely to the

female part of the cytoskeleton in the fertilized egg, their

number will be denoted Nf. Upon fertilization, microtubule

asters assemble around the sperm centrosomes next to the male

pronuclei. The number of microtubules per aster will be

denoted Nm, which in the terminology accepted here

[12,18,21,35] is also the nucleation capacity of the sperm

centrosome. The eggs develop normally when the number n of

sperm per egg is 1–10, which is a normal and physiologic level

of polyspermia in Beroe ovata [32,45]. The female pronucleus has

a diameter df = 15 mm. It is captured by the sperm asters and is

transported along their microtubules centripetally to fuse with

the male pronucleus near the centrosome [33]. The summary of

these parameter values and those that have been accepted in

the preceding sections can be found in Table 1.

Nf and Nm remain free parameters. About their values it can

only be said on the basis of the published data [33,44] that they

probably lie within the 102–106 range. The lower bound

represents values typical of generic and well-studied cells in

culture [21], and the upper bound is chosen to be very large but

still plausible. The absolute magnitude of these values is large,

given that the egg of Beroe is very large. However, it should be

observed that with the parameter values accepted here for the Beroe

egg, using Equation 7 one computes n=1.4?108. This exceeds by

two orders of magnitude the estimated upper bound on the total

nucleation capacity in the egg. Therefore, in terms of its impact on

the state of tubulin polymerization, the reasonable upper limit on

the nucleation capacity in the egg is still ‘‘small’’, and the simple

expression for the steady-state tubulin concentration (Equation 9)

applies.

The simple radial divergence in two dimensions, which was

considered in the preceding sections, is not exactly applicable to

the spherical ectoplasm. It would be an acceptable local

approximation of the form of the male asters at distances x from

their respective centrosomes that are small compared with de.

However, the microtubules in the male asters can extend to several

hundred micrometers [33], which is a significant fraction of the

Figure 4. Probability of organelle capture P as a function of
distance from the centrosome x. Calculated according to Equation
13 and accepting the parameter values from Table 1. Solid curve:
N=100, do = 1 mm. Dashed curve: N= 100, do = 2 mm. Dotted curve:
N=2000, do = 1 mm. Dash-dot curve: N= 2000, do = 2 mm.
doi:10.1371/journal.pone.0037675.g004
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egg size. It is therefore necessary to capture the global geometry of

the ectoplasm layer in the model. This is achieved by replacing the

denominator 2px in Equation 10 with pdesin(2x/de). This

expression gives the length of the circumference whose geodesic

distance from the centrosome (as the microtubules run under the

egg surface) is x. Additional changes to the generic form of the

microtubule density function (Equation 10) are needed to in-

corporate the breakdown of the nucleation capacity N into the egg-

specific parameters Nf and Nm. Indeed, all microtubules are at

steady state with the same pool of tubulin, but only the ones

diverging from the sperm centrosome contribute to the microtu-

bule density in question. Applying all the above considerations to

modify Equation 10, we define the microtubule density function

me, which is specific to the Beroe egg:

me xð Þ~Nme
{ Nf zNm

� �
x
j

pde sin 2x=deð Þ ð14Þ

The problem of the capture of the female pronucleus in Beroe

also has some specific characteristics compared with the general

problem of organelle capture considered in the last section. There

is only one female pronucleus in the egg, and its location with

respect to the sperm centrosome is random due to the random

sperm entry [31,32,44]. Given the random distribution on the

spherical surface of the egg, the probability density that the

distance between the male centrosome and the female pronucleus

is x will be sin(2x/de)/de. The probability density that the female

pronucleus is captured at the distance x from the sperm

centrosome is given by the product of the probability P(x)

(Equation 13) and the probability density that the distance

between the male centrosome and the female pronucleus is x.

The total probability of capture will be obtained by integrating the

said product over all possible x:

Pt~

ðpde=2

0

1{e
{me(x)df

� � sin 2x=deð Þ
de

dx ð15Þ

It can be seen that Equation 15 would not be accurate if

microtubules longer than one-half of the egg’s circumference

would make a significant contribution to the microtubule density.

Such microtubules are unlikely to exist in Beroe eggs, according to

the data presented in the cited papers.

Pt as a function of Nm can be computed numerically for different

values of Nf (Figure 5). The calculations reveal that in most of the

range of conceivable values of Nf (10
2–1?105), a broad range of Nm

(103–105) results in Pt near 1, i.e. a guaranteed successful capture

of the pronucleus. Above Nf = 1?105, the probability as a function

of Nm begins to exhibit a uniquely defined maximum. The

maximum at first remains near 1, but as Nf reaches 10
6, it drops to

levels that are so low (Figure 5) that the capture should become

dependent primarily on the random rather than the directional

movement of the pronucleus [33]. Overall, the model predicts that

the kinetics of tubulin polymerization in the egg constrains the

nucleating capacity of the centrosome with which the optimal

extent and density of the sperm microtubule aster can be achieved.

Depending on the number of pre-existing acentrosomal micro-

tubules in the egg, the optimal nucleation capacity of the sperm

centrosome can lie within a significant range of values or be

defined uniquely.

Polyspermia
According to the analysis put forward in the Introduction,

physiologically polyspermic eggs may be uniquely revealing of

the mechanisms of regulation of the microtubule cytoskeleton by

the centrosome. It is reasoned that in polyspermic eggs the goal

of the regulation by the individual sperm centrosome may differ

from the function served by the rest of the tubulin polymeriza-

tion system, which is formed by the female components of the

egg. What should matter from the perspective of the given sperm

is the probability that its own aster captures the female

pronucleus, irrespective of the total probability that it is captured

by any of the asters that are present.

When there are n asters in the egg, the density of microtubules

of the given aster (ma) is defined by the following variation of

Equation 14:

ma xð Þ~Nae
{ Nf znNa

� �
x
j

pde sin 2x=deð Þ ð16Þ

Here, Na is the number of microtubules in each of the n asters

present in the egg. Equation 16 reflects the fact that microtubules

of all n asters, as well as the noncentrosomal microtubules, are

included in the nucleation capacity insofar as it defines the steady-

state tubulin concentration. Only the microtubules radiating from

the given centrosome are included, however, in the spatial density

of the respective aster. Substituting ma (Equation 16) for me in

Equation 15 yields the probability Pa that the pronucleus is

captured by the given aster, out of n.

Results of the numerical computation of Pa as a function of Na

are plotted in Figure 6. They have a different form, depending on

whether Nf lies in the range where probability 1 is reached. When

probability 1 is reached (with lower Nf), the effect of the sperm

number is to contract the range of Na in which the maximum

probability is reached (Figure 6A). Notably, the range is contracted

from the right: Higher nucleation capacities per sperm centro-

some, which may be optimal with lower sperm numbers, are no

longer optimal with higher sperm numbers. When probability 1 is

not reached (with higher Nf), the effect of the sperm number is

Figure 5. Probability of pronucleus capture Pt as a function of
the sperm centrosome nucleation capacity Nm. Calculated
according to Equation 15 with parameter values accepted for the
Beroe egg (Table 1). Solid curve, Nf = 102. Dashed curve, Nf = 105. Dotted
curve, Nf = 3?105. Dash-dot curve, Nf = 106.
doi:10.1371/journal.pone.0037675.g005
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reduction of the uniquely defined Na which is optimal from the

perspective of the individual sperm (Figure 6B). The predictions

that the maximum probability of capture by the given aster is

reduced with n, and that the range of Na at which the certainty of

capture is reached shrinks with n, are trivial in the conceptual

framework provided by the model. In contrast, the prediction that

the optimal Na is reduced, or that higher values of Na that were

optimal are no longer optimal at higher sperm numbers is non-

trivial. Whether it is deemed counterintuitive or not, it serves to

demonstrate the existence of the optimal nucleation capacity in

a way that cannot be conflated with the possible functions of the

rest of the microtubule regulation system.

Discussion

The presented analysis predicts how the density of microtubules

is regulated by nucleation of their assembly on the centrosome.

According to the model, the kinetics of microtubule assembly from

the cellular pool of tubulin constitutes a constraint that links the

nucleation capacity and the efficiency of organelle capture by the

microtubule system. This work establishes a quantitative concep-

tual framework that calls attention to the role of the centrosome in

regulating the efficiency of the intracellular transport. The

predicted quantitative relationship can be tested by modulating

the centrosome nucleation capacity and measuring the time before

initiation of long-range centripetal transport of organelles on the

periphery of the cell. Methods for directly monitoring the

movement and detecting the transition to the long-range transport

on radial microtubules are well-developed [10,33,46]. The

nucleation capacity can conceivably be modulated by a tempered

application of methods that have been used for its complete

suppression (e.g., [46–48]). It is hoped that experimental tests of

the new quantitative predictions, and, in general, experimental

work in the quantitative framework set by the model, will shed

additional light on the centrosomal pathway of the cytoskeleton

regulation.

The predictions concerning how the spatial density is affected

when the number and length of the microtubules co-vary as

prescribed by the polymerization kinetics are derived here for the

first time. In this respect the new work extends the line of inquiry

into the regulation of the cellular tubulin partitioning between

monomer and polymer by the nucleation capacity

[12,18,19,21,22,40,41]. The key new prediction is that a level of

nucleation capacity exists that maximizes the microtubule density

at the given distance from the centrosome (Equation 12). It is also

demonstrated that an optimal nucleation capacity exists that

maximizes the probability of capture of an organelle. The optimal

nucleation capacity can be calculated for capturing an organelle

positioned at a given distance from the centrosome (Equation 13),

or positioned randomly in the cell (Equation 15).

As was pointed out in the Introduction, the case of physiologic

polyspermia is especially revealing of the role of the centrosomal

pathway of regulation. Indeed, the centrosome nucleation capacity

is but one parameter that may affect the cytoskeleton structure and

functionality. Yet in polyspermic eggs, regulation via this pathway

is conceivably pursuing a goal that is not identical with the goal of

the rest of the tubulin regulation system. The prediction that might

appear counterintuitive outside the new model framework is that

the sperm centrosome in physiologically polyspermic species

should have a lower nucleation capacity. It might be expected

from qualitative considerations that a lower nucleation capacity,

per sperm, would be sufficient to achieve karyogamy in these

cases. The new theory, however, predicts that a lower nucleation

capacity is also necessary for the given sperm centrosome to

maximize the probability that the karyogamy involves its re-

spective male pronucleus. Thus, apart from being an example of

applying the new modeling apparatus to a specific cell type, the

model for the egg of Beroe ovata that is presented here sharpens the

argument that the functionality of the microtubule array can be

optimized through regulating the centrosome nucleation capacity.

The model reveals that the numerous cellular and kinetics

parameters describing the tubulin polymerization system do not

control the steady-state functional structure of the microtubule

aster individually. Instead, as the model showed, the steady-state

tubulin concentration and microtubule density are controlled by

two specific combinations of the basic parameters, n and j
(Equations 7 and 10). n is non-dimensional and can be regarded as

the natural unit of the nucleation capacity, as far as the regulation

of the steady-state concentration is concerned (Equation 7). j has

units of length and controls the microtubule density (Equation 10).

It can be regarded as a natural unit of length as regards the cellular

tubulin system: j would be the total length of the cell’s

microtubules, if the unpolymerized tubulin concentration would

be equal to the critical one. It should be pointed out that there is

a simple and natural relationship between the two: nx= j, where
x= a/(k(ct–cc)). According to Eq. 4, x would be the average

microtubule length in the aster, if the free tubulin concentration

would be equal to the difference of the total and critical one.

Figure 6. Probability of the female pronucleus capture by a given sperm aster in a polyspermic egg. See Table 1 for the parameter
values accepted for the Beroe egg. Solid curve, n=1. Dashed curve, n= 3. Dotted curve, n=6. Dash-dot curve, n= 9. (A) Nf = 105. (B) Nf = 3?105.
doi:10.1371/journal.pone.0037675.g006
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Thus, the apparent complexity of the purely descriptive

traditional multiparametric description of the cellular tubulin

system can be reduced to the considerably fewer naturally defined

constants. Three kinds of predictions stem from this reduction of

complexity in the light of the model. Firstly, the effects of

experimental or regulatory changes of the individual cellular or

kinetic parameters will be equivalent, if they lead to the same

changes in n and j. The equivalency can be checked by mere

arithmetic according to the definitions of these constants

(Equations 7 and 10). Secondly, experimental or regulatory

changes in the multiple individual parameters that are coordinated

in a way that leaves n and j unaffected because of their mutual

compensation, will have no impact on the steady-state system and

its functionality. How they can be so coordinated is, again,

prescribed by the definitions of n and j. Finally, apart from the

regulation and experimentation, the corollary of these predictions

is that the individual parameters are free to change in the course of

the evolution, insofar as their evolution is linked as prescribed by

the constancy of n and j.
The model for the Beroe egg that is constructed here deals with

a specific functional aspect of the cytoskeleton structure: the

effective coverage of the ectoplasmic space by the sperm asters and

their corresponding efficiency at capturing the female pronucleus.

The model accounts for the presence of the acentrosomal

microtubules inherited from the oocyte and for the possible

multiplicity of the sperm asters. Although it thus addresses some

select aspects of the structural basis for the pronucleus migration

and karyogamy, the model presented is not intended to be a model

for these motility phenomena as such. It does not make any

prediction regarding a number of interesting aspects of the

intracellular dynamics that follow fertilization in Beroe. For

example, failure to fuse and subsequent centrifugal movement

and apparent transfer to another male aster are observed in some

cases [32,33]. It is also apparent that the female microtubules play

a role in the constitutive random transport of the female

pronucleus [33] that is similar to the role of actin filaments in

some other cell types, as reviewed in the Introduction. The present

model for the cytoskeleton structure does not address the physical

basis of the trajectory of the female pronucleus. It attempts to

predict only how the efficiency of capture by the sperm asters is

regulated by the nucleation capacities of their centrosomes. An

interesting possibility for which the present steady-state model

cannot account is that the movement of the pronucleus is initiated

before the steady state of tubulin polymerization in reached in the

polyspermic egg. If this is the case, the sperm that entered earlier

may hold an advantage, because the subsequently entering sperm

will have to initiate nucleation in a lower free tubulin concentra-

tion.

The assumption of confinement of the tubulin system to the

essentially two-dimensional ectoplasm of the Beroe egg warrants

additional discussion. Confinement of the microtubules is exper-

imentally documented [33]. The thickness of the ectoplasm, as

measured in the same study, is incomparably smaller (microns)

than both the size of the egg (1 mm, Table 1) and the

characteristic extent of the astral microtubules, hundreds of

microns [33]. As far as the spatial distribution of microtubules,

therefore, they are effectively confined to a two-dimensional

spherical surface. In this regard, the assumption is merely an

accurate geometrical approximation. In regard to the estimation of

the effective volume, which enters the calculations for the tubulin

concentration change, the decision to use not the entire volume of

the sphere but only the volume of the thin spherical shell (the

ectoplasm) is a strong assumption. The reasoning is that if the non-

polymerized tubulin and the microtubules are both confined to the

thin ectoplasm, then the tubulin system of the Beroe egg is similar to

the thinly spread cultured cells on which most of the microtubule

research has been done. Although the ectoplasm is many times

larger, the ratio of its linear dimensions to the volume is similar to

the typical cultured cell. If, however, the microtubules are

confined to the spherical shell but the unpolymerized tubulin is

distributed in the entire volume of the egg, then the system is

qualitatively different. At the same concentration (which affects the

assembly kinetics) there will be an extremely large amount of

tubulin, relative to the linear dimensions within which the

microtubules can grow. This was deeemed unlikely, and the

volume calculation was based the on the ectoplasm alone.

The power of the analytical framework of the model can be

further demonstrated by considering the variability of the total

tubulin concentration ct and the uncertainty of the applicability of

the previously derived average estimate to the egg of Beroe. ct enters

the calculations for the Beroe egg through the parameter j in

Equation 14 (and its variant for polyspermia, Equation 16).

According to its definition in Equation 10, j is proportional to the

difference of the total and critical concentrations, ct–cc. If ct varies

between 20 and 30 mM (see references from Table 1), then ct–cc
varies between 0.63 and 1.37 of the value assumed based on ct
ct = 25 mM. j enters Equations 14 and 16 in the denominator of

the exponent, and the total number of microtubules enters the

numerator. Accordingly, varying the pre-existing number of

microtubules Nf by a factor of 0.63 to 1.37 would exactly

compensate for the possible variation in ct, and exactly the same

calculation results would be achieved as far as the microtubule

density and the probability of capture. This is a very small range of

variation compared with the uncertainty in Nf: the analyzed range

of Nf in Figure 6 is three-fold and in Figure 5 it is ten-thousand-

fold, amply covering the effective uncertainty of j that is arising

from the uncertainty in ct (merely 1.37/0.63= 2.18-fold). These

considerations illustrate how the new analytical model can be used

to reason about the effects of cell parameter changes without

actually evaluating the model numerically.

The largely analytical model derived here relies on the

analytical solution (Equation 5) of Equation 1 that is valid only

when the microtubule growth is not limited by the dimensions of

the cell. This applies to the eggs of Beroe, for example, but is not

valid in general. To extend the model to the case where growing

microtubules abut the cell boundary instead of growing along it,

the formalism derived here must be applied to a numerical

solution of Equation 1. Previously we demonstrated how this

equation can be solved numerically in the general case [21]. Once

the steady-state c is known, it can be plugged into the general

expression (Equation 2) for the microtubule length density function

p, instead of the special-case expression (Equation 4). This p can

then be used to derive the microtubule density as prescribed by

Equation 10, and the probability of organelle capture as pre-

scribed by Equation 13.

It is not inconceivable that the optimal nucleation capacity,

whose theoretical existence is revealed by the model, may be

reached through dynamic regulation of the centrosome in the

given cell that is adapting to its function. For example, it is not

entirely inconceivable that the sperm centrosomes somehow sense

the egg’s sperm number and adapt to it dynamically. The

alternative that may be simpler is that the nucleation capacity of

the given cell type is controlled genetically and is optimized by the

evolution of the species. A physiologically polyspermic species of

Ctenophora, such as Beroe ovata, would then constitutively have

a lower nucleation capacity of the sperm centrosome compared

with a species in which polyspermia is not normal.
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The analysis presented in this paper demonstrates further the

utility of the diffusion-with-drift approximation of the stochastic

process of microtubule assembly. The stochastic nature of tubulin

polymerization makes the process of microtubule assembly

complex and incompletely characterized on the molecular level.

Two frameworks have been used to describe quantitatively its

phenomenological appearance on the light-microscopic level: the

dynamic instability model with 4 or 8 parameters [15,49–52], and

the diffusion-with-drift model with 2 parameters [9,21,35,37–

39,41,52–54]. Apart from being the framework for the experi-

mental measurements in the cited papers, both models have been

used (somewhat interchangeably) to make quantitative predictions

concerning the cytoskeleton structure and regulation (e.g.,

[12,18,19,21,22,37,41,53–54]). The theoretical connection be-

tween the two has been expounded in the previous literature

[21,41,52–54]. The simpler diffusion-with-drift model is an

approximation of the dynamic instability model that is generally

valid on the cell scale [52], and, as the research practice shows,

both models are reasonably accurate approximations of the actual

complex process of stochastic reversible microtubule assembly.

The basis for the main predictions in this paper is the

quantitative law of partitioning between monomer (i.e., ab dimer)

and polymer in the cellular tubulin system. Previously, the tubulin

partitioning has been characterized by means of Monte Carlo

simulations [18,19,22] and other numerical algorithms [12]. These

methods were required to make predictions using the dynamic

instability approximation. In the general case, numerical solution

of the equations is also indispensable when the diffusion-with-drift

model is used [21]. In the present paper, it is demonstrated that

a simple and revealing analytical solution exists, when the

diffusion-with-drift description is applied to the mathematically

special but biologically common case, wherein microtubules can

grow along the cell boundary instead of abutting on it. The

analytical solution for the steady-state concentration of unpoly-

merized tubulin as a function of the centrosome nucleation

capacity makes the subsequent analysis of density and capture

more revealing and informative compared with numerical

examples that could exclusively be obtained otherwise.

Like previous models of this type (e.g., [12,21,37,41,52–54]), the

present model predicts probabilistically the spatial characteristics

of a dynamic microtubule array without simulating the dynamics

of individual microtubules. That a probabilistic description of

a dynamic array is predicted needs emphasizing. A more explicitly

kinetic approach to establishing a measure of efficiency of the

dynamic microtubule array in covering the intracellular space is to

calculate the distributions of first-passage times [35]. In the present

context of the microtubule-organelle contact, these could be called

first-contact times. An alternative formalism, which would be

a natural extension of the referenced line of work that used the

Monte Carlo technique [18,19,22], would rely on a discrete

representation of the microtubule cytoskeleton. In a model of this

type, a given simulated microtubule would either be present

(probability 1) or not present (probability 0) at a given point in

space, and it would alternate between these states in the course of

the simulation. Using this approach, the microtubule dynamics

would need to be explicitly simulated over a long time to obtain

the non-zero time-averaged densities. The formalism used here

calculates these densities directly and analytically. The theory

developed here operates with probabilistic number densities, such

as those of microtubule ends (Equation 4) and of microtubules

(Equation 10). These are continuous functions that take non-zero

values everywhere within the modeled domain of intracellular

space. The positive probability density at any point in space

reflects quantitatively the likelihood that microtubules in the real

(discrete and dynamic) structure extend to or through this point.

Thus, although it is not the only possible modeling approach to the

problem at hand, the modeling technique chosen here is

adequately efficient at predicting the spatial properties of

a dynamic microtubule array.

Methods

The described calculations were performed using Mathcad

software (Parametric Technology Corporation, Needham, MA).
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