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Commentary

Less Can Be More When Targeting 
Interleukin-6-Mediated Cytokine Release 
Syndrome in Coronavirus Disease 2019

Brian C. Betts, MD1; James W. Young, MD2–4 

Abstract: Coronavirus disease 2019 pandemic caused by severe 
acute respiratory syndrome-coronavirus-2 is a worldwide public 
health emergency that will have a lasting generational impact in terms 
of mortality and economic devastation. Social distancing to prevent 
viral transmission and supportive care of infected patients are the 
main interventions now available. This global health crisis therefore 
merits innovative therapies. Cytokine release syndrome mediated by 
interleukin-6 is a critical driver of coronavirus disease 2019 mortal-
ity. Herein, we review and discuss key immunologic effects of direct 
interleukin-6 blockade, downstream nonselective Janus kinase inhi-
bition, and selective Janus kinase 2 suppression to treat coronavi-
rus disease 2019–related cytokine release syndrome. We provide 
evidence that selective targeting of interleukin-6 or Janus kinase 2 
is well informed by existing data. This contrasts with broad, nonselec-
tive blockade of Janus kinase-mediated signaling, which would inhibit 
both deleterious and beneficial cytokines, as well as critical host anti-
viral immunity.
Key Words: coronavirus disease 2019; severe acute respiratory 
syndrome-coronavirus-2, cytokine release syndrome, interleukin-6, JAK

Coronavirus disease 2019 (COVID-19), the severe infec-
tion caused by the virus severe acute respiratory syn-
drome-coronavirus-2 (SARS-CoV-2), has affected almost 

5 million individuals and killed over 300,000 worldwide by mid-
May 2020 (1). These statistics continue to climb and more univer-
sal testing will identify increased numbers of people with minimal 
or no symptoms. Public health officials have employed social dis-
tancing and regional stay-at-home directives as the only available 
interventions to flatten the curve of newly diagnosed cases and 
hospitalizations. Healthcare providers can only provide aggressive 
supportive care and repurpose existing therapeutic agents against 
this novel virus, without the benefit of time to conduct controlled 
clinical trials (2, 3).

INTERLEUKIN-6 AS A DRIVER OF COVID-19 
CYTOKINE RELEASE SYNDROME
Early in the characterization of COVID-19 disease, physicians in 
Wuhan, China, recognized that patients exhibited a second wave 
of symptoms consistent with cytokine release syndrome (CRS), 
characterized by high levels of interleukin-6 (IL-6), high fevers, 
and hypoxic pneumonitis often requiring mechanical ventila-
tion (4, 5). As seen in other clinical settings prone to CRS (6), 
clinical investigators have identified this as a manifestation of 
an overly robust immune response to the SARS-CoV-2 (4, 5, 7). 
Mechanistically, pathogenic Th1 T cells fuel CRS by producing 
GM-CSF, which induces CD14+CD16+ monocytes to release IL-6, 
causing the resultant CRS (5, 7). Investigators in China thus made 
the rational choice to use the anti-IL-6 receptor monoclonal anti-
body (Mab), tocilizumab, to treat CRS and reduce the sequelae of 
IL-6-mediated inflammation (8–11) (Fig. 1). Emerging data show 
that early administration of tocilizumab can reverse the inflamma-
tory pneumonitis associated with COVID-19, which in the best-
case scenario results in radiographic improvement within 3 weeks 
of treatment (8). Investigators in the United States are similarly 
studying the efficacy of tocilizumab in COVID-19 pneumonia in 
a multicenter, randomized, placebo-controlled phase III clinical 
trial (ClinicalTrials.gov: NCT04320615, Table 1). Tocilizumab is 
FDA and EMA approved for the treatment of CRS after chimeric 
antigen receptor (CAR) T-cell therapy in the United States and 
Europe (6), and tocilizumab is now approved in China for the 
treatment of COVID-19-induced CRS. In the context of treating 
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CRS after CAR T-cell therapy, tocilizumab has not caused severe 
adverse reactions, secondary infections, or deaths (6). Moreover, 
while tocilizumab blockade of the IL-6 receptor reduces the ram-
pant systemic inflammation observed with CRS, there is no col-
lateral damage to dendritic cell or T-cell function (12). Clinical 
investigators are also comparing siltuximab, a direct anti-IL-6 
chimeric Mab (13), with glucocorticoids in treating COVID-19 
pneumonia (ClinicalTrials.gov: NCT 04329650; Table 1).

TARGETING JANUS KINASE1/2 TO SUPPRESS 
IL-6 RECEPTOR ACTIVITY
In contrast to blockade of the IL-6 cytokine or its receptor, others 
have sought to blunt the severity of COVID-19 by therapeutically 
targeting signal transduction mediated by the IL-6 receptor, using 
the Janus kinase (JAK) 1/2 inhibitor, ruxolitinib (14, 15) (Table 1). 
Ruxolitinib is FDA-approved for the treatment of myelofibrosis 
(16), and more recently, steroid-refractory graft-versus-host dis-
ease (17). While ruxolitinib suppresses IL-6 receptor activity (18, 

19), its very broad effects on JAK1/2 signaling also eradicate the 
functions of other important common gamma chain cytokines, 
e.g., IL-2, IL-7, and IL-15 (20, 21) (Fig. 1). Others and we have 
also demonstrated that ruxolitinib profoundly impairs key cell 
mediators of host antiviral immunity, chiefly beneficial cytotoxic 
T lymphocytes, natural killer cells, and dendritic cells (20–25). 
While ruxolitinib diminishes the systemic response to IL-6, as 
well as impairing Th1 cells implicated in the initiation of CRS, its 
overall suppression of cellular and innate immunity can also dis-
able the clearance of SARS-CoV-2. Similar to a SCID-like immune 
phenotype, broad JAK1/2 inhibition by ruxolitinib is complicated 
by serious infections like cryptococcal pneumonia, tuberculosis, 
hepatitis B, and cytomegalovirus (24, 26, 27). Given that ruxoli-
tinib clearly reduces antiviral immunity, the rationale to test its 
use in treating patients with severe or very severe COVID-19 ill-
ness merits at least equipoise or serious reconsideration. Caution 
is especially warranted in the context of an expanded access pro-
gram for ruxolitinib, managed by Novartis in the United States 
(ClinicalTrials.gov: NCT 04337359), and a phase 3 clinical trial of 

Figure 1. The differential effects of anti-interleukin (IL)-6 monoclonal antibody (Mab) and Janus kinase (JAK) inhibitors as coronavirus disease 2019 (COVID-19) 
therapy. The IL-6 receptor complex uses JAK1 and JAK2 to mediate signal transduction, while JAK1 and JAK3 are required by the common γ-chain receptors. 
The broad suppressive effects of JAK1/2 inhibitors, like ruxolitinib and baricitinib, concurrently diminish the activity of IL-6 and the common γ chain receptors. 
Conversely, IL-6 cytokine or receptor blockade with monoclonal antibodies or selective JAK2 inhibitors, fedratinib and pacritinib, spare common γ-chain receptor 
activity. While the JAK1/2 and JAK2 inhibitors reduce IL-6 activity and likely COVID-19 cytokine release syndrome (CRS), the broader suppressive effects of 
ruxolitinib and baricitinib limit overall antiviral immunity by targeting JAK1 required by T and NK cells alike. Baricitinib is unique, however, in that it has direct antiviral 
effects on severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) by binding AAK1 and limiting host cell endocytosis of viral particles.
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ruxolitinib, sponsored by Incyte in the United States and Novartis 
outside the United States, both of which are enrolling patients 
with CRS due to COVID-19 (ClinicalTrials.gov: NCT 04331665 
and NCT 04334044).

JAK INHIBITORS AS ANTIVIRAL THERAPY
In contrast to ruxolitinib, another JAK1/2 inhibitor, baricitinib, 
is another potential therapeutic agent against SARS-CoV-2 (28, 
29). An advantage of baricitinib over ruxolitinib, however, is that 
it can not only target IL-6 signal transduction; but it also exerts 
antiviral activity by neutralizing AAK1, a protein involved in 
viral entry by SARS-CoV-2 (28) (Table  1, Fig.  1). Hence bar-
icitinib is also a candidate antiviral medication. Despite ruxoli-
tinib’s capacity to bind AAK1 as well, it is 20-fold less potent in 
this regard than a comparable dose of baracitinib (29). Standard 
doses of ruxolitinib would therefore not achieve meaningful anti-
viral activity in COVID-19 patients. The unique antiviral effect 
of baricitinib combined with its ability to suppress IL-6 signal 
transduction have therefore led to its evaluation in a number of 
clinical trials for the treatment of COVID-19 (ClinicalTrials.gov: 
NCT 04358614, NCT 04340232, NCT 04346147, NCT 04320277, 
NCT 04321993, and NCT 04345289).

SELECTIVE JAK2 INHIBITION TO REDUCE IL-6 
SIGNAL TRANSDUCTION
Fedratinib and pacritinib are selective JAK2 inhibitors that exhibit 
negligible effects on JAK1 at standard doses (20, 30, 31) (Table 1). 
We have shown that fedratinib reduces dendritic cell maturation 
yet spares the activity of viral-specific T cells (32), and it exhib-
its intermediate suppression of NK cells compared with ruxoli-
tinib (21). Moreover, the chief toxicities associated with fedratinib 
include gastrointestinal side effects, anemia, and rare encephalop-
athy, which thiamine supplementation can prevent (31). We have 
also shown that unlike broad JAK1/2 inhibition by ruxolitinib, 
selective JAK2 inhibition by pacritinib spares both nonalloreactive 

T cells specific for nominal antigens and the induction of benefi-
cal Tregs, while significantly limiting NK cell activity (20). In a 
large, randomized clinical trial, the most common adverse events 
attributed to pacritinib were diarrhea and thrombocytopenia (30). 
To date, serious infectious complications have not been reported 
with either selective JAK2 inhibitor (30, 31). Additionally, fedra-
tinib and pacritinib efficiently suppress Th1 cells that initiate 
CRS pathogenesis via GM-CSF (5, 20, 32). Similar to ruxolitinib, 
fedratinib has weak activity against AAK1 at standard doses and 
is therefore unable to exert direct antiviral effects against SARS-
CoV-2 in the way that baracitinib can (29). The effects of pacri-
tinib on AAK1 are unknown. Given that fedratinib and pacritinib 
spare antigen-specific T-cell function and have minimal risks for 
opportunistic infections, selective JAK2 inhibitors warrant pref-
erential testing in treating COVID-19 CRS over broader JAK1/2 
inhibitors like ruxolitinib (Figure 1).

CONCLUSIONS
COVID-19 is the most significant infectious global health threat 
experienced in generations. There is thus an essential need for 
innovative and novel applications of existing therapeutics to 
address the morbidity and mortality of this deadly virus. We must 
nevertheless thoughtfully weigh the risks and benefits of experi-
mental investigations and rely on established data to guide inter-
val decisions before there are clear-cut conclusions. The hunger 
for game changing therapies should not cloud clinical judgment 
and practice, diminish the need for disciplined clinical research, 
or minimize scientific rigor. One must carefully consider the 
severe immune consequences of ablating common gamma chain 
cytokines. While CRS has emerged as a critical driver of COVID-
19 pathology and death, approaches to target IL-6 selectively are 
better informed by current data than broad, nonselective blockade 
of JAK1/2-mediated signaling, which would inhibit both deleteri-
ous and beneficial cytokines.

TABLE 1. Inhibitors of Interleukin-6 Receptor Signal Transduction
Drug Mechanism Immune Profile Antiviral Activity Coronavirus Disease 2019 Trial NCT #

Tocilizumab (7–10) Anti-IL-6R Mab ≠ DCs
≠ T cells

Not reported NCT 04320615

Siltuximab (13) Anti-IL-6 Mab Not reported Not reported NCT 04329650

Ruxolitinib (17–21) JAK1/2 inhibitor ↓↓ DCs
↓↓ T cells
↓↓ NK cells

Weak AAK1 NCT 04337359
NCT 04331665 NCT 04334044

Baricitinib (28, 29) JAK1/2 inhibitor ↓↓ T cells Strong AAK1  NCT 04358614 NCT 04340232 NCT 04346147  
NCT 04320277 NCT 04321993 NCT 04345289

Fedratinib (21, 31, 32) JAK2 inhibitor ↓↓ DCs
≠ T cells
↓ NK cells

Weak AAK1 Not reported

Pacritinib (20) JAK2 inhibitor ≠ T cells
↓↓↓ NK cells

Not reported Not reported

COVID-19 = coronavirus disease 2019, DC = dendritic cells, JAK = Janus kinase, NK = natural killer.
≠ = no change; ↓ = decrease in cell number and/or function.
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