Original Research

Mental Health Has No Predictive Association With Self-Assessed Knee Outcome Scores in Patients After Osteochondral Allograft Transplantation of the Knee

Jakob Ackermann,* MD, Takahiro Ogura,[†] MD, Robert A. Duerr,[‡] MD, Alexandre Barbieri Mestriner,^{‡§} MD, and Andreas H. Gomoll,^{||¶} MD

Investigation performed at the Cartilage Repair Center and Center for Regenerative Medicine, Brigham and Women's Hospital, Harvard Medical School, Harvard University, Boston, Massachusetts, USA

Background: Patient-reported outcome (PRO) measures are progressively utilized as evaluation tools in preoperative and postoperative assessments in orthopaedic practice. Identifying the potential utility of psychosocial factors to predict patient-reported pain and functional outcomes is of increasing interest to determine which patients will derive the greatest benefit from surgical treatment.

Purpose/Hypothesis: The purpose of this study was to determine potential predictive associations between the preoperative 12-Item Short Form Health Survey Mental Component Summary (SF-12 MCS) score, patient characteristics or osteochondral allograft (OCA) morphology, and PROs in patients who underwent OCA transplantation. We hypothesized that poor preoperative mental health is associated with diminished PROs at final follow-up.

Study Design: Case-control study; Level of evidence, 3.

Methods: A total of 67 patients with a mean follow-up of 2.7 ± 1.0 years (range, 2-6 years) with complete preoperative and at least 24-month postoperative SF-12 MCS, Knee injury and Osteoarthritis Outcome Score (KOOS), Tegner, Lysholm, and International Knee Documentation Committee (IKDC) scores were included in this study. Pearson correlation coefficients and linear regression models were used to distinguish associations between age, sex, smoking status, body mass index, workers' compensation, previous surgery, concomitant surgery, number of grafts, defect location, total graft size, SF-12 MCS score, and postoperative PRO scores as well as their improvement from baseline (delta).

Results: The SF-12 MCS showed significant correlation with the KOOS Activities of Daily Living subscale (P = .015), KOOS Sport/ Recreation subscale (P = .024), and IKDC (P = .039). In the multivariable linear regression models, the SF-12 MCS had no predictive association with any PRO measure. Patient sex contributed significantly to the final regression models of the KOOS Sport/ Recreation (P = .042), Tegner score (P = .024), and Lysholm score (P = .031). The SF-12 MCS showed no bivariate correlation with changes in any PRO score (delta) (P > .05).

Conclusion: Preoperative mental health status did not predict perceived functional outcomes as assessed by PRO measures at final follow-up. Female sex was negatively correlated with KOOS Sport/Recreation, Tegner, and Lysholm scores.

Keywords: SF-12; mental health; osteochondral allograft; knee pain; cartilage lesion; osteoarthritis; cartilage repair

Osteochondral allograft (OCA) transplantation has gained popularity over the past 15 years as a viable treatment option for osteochondral lesions of the knee.²⁵ Initially indicated as a salvage procedure after previously failed cartilage repair such as autologous chondrocyte implantation (ACI) or microfracture,^{8,16} OCA transplantation is increasingly performed as a primary procedure for large osteochondral defects, showing excellent clinical outcomes.^{15,18,42} However, factors such as age, low activity level, body mass index (BMI) >35 kg/m², osteoarthritis, steroid-induced osteonecrosis, multiple previous surgeries, kissing lesions, patellofemoral defects, and prolonged graft storage time are associated with less favorable results.^{1,8,14,22,24,28,37}

The Orthopaedic Journal of Sports Medicine, 6(12), 2325967118812363 DOI: 10.1177/2325967118812363 © The Author(s) 2018

This open-access article is published and distributed under the Creative Commons Attribution - NonCommercial - No Derivatives License (http://creativecommons.org/ licenses/by-nc-nd/4.0/), which permits the noncommercial use, distribution, and reproduction of the article in any medium, provided the original author and source are credited. You may not alter, transform, or build upon this article without the permission of the Author(s). For article reuse guidelines, please visit SAGE's website at http://www.sagepub.com/journals-permissions.

Patient-reported outcome (PRO) measures are progressively utilized in orthopaedic practice to determine success and inform preoperative decision making and surgical indications. The Knee injury and Osteoarthritis Outcome Score (KOOS) is a widely used self-assessed tool to evaluate patient outcomes at short- and long-term follow-up. It assesses 5 separate domains: Pain, Symptoms, Activities of Daily Living (ADL), Sport/Recreation, and Quality of Life (QOL).³² Previous studies have validated the KOOS as a reliable tool in evaluating patients undergoing cartilage repair, including OCA transplantation.^{4,10,11,15}

Identifying the potential utility of psychosocial factors to predict patient-reported pain and functional outcomes is of increasing interest to determine which patients will derive the greatest benefit from surgical treatment. Several studies have reported that low preoperative patient mental health can contribute to poor postoperative outcomes among a variety of orthopaedic specialties such as trauma, spine, hand, and upper extremity surgery.[#] Depression and anxiety have been shown to correlate with worsening pain in patients with osteoarthritis.^{19,33,34} Kim et al¹⁹ reported that the presence of a depressive disorder is associated with an increased risk of symptomatic osteoarthritis in patients with minimal to moderate radiographic changes. Similarly, increased postoperative pain, low levels of satisfaction, and unfavorable clinical outcomes can be expected in mentally depressed patients after anterior cruciate ligament reconstruction or total knee arthroplasty.^{13,17,41} However, there is a relative paucity of literature investigating the relationship among preoperative mental health, objective abnormalities, and PROs in patients who undergo cartilage repair with an OCA.

Given the uncertain predictive value of preoperative mental health on self-reported outcome scores in patients treated with OCA transplantation for osteochondral lesions of the knee, this study sought to determine the role of psychological factors on patient-reported pain and functional outcomes in patients after OCA transplantation. We hypothesized that poor preoperative mental health, as measured with the 12-Item Short Form Health Survey Mental Component Summary (SF-12 MCS), is associated with diminished KOOS scores at a minimum follow-up of 24 months.

METHODS

Our institution prospectively collects data for all patients undergoing cartilage repair. Patients who underwent cartilage repair with an OCA for focal osteochondral defects in the knee by a single surgeon between March 2011 and April 2016 were enrolled for this retrospective study of prospectively collected data. Our institutional review board approved the study before initiation. Exclusion criteria included patients with incomplete preoperative or postoperative self-assessments at 1-year follow-up as described below, as well as incomplete patient demographic data or unreported OCA plug size, location, and number.

Each patient enrolled in this study completed preoperative and postoperative SF-12 MCS, KOOS, Tegner, Lysholm, and International Knee Documentation Committee (IKDC) surveys. The SF-12 is a 12-item questionnaire that assesses specific factors of general health-related quality of life, which is divided into the Physical Component Summary and the MCS. The general population has a mean score of 50 ± 10 , and a higher score demonstrates better health-related quality of life.^{30,40} Each of the 5 KOOS subscales are scored individually from 0 (extreme knee problems) to 100 (no knee problems).

We recorded each patient's age at the time of surgery, BMI, sex, smoking status, workers' compensation status, previous surgery on the index knee, and concomitant surgery such as osteotomy, ligamentous repair/reconstruction, and meniscal allograft transplantation. OCA graft characteristics, including the size, number, and location, were collected from surgical notes.

Statistical analysis was performed utilizing descriptive statistics, bivariate correlations, and univariable and multivariable linear regression models. Descriptive statistics were calculated to determine the sociodemographic and clinical characteristics of patients. Bivariate correlations were assessed by Pearson correlation coefficients (r). Categorical variables were coded as dummy variables for univariable and multivariable linear regression models (ie, for sex, 0 represented male and 1 represented female). Models included patient age, sex, BMI, concomitant surgery, previous surgery, workers' compensation status, smoking status, SF-12 MCS score, baseline scores, and OCA plug number, size, and location. For each regression model, potential predictor variables were first evaluated univariably using one of the PRO measures (KOOS subscales, Tegner, Lysholm, or IKDC) as a dependent variable. Associations displaying

[#]References 6, 20, 23, 26, 29, 31, 35, 38, 39.

[¶]Address correspondence to Andreas H. Gomoll, MD, Hospital for Special Surgery, 535 East 70th Street, New York, NY 10021, USA (email: gomolloffice@ hss.edu).

^{*}Sports Medicine Center, Massachusetts General Hospital, Boston, Massachusetts, USA.

[†]Sports Medicine Center, Funabashi Orthopaedic Hospital, Funabashi, Japan.

[‡]Cartilage Repair Center and Center for Regenerative Medicine, Brigham and Women's Hospital, Harvard Medical School, Harvard University, Boston, Massachusetts, USA.

[§]Universidade Federal de São Paulo, São Paulo, Brazil.

^{II}Hospital for Special Surgery, New York, New York, USA.

One or more of the authors has declared the following potential conflict of interest or source of funding: R.A.D. has received educational support from Mid-Atlantic Surgical, Arthrex, and Kairos Surgical. A.H.G. receives research support from JRF; is a consultant for JRF, Aesculap Biologics, Sanofi-Aventis, Geistlich Pharma, Genzyme, Aastrom Biosciences, and Smith & Nephew; has received hospitality payments from LifeNet Health, Fidia Pharma, and Stryker; and has received honoraria from Vericel. AOSSM checks author disclosures against the Open Payments Database (OPD). AOSSM has not conducted an independent investigation on the OPD and disclaims any liability or responsibility relating thereto.

Ethical approval for this study was obtained from Partners HealthCare.

TABLE 1 Patient Characteristics and Preoperative Patient-Reported Outcome Scores^a

	Included Patients $(n = 67)$	Excluded Patients $(n = 67)$	<i>P</i> Value
Age, y	35.0 ± 10.0	33.4 ± 10.1	.450
Body mass index, kg/m ²	26.8 ± 4.7	27.8 ± 4.8	.187
Female sex, n	37	29	.167
Smoker, n	5	11	.110
Workers' compensation, n	2	3	.661
Concomitant procedure, n			
High tibial osteotomy	12	5	.069
Tibial tubercle osteotomy	11	3	.024
Distal femoral osteotomy	1	0	.315
MAT	2	4	.403
ACL reconstruction	0	2	.154
MPFL reconstruction	1	2	.559
Previous surgery, n	38	46	.153
$OCA size, cm^2$	5.0 ± 3.7	4.8 ± 3.2	.914
No. of plugs	1.6 ± 0.7	1.8 ± 0.8	.251
Plug location, n			
Medial femoral condyle	40	35	.384
Lateral femoral condyle	21	18	.568
Trochlea	12	15	.518
Patella	8	9	.795
KOOS Pain	57.00 ± 18.97	60.65 ± 17.10	.339
KOOS Symptoms	42.86 ± 13.33	45.44 ± 11.82	.333
KOOS ADL	66.29 ± 19.41	73.08 ± 18.75	.037
KOOS Sport/Recreation	30.60 ± 25.14	29.31 ± 17.81	.685
KOOS QOL	24.81 ± 19.22	26.79 ± 17.19	.406
Tegner	3.09 ± 2.18	2.92 ± 2.35	.600
Lysholm	50.30 ± 18.76	55.69 ± 17.85	.142
IKDC	40.66 ± 15.70	43.83 ± 12.92	.078
SF-12 MCS	50.32 ± 9.10	52.63 ± 9.07	.135

^aData are presented as mean ± SD unless otherwise specified. ACL, anterior cruciate ligament; ADL, Activities of Daily Living; IKDC, International Knee Documentation Committee; KOOS, Knee injury and Osteoarthritis Outcome Score; MAT, meniscal allograft transplantation; MPFL, medial patellofemoral ligament; OCA, osteochondral allograft; QOL, Quality of Life; SF-12 MCS, 12-Item Short Form Health Survey Mental Component Summary.

significance at P < .1 were included in a multivariable regression model to adjust for covariates. All statistical analyses were performed with SPSS for Mac (version 23.0; IBM). With a sample size of 67 patients, the study was adequately powered to detect the predictive value of included variables in the bivariable and multivariable linear regression models with a moderate effect (Cohen *d* of 0.3) and a power of more than 0.8 at a level of significance of .05.⁷

RESULTS

The senior author (A.H.G.) treated a total of 134 patients with OCA transplantation for focal symptomatic osteochondral lesions within the knee joint during the study period. Of these patients, 67 were excluded from this study because 28 (20.9%) did not complete preoperative self-assessments and 39 (29.1%) completed

 TABLE 2

 Postoperative Patient-Reported Outcome Scores and Improvement in Scores^a

	Total Score	Delta Score
KOOS Pain	80.47 ± 18.57	23.47 ± 21.75
KOOS Symptoms	54.00 ± 13.41	11.14 ± 14.64
KOOS ADL	87.25 ± 16.53	20.96 ± 20.67
KOOS Sport/Recreation	60.30 ± 29.49	29.70 ± 27.86
KOOS QOL	57.56 ± 27.08	32.74 ± 25.49
Tegner	4.10 ± 1.96	1.02 ± 2.65
Lysholm	75.10 ± 21.29	24.81 ± 22.31
IKDC	67.77 ± 21.70	27.11 ± 20.78
SF-12 MCS	54.73 ± 6.02	4.41 ± 8.53

^aData are presented as mean ± SD. ADL, Activities of Daily Living; IKDC, International Knee Documentation Committee; KOOS, Knee injury and Osteoarthritis Outcome Score; QOL, Quality of Life; SF-12 MCS, Short Form–12 Mental Component Summary.

preoperative but not postoperative self-reported outcome measures at minimum 24-month follow-up. Table 1 presents patient characteristics and preoperative outcome scores for included and excluded patients. Hence, 67 patients with complete preoperative and postoperative PROs were included after fresh OCA transplantation for cartilage defects of the knee by the senior author. The mean age was 35.0 ± 10.0 years (range, 16-54 years), with a mean BMI of 26.8 ± 4.7 kg/m² (range, 18.8-37.4 kg/m²) and a mean follow-up of 2.7 ± 1.0 years (range, 2-6 years). Overall, 37 patients (55.2%) were female, 5 (7.5%)were active smokers, 2 (3%) had workers' compensation, 24 (35.8%) underwent concomitant osteotomy, 2 (3%) underwent concomitant meniscal allograft transplantation, and 1 (1.5%) underwent concomitant medial patellofemoral ligament reconstruction; 38 (56.7%) had undergone previous surgery on their index knee.

Concomitant osteotomies included 12 high tibial osteotomies, 11 tibial tubercle osteotomies, and 1 distal femoral osteotomy. The combined size of all implanted OCA grafts per patient averaged $5.0 \pm 3.7 \text{ cm}^2$ (range, 0.8- 17.9 cm^2). The number of OCA grafts ranged from 1 to 4, with 53.7% of patients treated with 1 plug, 35.8% with 2 plugs, 9.0% with 3 plugs, and 1.5% with 4 plugs. A total of 40 patients (59.7%) had at least 1 OCA plug implanted in the medial femoral condyle, 21 patients (31.3%) in the lateral femoral condyle, 12 patients (17.9%) in the trochlea, and 8 patients (11.9%) in the patella. The total outcome score and improvement (delta) in scores for all patient-reported surveys are presented in Table 2.

The SF-12 MCS showed a significant association at P < .1 with the KOOS Pain and the Lysholm score and at P < .05 with the KOOS ADL, KOOS Sport/Recreation, and IKDC (Tables 2-9). At final follow-up, the Tegner score was the only measure that correlated most significantly not with its own preoperative baseline score but with patient sex (P = .024) (Table 8).

In the multivariable linear regression models, the SF-12 MCS had no association with any of the PRO

	Univa	riable	Multivariable (Adjusted $R^2 = 0.148$)			
Predictor Variable	Pearson	P Value	B (95% CI)	Standardized β	P Value	
Baseline	0.329	.007	0.218 (-0.019 to 0.454)	0.223	.07	
Age	-0.064	.606				
Sex	-0.253	.039	-7.721 (-16.298 to 0.857)	-0.208	.077	
Body mass index	0.099	.430				
Smoker	-0.119	.339				
SF-12 MCS	0.219	.075	0.305 (-0.174 to -0.783)	0.149	.208	
Previous surgery	-0.181	.143				
Workers' compensation	-0.123	.323				
No. of plugs	-0.125	.313				
OCA size	-0.047	.703				
MAT	0.027	.827				
High tibial osteotomy	0.114	.360				
Tibial tubercle osteotomy	-0.107	.338				
Distal femoral osteotomy	0.001	.996				
MPFL reconstruction	0.112	.368				
Medial femoral condyle	-0.040	.746				
Lateral femoral condyle	0.124	.317				
Trochlea	-0.238	.052	-8.323 (-19.475 to -2.830)	-0.173	.141	
Patella	-0.088	.476				

TABLE 3
Univariable and Multivariable Linear Regression Models for KOOS Pain ^a

"Bolded values indicate significant associations at P < .10. KOOS, Knee injury and Osteoarthritis Outcome Score; MAT, meniscal allograft transplantation; MPFL, medial patellofemoral ligament; OCA, osteochondral allograft; SF-12 MCS, 12-Item Short Form Health Survey Mental Component Summary.

	Univa	riable	Multivariable (Adjusted $R^2 = 0.219$)			
Predictor Variable	Pearson	P Value	B (95% CI)	Standardized β	P Value	
Baseline	0.401	.001	0.295 (0.063 to 0.527)	0.293	.014	
Age	0.013	.918				
Sex	-0.301	.013	-5.437 (-11.513 to 0.638)	-0.203	.078	
Body mass index	0.075	.548				
Smoker	-0.177	.153				
SF-12 MCS	0.043	.728				
Previous surgery	-0.134	.281				
Workers' compensation	-0.122	.330				
No. of plugs	-0.020	.869				
OCA size	0.092	.457				
MAT	0.136	.274				
High tibial osteotomy	0.152	.219				
Tibial tubercle osteotomy	-0.090	.470				
Distal femoral osteotomy	0.062	.618				
MPFL reconstruction	0.062	.618				
Medial femoral condyle	0.092	.461				
Lateral femoral condyle	0.142	.251				
Trochlea	-0.266	.030	-6.629 (-14.483 to 1.225)	-0.191	.097	
Patella	-0.234	.057	-6.529 (-15.788 to 2.730)	-0.159	.164	

TABLE 4 Univariable and Multivariable Linear Regression Models for KOOS Symptoms a

^{*a*}Bolded values indicate significant associations at P < .10. KOOS, Knee injury and Osteoarthritis Outcome Score; MAT, meniscal allograft transplantation; MPFL, medial patellofemoral ligament; OCA, osteochondral allograft; SF-12 MCS, 12-Item Short Form Health Survey Mental Component Summary.

measures. The postoperative KOOS Pain score was not significantly predicted by any of the independent variables (P > .05) (Table 3). The postoperative KOOS

Symptoms, KOOS QOL, and IKDC scores were significantly associated with only their preoperative baseline score (all P < .05) (Tables 4, 7, and 10). Aside from their

	Univa	riable	Multivariable (Adjusted $R^2 = 0.183$)				
Predictor Variable	Pearson	P Value	B (95% CI)	Standardized β	P Value		
Baseline	0.347	.004	0.208 (0.003 to 0.412)	0.244	.046		
Age	-0.104	.404					
Sex	-0.175	.156					
Body mass index	0.077	.536					
Smoker	-0.075	.549					
SF-12 MCS	0.295	.015	0.325 (-0.108 to 0.758)	0.179	.139		
Previous surgery	-0.198	.107					
Workers' compensation	-0.122	.329					
No. of plugs	-0.121	.329					
OCA size	-0.012	.925					
MAT	0.073	.555					
High tibial osteotomy	0.115	.353					
Tibial tubercle osteotomy	-0.139	.260					
Distal femoral osteotomy	0.041	.745					
MPFL reconstruction	0.096	.441					
Medial femoral condyle	-0.003	.980					
Lateral femoral condyle	0.136	.273					
Trochlea	-0.317	.009	-11.176 (-20.812 to -1.540)	-0.261	.024		
Patella	-0.003	.983					

TABLE 5 Univariable and Multivariable Linear Regression Models for KOOS Activities of Daily Living^a

^{*a*}Bolded values indicate significant associations at P < .10. KOOS, Knee injury and Osteoarthritis Outcome Score; MAT, meniscal allograft transplantation; MPFL, medial patellofemoral ligament; OCA, osteochondral allograft; SF-12 MCS, 12-Item Short Form Health Survey Mental Component Summary.

	Univa	riable	Multivariable (Adjusted $R^2 = 0.289$)			
Predictor Variable	Pearson	P Value	B (95% CI)	Standardized β	P Value	
Baseline	0.489	<.001	0.479 (0.277 to 0.731)	0.408	<.001	
Age	0.027	.829				
Sex	-0.268	.029	-12.793 (-25.117 to -0.468)	-0.217	.042	
Body mass index	0.116	.355				
Smoker	-0.042	.738				
SF-12 MCS	0.275	.024	0.577 (-0.115 to 1.268)	0.178	.101	
Previous surgery	-0.135	.275				
Workers' compensation	-0.022	.862				
No. of plugs	-0.108	.384				
OCA size	-0.064	.606				
MAT	-0.032	.799				
High tibial osteotomy	0.128	.301				
Tibial tubercle osteotomy	-0.204	.098	-9.714 (-26.391 to 6.962)	-0.123	.249	
Distal femoral osteotomy	0.02	.874				
MPFL reconstruction	0.104	.403				
Medial femoral condyle	-0.007	.954				
Lateral femoral condyle	-0.001	.991				
Trochlea	-0.151	.222				
Patella	-0.082	.507				

 TABLE 6

 Univariable and Multivariable Linear Regression Models for KOOS Sport/Recreation^a

^{*a*}Bolded values indicate significant associations at P < .10. KOOS, Knee injury and Osteoarthritis Outcome Score; MAT, meniscal allograft transplantation; MPFL, medial patellofemoral ligament; OCA, osteochondral allograft; SF-12 MCS, 12-Item Short Form Health Survey Mental Component Summary.

own preoperative baseline scores, the KOOS ADL was also significantly predicted by whether a plug was implanted in the trochlea (P = .024) (Table 5), and the

KOOS Sport/Recreation was also associated with patient sex (P = .042) (Table 6). Also, patient sex (P = .031) and whether a patient underwent previous surgery on the

	Univa	riable	Multivariable (Adjusted $R^2 = 0.177$)			
Predictor Variable	Pearson	P Value	B (95% CI)	Standardized β	P Value	
Baseline	0.435	<.001	0.613 (0.299 to 0.927)	0.435	<.001	
Age	-0.065	.599				
Sex	-0.096	.440				
Body mass index	0.059	.636				
Smoker	-0.067	.592				
SF-12 MCS	0.159	.198				
Previous surgery	-0.203	.592				
Workers' compensation	-0.030	.809				
No. of plugs	-0.112	.366				
OCA size	-0.086	.491				
MAT	0.012	.924				
High tibial osteotomy	0.004	.971				
Tibial tubercle osteotomy	-0.134	.280				
Distal femoral osteotomy	-0.120	.331				
MPFL reconstruction	0.166	.180				
Medial femoral condyle	-0.003	.984				
Lateral femoral condyle	0.042	.736				
Trochlea	-0.186	.133				
Patella	-0.050	.688				

TABLE 7 Univariable and Multivariable Linear Regression Models for KOOS Quality of Life a

^{*a*}Bolded values indicate significant associations at P < .10. KOOS, Knee injury and Osteoarthritis Outcome Score; MAT, meniscal allograft transplantation; MPFL, medial patellofemoral ligament; OCA, osteochondral allograft; SF-12 MCS, 12-Item Short Form Health Survey Mental Component Summary.

	Univa	riable	Multivariable (Adjusted $R^2 = 0.062$)			
Predictor Variable	Pearson	P Value	B (95% CI)	Standardized β	P Value	
Baseline	0.179	.147				
Age	0.019	.877				
Sex	-0.276	.024	-1.078 (-2.007 to -0.149)	-0.276	.024	
Body mass index	0.113	.366				
Smoker	0.043	.728				
SF-12 MCS	0.007	.958				
Previous surgery	-0.108	.383				
Workers' compensation	0.079	.529				
No. of plugs	-0.001	.995				
OCA size	-0.023	.850				
MAT	-0.100	.421				
High tibial osteotomy	0.035	.778				
Tibial tubercle osteotomy	-0.128	.303				
Distal femoral osteotomy	-0.197	.110				
MPFL reconstruction	0.120	.332				
Medial femoral condyle	-0.018	.882				
Lateral femoral condyle	-0.053	.670				
Trochlea	-0.005	.967				
Patella	-0.020	.873				

TABLE 8 Univariable and Multivariable Linear Regression Models for Tegner Score a

^{*a*}Bolded values indicate significant associations at P < .10. MAT, meniscal allograft transplantation; MPFL, medial patellofemoral ligament; OCA, osteochondral allograft; SF-12 MCS, 12-Item Short Form Health Survey Mental Component Summary.

index knee (P = .023) contributed significantly to the linear regression model of the Lysholm score (Table 9). The Tegner score was predicted only by patient sex (P =

.024) (Table 8). The SF-12 MCS showed no correlation with changes in any of the PRO scores (delta) at final follow-up (Table 11).

	Univa	riable	Multivariable (Adjusted $R^2 = 0.286$)				
Predictor Variable	Pearson	P Value	B (95% CI)	Standardized β	P Value		
Baseline	0.385	.001	0.348 (0.089 to 0.607)	0.307	.009		
Age	-0.012	.922					
Sex	-0.358	.003	-10.296 (-19.619 to -0.973)	-0.242	.031		
Body mass index	0.102	.415					
Smoker	-0.141	.255					
SF-12 MCS	0.219	.075	0.192 (-0.327 to -0.712)	0.082	.462		
Previous surgery	-0.279	.022	-10.930 (-20.330 to -1.529)	-0.256	.023		
Workers' compensation	-0.084	.505					
No. of plugs	-0.157	.204					
OCA size	0.001	.996					
MAT	0.099	.427					
High tibial osteotomy	0.140	.260					
Tibial tubercle osteotomy	-0.090	.469					
Distal femoral osteotomy	0.005	.967					
MPFL reconstruction	0.145	.242					
Medial femoral condyle	0.006	.965					
Lateral femoral condyle	0.176	.154					
Trochlea	-0.227	.065	-4.841 (-17.035 to 7.352)	-0.088	.430		
Patella	-0.207	.094	-12.187 (-26.936 to -2.021)	-0.187	.091		

 TABLE 9

 Univariable and Multivariable Linear Regression Models for Lysholm Score^a

^aBolded values indicate significant associations at P < .10. MAT, meniscal allograft transplantation; MPFL, medial patellofemoral ligament; OCA, osteochondral allograft; SF-12 MCS, 12-Item Short Form Health Survey Mental Component Summary.

 TABLE 10

 Univariable and Multivariable Linear Regression Models for IKDC^a

	Univa	riable	Multivariable (Adjusted $R^2 = 0.230$)			
Predictor Variable	Pearson	P Value	B (95% CI)	Standardized β	P Value	
Baseline	0.419	<.001	0.414 (0.760 to 0.753)	0.300	.017	
Age	-0.018	.885				
Sex	-0.282	.021	-8.583 (-18.289 to 1.122)	-0.198	.082	
Body mass index	0.119	.342				
Smoker	-0.91	.466				
SF-12 MCS	0.252	.039	0.321 (-0.229 to 0.871)	0.135	.247	
Previous surgery	-0.219	.075	-6.861 (-16.654 to 2.932)	-0.158	.166	
Workers' compensation	0.003	.979				
No. of plugs	-0.170	.168				
OCA size	-0.087	.485				
MAT	-0.004	.972				
High tibial osteotomy	0.159	.198				
Tibial tubercle osteotomy	-0.229	.062	-10.217 (-23.191 to 2.756)	-0.0176	.120	
Distal femoral osteotomy	-0.064	.606				
MPFL reconstruction	0.108	.384				
Medial femoral condyle	0.010	.934				
Lateral femoral condyle	0.001	.996				
Trochlea	-0.230	.061	-2.266 (-15.706 to 11.175)	-0.040	.737	
Patella	-0.083	.502				

^{*a*}Bolded values indicate significant associations at P < .10. IKDC, International Knee Documentation Committee; MAT, meniscal allograft transplantation; MPFL, medial patellofemoral ligament; OCA, osteochondral allograft; SF-12 MCS, 12-Item Short Form Health Survey Mental Component Summary.

DISCUSSION

This is the first report to evaluate the potential influence of a patient's preoperative mental health on outcome scores after treatment with an OCA for symptomatic osteochondral lesions in the knee. The key finding of this study was that preoperative mental health demonstrated no predictive value for postoperative KOOS, Tegner, Lysholm, or

in Patient-Reported Outcome Scores at Final Follow- up^{α}								
	KOOS Pain	KOOS Symptoms	KOOS ADL	KOOS Sport/Recreation	KOOS QOL	Tegner	Lysholm	IKDC
Pearson P value	-0.018.886	-0.110 .375	-0.100.419	0.111 .371	0.031 .803	-0.198.109	$\begin{array}{c}-0.104\\.401\end{array}$	0.026 .835

 TABLE 11

 Univariable Regression of Preoperative SF-12 MCS Score and Improvement (Delta) in Patient-Reported Outcome Scores at Final Follow-up^a

^aADL, Activities of Daily Living; IKDC, International Knee Documentation Committee; KOOS, Knee injury and Osteoarthritis Outcome Score; QOL, Quality of Life; SF-12 MCS, 12-Item Short Form Health Survey Mental Component Summary.

IKDC scores or the change in these scores from preoperatively to postoperatively at final follow-up.

Several prior studies across various orthopaedic subspecialties have demonstrated an association between mental health and preoperative and postoperative pain, satisfaction, and outcomes.** Accordingly, it has been suggested to include a preoperative mental health assessment in patient consultations, as it may provide useful prognostic information in patients with osteoarthritis undergoing arthroplasty.^{2,21}

Interestingly, this did not prove to be the case for patients undergoing OCA transplantation. When adjusted for covariates, no correlation was observed between the preoperative SF-12 MCS score and patient responses to surgery at a minimum of 24 months, as shown by both absolute PRO scores and the change in PRO scores. Patients undergoing cartilage repair are generally younger, with less medical comorbidities, a lower BMI, and a higher level of activity than patients with advanced osteoarthritis who are candidates for total joint arthroplasty. However, when compared with similar populations treated with other cartilage repair procedures, several studies investigating patients who underwent ACI for the treatment of cartilage defects showed a significant influence of preoperative mental health on postoperative functional scores.^{3,9} The generally reported shorter time of recovery and easier rehabilitation in patients after OCA transplantation than ACI may explain this observed difference between our results and theirs. Because compliance with rehabilitation and a patient's mental health are likely related,⁵ ACI may require better preoperative mental health than OCA transplantation to attain good compliance with the longer and more involved postoperative course to achieve better postoperative function. Thus, while not ultimately providing predictive value for clinical outcomes after OCA transplantation, these findings may be important for preoperative counseling and choosing an appropriate treatment option among different cartilage repair procedures. Accordingly, we agree with Bartlett et al³ in suggesting a preoperative psychological assessment in patients undergoing cartilage repair.

We also did not find significant associations between graft size and any postoperative PRO score (all P > .05). In fact, none of the patient- or lesion-associated parameters contributed significantly to the regression model of the KOOS Pain. This finding is in accordance with the results of a recently published study by Tirico and colleagues³⁶ in which the

authors concluded that the size of the lesion had no influence on clinical outcomes in patients after OCA transplantation. While showing that patient sex has significant predictive value for postoperative KOOS Sport/Recreation, Tegner, and Lysholm scores, this study, in contrast to previous studies,^{1,12,22,27} did not find any predictive value of patient age, BMI, OCA size, or patellar lesions for clinical outcomes at a minimum follow-up of 24 months.

This study is not without limitations. It is a retrospective review of prospectively collected data, and the study group was relatively small and represented only 50% of the eligible population. As shown in Table 1, however, it can be assumed that the study population is representative of the entire eligible population. Also, presenting to a tertiary referral center for cartilage repair, patients in this study had relatively large or multiple cartilage defects. Thus, it cannot be excluded that the observations may not apply to patients with smaller defects.

CONCLUSION

In patients undergoing OCA transplantation for cartilage injuries of the knee, preoperative mental health status did not predict perceived functional outcomes as assessed by PRO measures at a final follow-up of at least 24 months. Given the disparity in our findings between OCA transplantation and previous reports on other cartilage repair options, it is advisable to include preoperative mental health as one of the many factors involved in the informed decisionmaking process between the patient and physician to select the most appropriate cartilage repair procedure.

REFERENCES

- Assenmacher AT, Pareek A, Reardon PJ, Macalena JA, Stuart MJ, Krych AJ. Long-term outcomes after osteochondral allograft: a systematic review at long-term follow-up of 12.3 years. *Arthroscopy*. 2016;32(10):2160-2168.
- Ayers DC, Franklin PD, Trief PM, Ploutz-Snyder R, Freund D. Psychological attributes of preoperative total joint replacement patients: implications for optimal physical outcome. *J Arthroplasty*. 2004;19(7 suppl 2):125-130.
- Bartlett W, Gooding CR, Carrington RW, Briggs TW, Skinner JA, Bentley G. The role of the Short Form 36 Health Survey in autologous chondrocyte implantation. *Knee*. 2005;12(4):281-285.
- Bekkers JE, de Windt TS, Raijmakers NJ, Dhert WJ, Saris DB. Validation of the Knee injury and Osteoarthritis Outcome Score (KOOS) for the treatment of focal cartilage lesions. *Osteoarthritis Cartilage*. 2009;17(11):1434-1439.

^{**}References 6, 13, 17, 19, 20, 23, 26, 29, 31, 33-35, 38, 39, 41.

- Chen CY, Neufeld PS, Feely CA, Skinner CS. Factors influencing compliance with home exercise programs among patients with upper-extremity impairment. Am J Occup Ther. 1999;53(2):171-180.
- Clay FJ, Newstead SV, McClure RJ. A systematic review of early prognostic factors for return to work following acute orthopaedic trauma. *Injury*. 2010;41(8):787-803.
- 7. Cohen J. Statistical Power Analysis for the Behavioral Sciences. 2nd ed. Hillsdale, New Jersey: L. Erlbaum Associates; 1988.
- Demange M, Gomoll AH. The use of osteochondral allografts in the management of cartilage defects. *Curr Rev Musculoskelet Med*. 2012; 5(3):229-235.
- Ebert JR, Smith A, Edwards PK, Hambly K, Wood DJ, Ackland TR. Factors predictive of outcome 5 years after matrix-induced autologous chondrocyte implantation in the tibiofemoral joint. *Am J Sports Med.* 2013;41(6):1245-1254.
- Ebert JR, Smith A, Wood DJ, Ackland TR. A comparison of the responsiveness of 4 commonly used patient-reported outcome instruments at 5 years after matrix-induced autologous chondrocyte implantation. *Am J Sports Med.* 2013;41(12):2791-2799.
- Engelhart L, Nelson L, Lewis S, et al. Validation of the Knee injury and Osteoarthritis Outcome Score subscales for patients with articular cartilage lesions of the knee. *Am J Sports Med.* 2012;40(10): 2264-2272.
- Frank RM, Lee S, Levy D, et al. Osteochondral allograft transplantation of the knee: analysis of failures at 5 years. *Am J Sports Med*. 2017;45(4):864-874.
- Franklin PD, Li W, Ayers DC. The Chitranjan Ranawat Award: functional outcome after total knee replacement varies with patient attributes. *Clin Orthop Relat Res.* 2008;466(11):2597-2604.
- Gortz S, De Young AJ, Bugbee WD. Fresh osteochondral allografting for steroid-associated osteonecrosis of the femoral condyles. *Clin Orthop Relat Res*. 2010;468(5):1269-1278.
- Gracitelli GC, Meric G, Briggs DT, et al. Fresh osteochondral allografts in the knee: comparison of primary transplantation versus transplantation after failure of previous subchondral marrow stimulation. *Am J Sports Med.* 2015;43(4):885-891.
- Gracitelli GC, Meric G, Pulido PA, McCauley JC, Bugbee WD. Osteochondral allograft transplantation for knee lesions after failure of cartilage repair surgery. *Cartilage*. 2015;6(2):98-105.
- Heck DA, Robinson RL, Partridge CM, Lubitz RM, Freund DA. Patient outcomes after knee replacement. *Clin Orthop Relat Res.* 1998;356: 93-110.
- Jamali AA, Emmerson BC, Chung C, Convery FR, Bugbee WD. Fresh osteochondral allografts: results in the patellofemoral joint. *Clin Orthop Relat Res*. 2005;437:176-185.
- Kim KW, Han JW, Cho HJ, et al. Association between comorbid depression and osteoarthritis symptom severity in patients with knee osteoarthritis. J Bone Joint Surg Am. 2011;93(6):556-563.
- LaCaille RA, DeBerard MS, Masters KS, Colledge AL, Bacon W. Presurgical biopsychosocial factors predict multidimensional patient: outcomes of interbody cage lumbar fusion. *Spine J*. 2005;5(1):71-78.
- Lavernia CJ, Alcerro JC, Brooks LG, Rossi MD. Mental health and outcomes in primary total joint arthroplasty. *J Arthroplasty*. 2012; 27(7):1276-1282.
- Levy YD, Gortz S, Pulido PA, McCauley JC, Bugbee WD. Do fresh osteochondral allografts successfully treat femoral condyle lesions? *Clin Orthop Relat Res.* 2013;471(1):231-237.
- Lozano Calderon SA, Paiva A, Ring D. Patient satisfaction after open carpal tunnel release correlates with depression. *J Hand Surg Am*. 2008;33(3):303-307.
- 24. Meric G, Gracitelli GC, Gortz S, De Young AJ, Bugbee WD. Fresh osteochondral allograft transplantation for bipolar reciprocal

osteochondral lesions of the knee. Am J Sports Med. 2015;43(3): 709-714.

- 25. Montgomery SR, Foster BD, Ngo SS, et al. Trends in the surgical treatment of articular cartilage defects of the knee in the United States. *Knee Surg Sports Traumatol Arthrosc.* 2014;22(9): 2070-2075.
- Moritomo H, Imaeda T, Gotani H, et al. Reliability of the Hand20 questionnaire: comparison with the 36-Item Short-Form Health Survey. *Hand Surg.* 2014;19(1):1-6.
- Nielsen ES, McCauley JC, Pulido PA, Bugbee WD. Return to sport and recreational activity after osteochondral allograft transplantation in the knee. *Am J Sports Med.* 2017;45(7):1608-1614.
- Nuelle CW, Nuelle JA, Cook JL, Stannard JP. Patient factors, donor age, and graft storage duration affect osteochondral allograft outcomes in knees with or without comorbidities. *J Knee Surg.* 2017; 30(2):179-184.
- O'Toole RV, Castillo RC, Pollak AN, MacKenzie EJ, Bosse MJ; the LEAP Study Group. Determinants of patient satisfaction after severe lower-extremity injuries. *J Bone Joint Surg Am.* 2008;90(6): 1206-1211.
- 30. Patel AA, Donegan D, Albert T. The 36-Item Short Form. J Am Acad Orthop Surg. 2007;15(2):126-134.
- Ring D, Kadzielski J, Fabian L, Zurakowski D, Malhotra LR, Jupiter JB. Self-reported upper extremity health status correlates with depression. J Bone Joint Surg Am. 2006;88(9):1983-1988.
- Roos EM, Roos HP, Lohmander LS, Ekdahl C, Beynnon BD. Knee injury and Osteoarthritis Outcome Score (KOOS): development of a self-administered outcome measure. J Orthop Sports Phys Ther. 1998;28(2):88-96.
- Salaffi F, Cavalieri F, Nolli M, Ferraccioli G. Analysis of disability in knee osteoarthritis: relationship with age and psychological variables but not with radiographic score. *J Rheumatol.* 1991;18(10): 1581-1586.
- Summers MN, Haley WE, Reveille JD, Alarcon GS. Radiographic assessment and psychologic variables as predictors of pain and functional impairment in osteoarthritis of the knee or hip. *Arthritis Rheum.* 1988;31(2):204-209.
- 35. Thakar S, Christopher S, Rajshekhar V. Quality of life assessment after central corpectomy for cervical spondylotic myelopathy: comparative evaluation of the 36-Item Short Form Health Survey and the World Health Organization Quality of Life-Bref. *J Neurosurg Spine*. 2009;11(4):402-412.
- Tirico LEP, McCauley JC, Pulido PA, Bugbee WD. Lesion size does not predict outcomes in fresh osteochondral allograft transplantation. *Am J Sports Med*. 2018;46(4):900-907.
- Torrie AM, Kesler WW, Elkin J, Gallo RA. Osteochondral allograft. Curr Rev Musculoskelet Med. 2015;8(4):413-422.
- Trief PM, Ploutz-Snyder R, Fredrickson BE. Emotional health predicts pain and function after fusion: a prospective multicenter study. *Spine* (*Phila Pa* 1976). 2006;31(7):823-830.
- Tuomainen I, Pakarinen M, Aalto T, et al. Depression is associated with the long-term outcome of lumbar spinal stenosis surgery: a 10-year follow-up study. *Spine J.* 2018;18(3):458-463.
- Ware JE Jr, Sherbourne CD. The MOS 36-Item Short-Form Health Survey (SF-36), I: conceptual framework and item selection. *Med Care*. 1992;30(6):473-483.
- Webster KE, Feller JA, Lambros C. Development and preliminary validation of a scale to measure the psychological impact of returning to sport following anterior cruciate ligament reconstruction surgery. *Phys Ther Sport*. 2008;9(1):9-15.
- 42. Zouzias IC, Bugbee WD. Osteochondral allograft transplantation in the knee. *Sports Med Arthrosc.* 2016;24(2):79-84.