
RESEARCH ARTICLE

Spatiotemporal patterns and ecological

factors of tuberculosis notification: A spatial

panel data analysis in Guangxi, China

Zhezhe Cui1,2☯, Dingwen LinID
1☯*, Virasakdi Chongsuvivatwong2*, Jinming Zhao1,

Mei Lin1, Jing Ou1, Jinghua Zhao3

1 Department of Tuberculosis Control, Guangxi Zhuang Autonomous Region Center for Disease Control and

Prevention, Nanning, Guangxi, China, 2 Epidemiology Unit, Faculty of Medicine, Prince of Songkla

University, Songkhla, Thailand, 3 Institute for Communicable Disease Control and Prevention, Qinghai

Center for Disease Control and Prevention, Xining, China

☯ These authors contributed equally to this work.

* drldw@163.com (DL); cvirasak@medicine.psu.ac.th (VC)

Abstract

Background

Guangxi is one of the provinces having the highest notification rate of tuberculosis in China.

However, spatial and temporal patterns and the association between environmental diver-

sity and tuberculosis notification are still unclear.

Objective

To detect the spatiotemporal pattern of tuberculosis notification rates from 2010 to 2016 and

its potential association with ecological environmental factors in Guangxi Zhuang autono-

mous region, China.

Methods

We performed a spatiotemporal analysis with prediction using time series analysis, Moran’s I

global and local spatial autocorrelation statistics, and space-time scan statistics to detect

temporal and spatial clusters of tuberculosis notifications in Guangxi between 2010 and

2016. Spatial panel models were employed to identify potential associating factors.

Results

The number of reported cases peaked in spring and summer and decreased in autumn and

winter. The predicted number of reported cases was 49,946 in 2017. Moran’s I global statis-

tics were greater than 0 (0.363–0.536) during the study period. The most significant hot

spots were mainly located in the central area. The eastern area exhibited a low-low relation.

By the space-time scanning, the clusters identified were similar to those of the local autocor-

relation statistics, and were clustered toward the early part of 2016. Duration of sunshine,

per capita gross domestic product, the treatment success rate of tuberculosis and participa-

tion rate of the new cooperative medical care insurance scheme in rural areas had a signifi-

cant negative association with tuberculosis notification rates.
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Conclusion

The notification rate of tuberculosis in Guangxi remains high, with the highest notification

cluster located in the central region. The notification rate is associated with economic level,

treatment success rate and participation in the new cooperative medical care insurance

scheme.

Introduction

Tuberculosis (TB) is a disease caused by the Mycobacterium tuberculosis (MTB) bacteria. Due

to the high cost of treatment, the disease imposes a heavy burden on a patient’s family and

social development [1]. It is a severe public health problem worldwide, especially in developing

countries. The burden of TB in China is high. According to the World Health Organization

(WHO) [2], the estimated number of TB cases in China was the second highest globally in

2016, after India. Guangxi is an autonomous region located in southern China and is also

regarded as a high TB region with about 50,000 new TB cases reported by National Notifiable

Disease Reported System (NNDRS) every year. It is ranked as the fifth highest TB burden

province in China. The annual notification is about 100 cases per 100,000 population.

Geospatial analytical methods are essential tools for increasing our understanding of public

health problems. There is an increasing number of studies that have used geospatial analytical

methods to analyze disease trends and to detect the association between the health issues and

other factors [3–5]. The TB situation appears complex and spatially heterogeneous in China

[6–7]. Previous studies were based on the provincial and city levels [8–9]. Until now, few stud-

ies have analyzed the spatiotemporal dynamics of clusters at the county level in China [10].

From our preliminary investigations, notification of cases in Guangxi also exhibits spatial and

temporal heterogeneity. Some areas of Guangxi have apparently higher notification rates than

other areas. This gap persists even after implementation of active case detection in low notifi-

cation areas. However, there is a need to quantify these differences using appropriate statistical

methods, and to detect similar clusters for special implementation of disease control. In addi-

tion, some ecological and environmental factors have been reported as being associated with

disease occurrence [11–13]. Diversity of ecological environment in Guangxi indicates that

there are possibly some independent variables influencing the spread of the disease [14].

Unfortunately, studies of TB clustering in Guangxi have rarely been reported in the past. Spa-

tial and temporal patterns of TB notification and the association of those clusters are still

unclear. For these reasons, we performed a spatiotemporal analysis of TB notifications in

Guangxi between 2010 and 2016 using time series analysis, spatial statistical analysis, and

space-time scan statistics to detect high and low notification rate clusters. Spatial panel models

were employed to identify ecological associative factors.

Methods

Data collection

Guangxi has a population of about 46 million. It covers an area of 236,700 km2 and has a 1,020

km border with Vietnam to the south-west. Guangxi is divided into 113 counties and districts.

Currently, the province has three TB control models. The first is a Center for Disease Control

and Prevention (CDC) model covering 51 counties/districts which integrates patient diagno-

sis, treatment and management into one package. The second is the designated hospital model

Spatiotemporal patterns and ecological factors of tuberculosis notification in Guangxi, China
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covering 39 counties/districts which separates patient diagnosis and treatment into the local

designated hospital, and patient management into CDC. The third one is a specialist hospital

model covering two districts which integrates patient diagnosis, treatment and management

into one package in a TB specialist hospital. We collected cases from the NNDRS and those

reported by general hospitals, TB designated hospitals, CDC and specialist hospitals, and veri-

fied by the National TB Program (NTP) [15]. NNDRS is a multifaceted program that includes

a surveillance system for infectious diseases and sharing of data. Public health officers use this

information to monitor, control, and prevent the occurrence and spread of nationally notifi-

able infectious diseases and conditions. The NNDRS records information including name,

age, gender, current address, result of sputum test and final diagnosis. TB diagnostic routines

include symptoms screening, image examination, sputum smear and culture. If a patient is

suspected as high risk for Multiple Drug Resistant Tuberculosis (MDR-TB) then species iden-

tification, drug sensitivity testing and Xpert-MTB/RIF assay will be performed. We excluded

patients who were diagnosed with non-tuberculosis Mycobacterial (NTM) infection by species

identification. Confirmed cases are treated in TB designated hospitals, CDC or specialist hos-

pitals following the directly-observed treatment strategy which includes sustained political and

financial commitment, diagnosis by quality ensured sputum-smear microscopy, standardized

short-course anti-TB treatment given under direct and supportive observation, an uninter-

rupted supply of high quality anti-TB drugs and standardized recording and reporting.

Overall, 365,179 TB cases during 2010 and 2016 in Guangxi were reported in this study. We

aggregated the cases by county and matched them by area code. Annual population data for

each administrative district was obtained from the Sixth Nationwide Population Census data-

base of 2011. Ecological environment data included climatic information, land use, socioeco-

nomic information, health resource and health problems. Table 1 summarizes the

classification of ecological environment variables and data sources. After data collection, we

constructed a panel data frame with the cross-section of observations repeated over several

time periods. We obtained vector map files from the Global Administrative area database

(GADM Inc, California, US).

Ethical review. This study was approved by the Institutional Review Board of Guangxi

CDC (GW-2017-0001). The ethics committee approved the consent procedure. All partici-

pants provided their written informed consent to participate in this study.

Statistical analysis

Time series. The number of TB cases was aggregated by month for trend analysis. We

conducted the time series analysis at the provincial level. The time series included 84 months

starting from January 2010 and ending in December 2016, and was performed using the IBM

Table 1. Classification of ecological environment variables and data sources.

Classification Variable (abbreviation) Data sources

Climatic information Altitude (ALT), Annual rainfall (AR), Duration of sunshine (DOS), Average temperature (AT), Average

humidity (AH)

Guangxi Weather Bureau

Land use Forest cover (FC), Trees in woodland forest (TWF), Trees in sparse forest (TSF), Scattered trees (ST),

Trees planted by the side of farm houses, roads, Rivers and fields (TPS)

Guangxi Forestry Bureau

Socioeconomic

information

Sex ratio (SR), Total gross domestic product (TGDP), Per capita gross domestic product (PGDP) Guangxi Yearbook

Health resource Special funds for TB control (TBF), Health funds (HF), Number of hospitals (NOH), Number of grass-

root health facility (NGHF), Number of doctors (NOD), Number of other health workers (NOHW),

Participation rate of new cooperative medical care insurance in rural areas (PRR)

Guangxi Health and Family

Planning Commission

Health problem Treatment success rate of TB (TSRTB), Prevalence of HIV/AIDS (PHIV) Guangxi Health and Family

Planning Commission

https://doi.org/10.1371/journal.pone.0212051.t001
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SPSS statistical data editor (version 19.0, Statistical Product and Service Solutions, Chicago,

IL). We used the "forecasting" function to form the sequence chart, and selected the better-pre-

dicted model. The predicted model was obtained, together with model diagnostics, and pre-

dicted values for the early-warning of TB reporting.

Spatial autocorrelation analysis. Moran’s I enabled us to measure spatial autocorrela-

tions [16] and has been widely used in the spatial analysis of TB [17–18]. Spatial autocorrela-

tion statistics include global spatial autocorrelation and local spatial autocorrelation. The

global spatial autocorrelation estimates the overall degree of dependency among TB notifica-

tion in a geographic space. The local indicators of spatial association (LISA-cite Anselin) can

be used to identify the location and types of clusters. We used GeoDa 1.8.12 (Luc Anselin, Uni-

versity of IL Linois, Urbana-Champaign, US) to analyze the spatial autocorrelation. We also

used the empirical Bayes adjustment to take into account variance instability of rates in the

global and local spatial autocorrelation.

A Moran’s I value greater than 0 indicates that the notification of TB in neighboring districts

exhibits spatial autocorrelation compared to the non-neighboring districts. Notification of dis-

tricts located close together have similarly high or low rates compared to those located farther

away. A value of 0 means that the results may vary slightly due to random permutation. A value

less than 0 indicates that there is a negative correlation. Dissimilar values occur near one another

[19]. A P-value less than 0.05 suggests that we can reject the null hypothesis (notifications are dis-

tributed randomly and spatially) and conclude that there are some spatial autocorrelations in the

study area. In order to obtain more robust results, we increased the number of permutations to

999. The global Moran’s I statistic is also the mean of the local spatial Moran’s I statistic [16].

GeoDa can output the significance map which shows the locations with significant local

Moran I statistics in different shades, and a local indicator of spatial association cluster map.

The high-high (red districts in the high notification cluster map) and low-low (blue districts in

the low notification cluster map) locations are typically regarded to be TB notification hot and

cold spots, respectively, while the high-low and low-high locations (negative local spatial auto-

correlation) are termed spatial outliers. Outliers are single locations by definition.

Space-time scan statistic. In order to test spatial and temporal interaction and evaluate

the relative risk for each cluster, we calculated the space-time scan statistics developed by Mar-

tin Kulldorff using SaTScan v 7.0.2. For continuous scan statistics, SaTScan uses a continuous

Poisson model [20]. The scanning window is an interval (in time), a circle or an ellipse (in

space) or a cylinder with a circular or elliptical base. Multiple different window sizes are used.

For each location and size of the scanning window, the window with the maximum likelihood

is the most likely cluster, that is, the cluster least likely to be due to chance [21]. The alternative

hypothesis is that there is an elevated risk within the window as compared to outside. The

space-time scan window with maximum likelihood value is defined to be the most likely clus-

ter and other significant windows are defined to be secondary clusters [22]. R v 3.3.2 was used

to display the three-dimensional visualization of the scan window.

Spatial panel models. The models for spatial panel data were used to estimate the associa-

tion between the ecological environment factors and notification rate of TB, which could ana-

lyze data with spatial dependence and also enable us to consider spatiotemporal heterogeneity.

We introduced the spatial panel data models to test the various spatial panel data specifica-

tions. Spatial panel data models capture spatial interactions across spatial units and over time.

We consider the implementation of maximum likelihood estimators in the context of fixed as

well as random effects spatial panel data models according to the following model:

yit ¼ r
X

j
wijyjt þ b

0Xit þ ai þ gt þ εit
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where yit is the annual notification rate of TB. The spatial unit effect, αi captures unobserved

time-invariant heterogeneity and will decrease time-invariant bias from correlated effects. In

this section, we used the “splm” package in R to run spatial panel data models. Before running

the program, we created a spatial weights matrix according to the neighboring relationship of

each location. The object was a list of various elements including the estimated coefficients, the

vector of residuals and fitted values. The Baltagi, Song and Koh SLM1 marginal test was

employed for checking the random effects [23].

Results

Descriptive analysis of TB cases

Of the 365,179 active TB cases collected from NNDRS the annual notifications had clear sea-

sonal fluctuations. The mean annual notification rate of active TB was 113.1/100,000 popula-

tions (108.5–117.6). The annual notification rate has fallen by an average of 1.74%. The annual

notification rates showed a downtrend (Chi-square for linear trend = 159.76, P-value < 0.001).

Time series analysis

Fig 1 shows the monthly time series of active TB cases during 2010–2016 as well as the fitted

curves and forecast curves for 2017, including the prediction intervals. The type of forecast

model was a simple seasonal model (Stationary R2 = 0.517, normalized BIC = 12.121). In gen-

eral, cases peaked in spring and summer and decreased in autumn and winter. As shown in

Table 2, the total forecasted number of reported cases in 2017 was 49,946 with a peak from

March to July.

Spatial autocorrelation analysis

As shown in Table 3, Moran’s I statistics of every year were greater than 0 (range: 0.363–

0.536). During the study period, notification of TB cases in Guangxi exhibited spatial autocor-

relation globally.

From the result of local spatial autocorrelation analysis with empirical Bayes adjustment

(Table 3, Fig 2), the most significant hot spots (high-high relation—districts of high notifica-

tion rates located close to other districts with high notification rates) were mainly located in

the central part of Guangxi. Some neighboring districts such as Du’an, Yizhou, Xincheng

and Xingbin consistently exhibited a high-high relation as the strongest hot spots during the

period of observation. Districts in eastern Guangxi exhibited a low-low relation (significant

cold spots—districts with low notification rates located close to other districts with low notifi-

cation rates). The number of districts exhibiting high-low and low-high correlation were

always less than 5. However, the pattern of clustering in some districts changed over the six-

year study period. For example, two counties located in the northwest of Guangxi changed

from non-significant to significant hot spots, while three counties in the southwest of Guangxi

changed from significant hot spots to a non-significant area. The number of districts in signifi-

cant hot spots decreased from 19 in 2010 to 15 in 2016. In contrast, the number of districts

exhibiting significant cold spots in 2016 was more than that in 2010 (28 vs 21).

Space-time scan statistic

Table 4 shows space-time scan statistics in Guangxi from 2010 to 2016 which considers the

spatial and temporal interaction. There was one most likely cluster and three secondary clus-

ters identified. Fig 3 shows that the most likely cluster and secondary cluster #3 were the high

notification rate districts (spatiotemporal hot spots) and included 17 counties/districts while

Spatiotemporal patterns and ecological factors of tuberculosis notification in Guangxi, China
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the other two clusters were the low notification rate districts (spatiotemporal cold spots) and

included 34 counties/districts. As the most likely cluster, the center of the circle is Xincheng

county with a radius of 77.3 km, and included nine counties. The cluster period persisted from

February 2012 until July 2015. Residents of this region and during this time period had a 1.93

times higher risk of developing active TB compared to those living outside this region. The log

likelihood ratio was also very high (4957.7). Another hot spot was located in the south of

Guangxi near the Vietnamese border, and persisted from April 2014 until December 2015.

The two cold spots were located in the eastern and northern parts of Guangxi, and persisted

almost across the whole study period with both having a low relative risk (0.62 and 0.63).

Spatial panel models

As shown in Table 3, Moran’s I values were all greater than 0 between 2010 and 2016. This

indicated the existence of high spatial dependency on the notification rate of TB, thus we took

the spatial autocorrelation into consideration. Three panel models with spatial lag and spatial

error correlation were fitted: an ordinary least squares model, a fixed effects model and a ran-

dom effects model. The results are shown in Table 5. Spatial autoregressive coefficients

Fig 1. Monthly time series and forecast curve of TB notification in Guangxi, 2010–2017.

https://doi.org/10.1371/journal.pone.0212051.g001

Table 2. Forecasted values for tuberculosis notification in 2017.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Total

Forecast 3437 3542 4672 4467 4545 4407 4492 4245 4066 3924 3836 4313 49946

Prediction intervals 2628-

4245

2729-

4355

3855-

5488

3646-

5287

3721-

5370

3579-

5236

3660-

5325

3408-

5081

3225-

4906

3079-

4785

2988-

4685

3461-

5165

39980-

59911

https://doi.org/10.1371/journal.pone.0212051.t002
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(lambda, λ) indicate the spatial heterogeneity of variables. By comparing their error variance

parameters (rho, ρ) as well as checking the random effects [24], we found that the random

effects model was better than the other two. The error variance of the random effects model

was closest to zero, and the SLM1 marginal test accepted the alternative hypothesis of random

effects in the model. This indicates that the intercept term in the random effects model

includes the average effect of cross-section random error and time random error, and this

model is more suitable for fitting to the data. The duration of sunshine, per capita gross

domestic product, the treatment success rate and participation rate of new cooperative medical

care insurance in rural areas had a significant negative association with the TB notification

rate.

Discussion

This study explored the spatiotemporal pattern of active TB transmission and its ecological

association using time series analysis, spatial autocorrelation analysis, space-time scan statistics

and spatial panel modeling. The number of active cases reported from the NNDRS is

approaching the number estimated by WHO [25]. To our knowledge, this the first study to

conduct a spatial panel data analysis of active TB cases in Guangxi, China.

While the global incidence of TB has fallen by an average of about 2% annually between

2000 and 2017 [2], from our study, the notification of active TB cases in Guangxi has had a

similar trend. The annual reports of TB cases have remained at a high level with an annual

decline rate of 1.74%. The goal of eliminating TB by 2035 will be difficult to achieve unless we

take scientific and effective measures to detect TB patients.

The times series of TB in Guangxi showed a seasonal trend over the seven-year period with

peaks occurring from March to July. This result is similar to previous studies in Guangxi, Paki-

stan and Portugal [26–28]. The peaks appeared in spring and summer, a pattern similar to

India [29]. Some researchers suggest that most patients who are infected with MTB in the win-

ter then develop active infections during the next 3–6 months [30]. Although about one-third

of the population has been infected with TB in the world, many studies from different areas

and countries have shown evidence that recent transmission could be the main contributor to

epidemics with the development of molecular epidemiology [31–32]. This indicates that a cer-

tain percentage of patients have recently been infected with mycobacterium tuberculosis, and

developed active disease in a short time. Furthermore, delays in diagnosis and reporting can

also lead to the postponement of peaks [10].

In this study, we applied Moran’s I statistics with empirical Bayes adjustment to identify the

global and local autocorrelation of cases at the county level. The result of greater than 0 indi-

cated that cases reported by the health department were clustered geographically at the county

Table 3. Spatial autocorrelation analysis of tuberculosis notification results from 2010 to 2016.

Year Global spatial autocorrelation Number of spatial autocorrelation locations

Moran's I Statistic high-high low-low high-low low-high not significant

2010 0.536 19 21 2 1 69

2011 0.476 16 23 2 0 71

2012 0.512 15 25 1 0 71

2013 0.470 12 23 4 1 72

2014 0.520 12 22 2 2 74

2015 0.363 10 24 6 3 69

2016 0.451 15 28 5 3 61

https://doi.org/10.1371/journal.pone.0212051.t003
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level. The high and low level of notification exhibit the correlation with each other. Further-

more, it shows high spatial dependency on the notification of TB. The panel models with

Fig 2. Cluster map for local spatial autocorrelation analysis of TB notification rate in Guangxi, 2010–2016.

https://doi.org/10.1371/journal.pone.0212051.g002
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spatial lag and spatial error correlation maybe an excellent choice [33]. Local patterns of cases

display the actual location of high-high relationship (hot spots) and low-low relationship (cold

spots). The most significant hot spots were mainly gathered in the central and western parts of

Guangxi. Some neighboring districts (Du’an, Yizhou, Xincheng and Xingbin) always exhibited

high-high pattern as the strongest hot spots for all seven years. Although the TB prevention

department has supplied resource to improve case finding in high TB notification districts, it

has little effect on TB control. This inspires us to detect the persistent promotors of the TB

transmission.

Table 4. Space-time clusters of tuberculosis cases in Guangxi from 2010 to 2016.

Cluster Central point of scan

window

Latitude

(N)

Longitude

(E)

Radius

(km)

Cluster period Number of districts

in cluster

Number of cases in

cluster

RR LLR P-value

Most likely

cluster

Xincheng 24.07 108.66 77.32 2012/2/1 to

2015/7/31

9 29846 1.93 4957.7 <0.001

Secondary

cluster # 1

Cenxi 22.92 110.99 126.52 2012/9/1 to

2016/2/29

15 27544 0.62 3445.89 <0.001

Secondary

cluster # 2

Lingchuan 25.42 110.32 94.1 2012/9/1 to

2016/2/29

17 11965 0.63 1401.91 <0.001

Secondary

cluster # 3

Dongxing 21.54 107.97 115.32 2014/4/1 to

2015/12/31

8 11072 1.32 373.81 <0.001

RR: Relative risk; LLR: Log-likelihood ratio

https://doi.org/10.1371/journal.pone.0212051.t004

Fig 3. 3D cluster window of TB notification based on space-time scan in Guangxi, 2010–2016.

https://doi.org/10.1371/journal.pone.0212051.g003
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The data used in this study has two dimensions (location-based variables and timeline).

The space-time scan technique which enables researchers to detect the interaction of space

and time has been widely used to find spatiotemporal clusters in cancers, including brain can-

cer [34], lung cancer [35], gastric cancer and breast cancer [36–37], and also infectious diseases

such as hand-foot-mouth disease [38,3], dengue fever and tuberculosis [39–40]. A previous

study of spatiotemporal clustering characteristics of TB in China showed that the most likely

clusters, included Guangxi had a higher TB burden and a higher risk of TB transmission

between 2005 and 2011 [8]. By using the space-time scan statistic, we detected one most likely

cluster and three secondary clusters in Guangxi between 2010 and 2016 with smaller space and

time scales. These clusters were identified similar to findings from the Moran’s I local autocor-

relation statistics but with the time variable introduced into the model to detect the temporal

clusters. Xincheng county is the central point of the most likely cluster, located in the center of

Table 5. Results of panel models with spatial lag and spatial error correlation.

Variable/ parameter Ordinary least squares model Fixed effects model Random effects model

Estimate P-value Estimate P-value Estimate P-value

Altitude -0.0230 0.0484� -35.9945 0.0439� 0.0198 0.5463

Annual rainfall -0.2190 0.0030�� 0.0142 0.8108 -0.0244 0.6994

Duration of sunshine -0.0961 0.0794. -0.1005 0.0214� -0.0963 0.0358�

Average temperature -0.1070 0.4871 0.2208 0.3042 0.3891 0.0592.

Average humidity -0.0327 0.8523 -0.2010 0.216 -0.0765 0.6542

Forest cover -0.1085 0.0095�� 0.1861 0.3742 -0.0510 0.6329

Trees in woodland Forest 0.0070 0.5992 0.2318 0.0008��� 0.0182 0.5265

Trees in sparse forest 0.0117 0.0347� 0.0127 0.0331� 0.0063 0.2937

Scattered trees 0.0004 0.9457 0.0091 0.0605. 0.0059 0.2252

Trees planted by four sides 0.0146 0.0122� -0.0089 0.1893 -0.0085 0.2085

Sex ratio -0.4416 0.0373� 0.6122 0.2045 0.0075 0.985

Total gross domestic product -0.0489 0.0074�� 0.0074 0.7583 -0.0028 0.9034

Per capita gross domestic product -0.1432 <0.0001��� -0.0645 0.0016�� -0.0534 0.0105�

TB control fund 0.0056 0.7048 0.0065 0.5622 0.0107 0.3657

Health fund -0.0062 0.5191 -0.0128 0.0752. -0.0073 0.3342

Number of hospitals -0.0506 0.0221� 0.0181 0.5730 -0.0050 0.8676

Number of grass- root health facility 0.0845 0.0001��� 0.1729 0.0141� 0.0702 0.1029

Number of doctors -0.4139 0.0003��� -0.0029 0.9847 -0.1197 0.4041

Number of other health workers 0.4332 0.0001��� 0.0477 0.7222 0.1434 0.284

Treatment success rate of TB -0.3841 0.0002��� -0.4089 <0.0001��� -0.3940 0.0001���

Prevalence of HIV/AIDS 0.0494 <0.0001��� 0.0024 0.8175 0.0150 0.1532

Participation rate of rural areas insurance 0.3884 0.1330 -1.1529 <0.0001��� -0.6083 0.0156�

rho (ρ)a -0.7930 <0.0001 ��� -0.7578 <0.0001 ��� -0.7469 <0.0001 ���

lambda (λ)b 0.7879 <0.0001 ��� 0.6384 <0.0001 ��� 0.6487 <0.0001 ���

SLM1c 30.0490 <0.0001 ���

a: rho, error variance parameter.

b: lambda, spatial autoregressive coefficient.

c: SLM1, Baltagi, Song and Koh SLM1 marginal test for checking random effects.

Significance codes

���, 0.001

��, 0.01

�, 0.05.

https://doi.org/10.1371/journal.pone.0212051.t005
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Guangxi with a high relative risk occurring between February 2013 and July 2015. The resi-

dents of nine neighboring counties in the most likely cluster had a 1.93 times higher risk of

developing active TB compared to those living outside these counties. Compared with the pop-

ulation with high a TB notification rate, the people living in the eastern areas had a lower risk

of TB (RR = 0.62, Table 3).

Spatial dependence might exist between the outcome and potential impacts at each unit,

especially in infectious disease monitoring data [41]. If the variables show spatial dependence,

it is appropriate to use the spatial models to detect the influencing factors of observation. Spa-

tial panel models considering the temporal interaction effects between the variables at each

spatial unit were commonly used in recent years. In addition, the use of spatial panel model

results in more degrees of freedom thus increasing efficiency in the estimation. This study

quantified the association using spatial models in Guangxi, and highlights the random effects

of spatial panel models to determine the association between TB and ecological environment

factors. As our results suggest, a negative relationship between duration of sunshine and TB

notification rate was observed, which is consistent with the findings of other recent studies

[42–43]. The duration of sunshine in districts with high notification rates was shorter than in

districts with low notification rates. This implies that the less someone is exposed to sunshine,

the higher the risk of contracting TB. A mechanism for this relationship is that decreased vita-

min D levels arising from reduced sunshine exposure impairs the host immune defense system

[44]. Once Mycobacterium tuberculosis enters the body, it flourishes, resulting in the occur-

rence of active tuberculosis. Therefore, it is necessary to encourage people to increase outdoor

exercise, especially in the districts with a shorter duration of sunshine. The other significant

negative variable is per capita gross domestic product, which is one of the important indexes

to measure socioeconomic development. Since poverty was reported as one of the risk factors

for TB in the USA [45], it would be problematic if a high TB notification rate correlated with a

low-socioeconomic status in the middle of Guangxi. As a logical conclusion based on the

study from the USA, low income families tend to live in crowded conditions with scarce health

care resources, and these are factors that can facilitate the spread of TB. The growth of econo-

mies in eastern Guangxi (TB cold spots) which share a boundary with some counties of neigh-

boring Guangdong province (a more developed province in China) has kept a low level of TB

notification. In this study, the lower treatment success rate of TB and inadequate medical

insurance coverage led to the long-term existence of the source of infection in a community,

which is similar to results of other studies [46–47].

Limitations

There are some limitations in this study. Firstly, the system was based on passive case findings,

a method which was likely to miss some cases. Fortunately, according to the investigation

results of the missing rate of infectious diseases, the missing rate of TB notification in Guangxi

is less than 5% [48–49]. Patients who do not visit a medical facility should also be considered.

Active case finding and advanced diagnostic techniques are two ways to improve TB case

detection rates. Secondly, we conducted the space-time scan statistics based on a cylindrical

scanning window. Since districts are irregular, this might have led to an erroneous judgment

of the number of units in a cluster. Unfortunately, the Flex-scan for irregular spatial detecting

cannot incorporate time. Thirdly, some potential risk factors such as environmental pollution

and socio-economic factors, which may be associated with the TB clustering, were not

included in the spatial model. This is due to the lack of monitoring stations at the county level

[50–52]. In addition, TB notification in the neighbor cluster may be different due to differ-

ences in performance of local TB control programs.
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Conclusion

This study detected a spatial and temporal pattern of TB transmission in Guangxi Zhuang

autonomous region using spatio-temporal statistics. The main cluster was located in the cen-

tral part of Guangxi. Spatial panel modeling with random effects identified that duration of

sunshine, per capita gross domestic product, treatment success rate and participation rate of

the new cooperative medical care insurance scheme in rural areas had a significant negative

association with the TB notification rate.
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