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Transforming growth factor (TGF-𝛽1) is among the strongest factors of liver fibrogenesis, but its association with Schistosoma-
caused liver fibrosis is controversial. Tissue transglutaminase (tTG) is the principal enzyme controlling TGF-𝛽1 maturation and
contributes to Sj-infected liver fibrosis. Here we aim to explore the consistency between tTG and TGF-𝛽1 and TGF-𝛽1 source and
its correlation with liver fibrosis after Sj-infection. TGF-𝛽1 was upregulated at weeks 6 and 8 upon liver fibrosis induction. During
tTG inhibition, TGF-𝛽1 level decreased in sera and liver of infected mice. TGF-𝛽1 showed positive staining in liver containing Sj
adult worms and eggs. TGF-𝛽1 was also detected in Sj adult worm sections, soluble egg antigen and Sj adult worm antigen, and adult
worms’ culture medium.The TGF-𝛽1 mature peptide cDNA sequence and its extended sequence were amplified through RT-PCR
and RACE-PCR using adult worms as template, and sequence is analyzed and loaded to NCBI GenBank (number GQ338152.1).
TGF-𝛽1 transcript in Sj eggs was higher than in adult worms. In Sj-infected liver, transcriptional level of TGF-𝛽1 from Sj, but
not mouse liver, correlated with liver fibrosis extent. This study provides evidence that tTG regulates TGF-𝛽1 and illustrates the
importance of targeting tTG in treating Sj infection-induced fibrosis.

1. Introduction

Schistosomiasis is one of the nine neglected tropical diseases
that received much attention over the last several years. After
Schistosoma cercariae penetrate the hosts’ skin and develop
into adult worms, they reside in tributaries of the portal
vasculature where they continuously release eggs. The portal
blood flow then carries the eggs into the liver where they
induce production of inflammatory granuloma and, subse-
quently, tissue repair and fibrosis. Schistosoma japonicum
(Sj) mainly damages mammalian hosts by producing liver
granuloma and fibrosis [1].

Transforming growth factor (TGF-𝛽1) is one of the
strongest factors that lead to liver fibrosis. TGF-𝛽1 promotes

hepatic stellate cell (HSC) proliferation and collagen syn-
thesis in the activated HSC [2–4] or modulates deposition
of extracellular matrix (ECM) components and immune
functions [5]. However, the relationship between TGF-𝛽1,
liver fibrosis, and Schistosoma infection is controversial. Alves
Oliveira et al. [6] and Kaviratne et al. [7] have demonstrated
that IL-13, but not TGF-𝛽1, is strongly associated with fibrosis
during S. mansoni (Sm) infection. However, Techau et al.
[8] discovered that pigs prenatally exposed to Sj showed
higher levels of TGF-𝛽1 mRNA expression in the liver
than postnatally infected and noninfected pigs. TGF-𝛽1 has
sometimes been accepted as the key factor inducing liver
granuloma and fibrosis during Sj infection because some
researchers have recognized TGF-𝛽1 inhibition as one of
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the factors that can be used to evaluate the antifibrotic
effects of drugs on hosts infected with Sj [9–11]. However,
systemic studies that reveal whether liver fibrosis caused by
Sj infection is dependent or not dependent on TGF-𝛽1 are
lacking.

In vertebrates, the TGF-𝛽 superfamily is a structurally
conserved but functionally diverse group of proteins with at
least 35 members, including the prototypic TGF-𝛽 subfamily
(comprising TGF-𝛽1, TGF-𝛽2, and TGF-𝛽3), an extensive
bone morphogenetic protein (BMP) subfamily (with 20
members), the growth and differentiation factor subfamily (at
least 9members), and the activin/inhibin subfamily (InACT).
A common feature shared by the members of this family is
that the mature bioactive forms are homo- or heterodimers
corresponding to the cleaved carboxyterminal regions of
larger preproproteins [12].The activatedTGF-𝛽1 bindingwith
specific receptors in the cellmembrane through the Smad sig-
nal transduction pathways plays the biological role [13]. Some
members of TGF-𝛽 superfamily, including InACT, BMP,
receptors of TGF-𝛽 [14–18] and Smad1, Smad2, and Smad4,
and their signaling pathway-associated molecules have been
identified in Schistosoma [19–22]. InAct plays important roles
in Sm development and embryogenesis [23]. In addition,
Hirata et al. [24] revealed the expression of TGF-𝛽-like
molecules in Sj cercariae, schistosomula, eggs, and adult
worms by using antibodies against anti-mouse TGF-𝛽1, TGF-
𝛽2, and TGF-𝛽3, respectively. However no study has revealed
that members of TGF-𝛽 subfamily exist in Sj, as well as
their roles in the parasite development or pathogenesis, even
though genomes of Sj and Sm have already been analyzed
[25, 26].

Molecular mechanisms of host-parasite interaction are
complex and involve much molecular cross talk, including
ligands and receptors, substrates, and enzymes, which are
either from the host or from the parasite. Up to now, many
studies have indicated that tissue transglutaminase (tTG)
and TGF-𝛽1 are closely related. TGF-𝛽1 dimer is synthesized
intracellularly and combines with latency-associated peptide
(LAP) to form the small latent TGF-𝛽 complex (SLC). The
mature inactive SLC then forms the large latent TGF-𝛽
complex (LLC) by covalent bonding with the large latent
TGF-𝛽 binding protein (LTBP-1) and is stored in the ECM
[27, 28]. Latent TGF-𝛽 activation in the ECM involves tTG
as the principal enzyme that covalently cross-links LBTP to
major ECM proteins, such as fibronectin, thereby controlling
the rate of TGF-𝛽 maturation [29–31]. Upregulation of
extracellular tTG increases the levels of active TGF-𝛽 both in
cell-culture models and in vivo in various pathological states
[32, 33].

Our previous research showed that tTG is involved in the
development of Sj-infection-induced liver fibrosis in mice,
and the underlying mechanism may be associated with tTG-
regulated IL-13 expression [34]. In this study, we investigated
the association between tTG and TGF-𝛽1 that originated
from the host or from Sjusing Sj-infectedmice as liver fibrosis
model.We showed that tTG-regulated TGF-𝛽1 in the parasite
is related to mouse liver fibrosis after Sj-infection.

2. Materials and Methods

2.1. Ethics Statement. This study was performed in strict
accordance with the recommendations of the Guide for the
Care and Use of Laboratory Animals of State Scientific and
Technological Commission. The protocol was approved by
the Committee on the Ethics of Animal Experiments of
the University of Guangzhou Medical University (permit
number: SCXK(Guangdong)2011-0029). All surgeries were
performed under sodiumpentobarbital anesthesia, and every
effort was made to minimize suffering.

2.2. Parasites, Animals, and Culture Medium of Sj Adult
Worms. Female BABL/c mice (6 weeks old to 8 weeks old;
from the Experimental Animal Center of Sun Yat-Sen Uni-
versity, Guangzhou, China) weremaintained according to the
guidelines approved by the Guangzhou Medical University
Animal Experiment and Care Committee. Cercariae of Sj
Chinese mainland strain were obtained from the infected
Oncomelania hupensis (Jiangsu Institute for Schistosomiasis
Control, Wuxi, China). Adult schistosomes were recovered
by hepatic-portal perfusion from BABL/c mice that had
been percutaneously exposed to 20 ± 3 cercariae. Adult
parasites and eggs were collected and were maintained in
phosphate-buffered saline (PBS) for soluble worm antigen
(SWA) and soluble egg antigen (SEA) preparation. Twenty
pairs of freshly washed adult worms were transferred to 2mL
RPMI 1640 medium supplemented with 1mM glutamine,
1000 units/mL penicillin, and 1000 𝜇g/mL streptomycin for
2 h. Worms were finally cultured in 2mL sterile RPMI
1640 medium supplemented with 20% sterile fetal bovine
serum (FBS), 1mM glutamine, 100 units/mL penicillin, and
100 𝜇g/mL streptomycin for 16 h.The adult Sj culturemedium
and negative control medium (sterile RPMI 1640 medium
supplemented with 20% FBS, 1mM glutamine, 100 units/mL
penicillin, and 100 𝜇g/mL streptomycin) were collected.

2.3. Reagents. TGF-𝛽1 ELISA kit was obtained from R&D
systems.The following antibodies were used forWestern blot
analysis or immunohistochemistry (IHC) assay: anti-TGF-
𝛽1(V) (sc-146, Santa Cruz Biotechnology), anti-GAPDH
(Cell Signaling Technology), anti-alpha SMA (BOSTER),
anti-Smad2 (sc-101153, Santa Cruz Biotechnology), and anti-
phosphospecific Smad2 (sre465/476, MILLIPORE).

2.4. Parasite Infection, Cystamine (CTM) Administration,
and Sample Collection. Forty BABL/c mice were infected
cutaneously with 20 ± 3 Sj cercariae for 5, 6, 8, or 12 weeks
(10 mice in each time course), and 10 uninfected mice served
as the control. CTM (Sigma-Aldrich, St. Louis, USA, tTG
inhibitor) treatment inmice was shown in our previous study
[34]. CTM (10−2mM) was administered in each mouse once
per day for 7 d, whereas PBS was used as control. Blood
sera for ELISA were collected from each group by cutting
the caudal vein of the mice. Perfusions of the hepatic portal
system of Sj-infected mice were performed to collect adult
worms, as described previously. Meanwhile, liver lobes were
prepared for Western blot analysis, IHC or RT-PCR, and
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qPCR. Mouse infection, CTM administration, and sample
collection were repeated at least twice.

2.5. TGF-𝛽1 Detection by ELISA. Blood samples were col-
lected by cutting the tail veins of mice in each group
and placed into EP tube with 1000 IU/mL heparin (10 𝜇L),
after which blood plasma was collected (3000 rpm, 10min
centrifugation). Blood plasma was diluted 1 : 4 ratio and
was immediately used in experiments. TGF-𝛽1 level were
detected using the mouse DuoSet ELISA Development kit
(R&D Systems: DY1679) according to the manufacturer’s
instructions.

2.6. Western Blot. The liver of Sj-infected mouse was col-
lected and was ground into powder in liquid nitrogen,
and moderate amount of protein lysis solution (RIPA from
Shanghai Bocai Biological Technology Co., Ltd.) was added
for liver tissue protein preparation. Protein concentration
was determined by Bradford assay (Bio-Rad, Redmond,WA).
Tissue lysates (30 𝜇g) were separated by 10% SDS-PAGE and
then transferred onto polyvinylidene fluoride membranes
(Amersham, Bucks, UK). The membranes were blocked with
5% nonfat dried milk before incubation with target-specific
antibodies. Protein bands were detected with ECL reagents.

2.7. RT-PCR, Rapid Amplification of cDNA Ends-PCR (RACE-
PCR), and Real-TimeQuantitative Polymerase Chain Reaction
(Q-PCR). Liver tissues of mice or Sj adult worms from
Sj-infected mice were homogenized in Trizol (Invitrogen,
Carlsbad, CA), and total RNA was extracted according to the
manufacturer’s protocol. RNA purity was assessed by spec-
trophotometry. Reverse transcription reactions for cDNA
synthesis were performed using PrimeScript RT Master Mix
(TAKARA). Relative expression level of mRNA was deter-
mined byQ-PCRwith SYBRGreen I PCRMaster (TAKARA)
using ABI7500. Data were normalized with mouse GAPDH
and Sj tubulin-𝛼. PCR products were analyzed by elec-
trophoresis on 1% agarose gels containing ethidium bromide,
andQ-PCR results were expressed as fold amplification using
the 2−ΔΔCt method. Each experiment was repeated three
times.

2.8. Statistics. All experiments were repeated at least twice
with similar results. Data were compared by Student’s 𝑡-
test. Results were expressed as mean ± SD. 𝑃 < 0.05 was
considered significant.

3. Results

3.1. TGF-𝛽1 Is Upregulated in Sj-Infected Mice. We previously
reported a high extent of post-Sj-infection hepatic fibrosis
in mice. Liver granuloma began at week 5, and fibrosis
progressed most seriously at week 8, whereas chronic liver
fibrosis appeared at week 12 [34]. TGF-𝛽1 was usually the key
factor in inducing liver fibrosis compared with other causes
[2, 3]. TGF-𝛽1 concentration in mouse serum increased
5, 6, and 8 weeks after Sj infection, and the highest level
was observed at week 6 (Figure 1(a)). Western blot analysis

and IHC assay revealed that TGF-𝛽1 protein level in Sj-
infected mouse liver also increased (Figures 1(b) and 2(c)). In
addition, Smad2, the downstream signaling protein of TGF-
𝛽1 pathway, was also activated in mice liver after Sj infection
(Figure 1(b)). TGF-𝛽1 could be involved in liver fibrosis in a
Smad2-dependent manner during Sj infection. TGF-𝛽1 was
localized either in the cells of blood vessels where Sj adult
worms reside or in the eggs of Sj and in the cells of liver tissue
where eggs are deposited (Figure 1(c)). The results suggested
that TGF-𝛽1 likely promotedhepatic fibrosis after Sj infection.

3.2. Mature TGF-𝛽1 Level Is Decreased along with Alleviation
of tTG Activity. To clarify whether tTG induces TGF-𝛽1
maturation during Sj infection, tTG activity inhibitor CTM
was used to block tTG activity. The extent of liver fibrosis
was suppressed after Sj-infected mice were treated with
CTM, and no effect was observed in untreated mice [34].
ELISA results showed that the concentrations of TGF-𝛽1
mature peptide were 296.21 and 480.35 pg/mL in mouse sera
with and without CTM treatment, respectively (Figure 2(a))
(𝑃 < 0.05). Western blot analysis results revealed that
TGF-𝛽1 protein expression level in CTM-treated Sj-infected
mice liver in situ was lower compared with that in Sj-
infected mice that were not subjected to CTM treatment
(Figure 2(b)). IHC assay results showed that, in mice liver
in situ, the intensity of positive stain, which indicated active
TGF-𝛽1, was remarkably reduced in CTM-treated Sj-infected
mice liver compared with Sj-infected mice without CTM
treatment (Figure 2(c)). Moreover, this reduction was mainly
observed around hepatic sinusoids where Sj adult worms
reside, as well as around and in egg granulomas where Sj
eggs are deposited. TGF-𝛽1 in Sj eggs was also reduced in
Sj-infected mice subjected to CTM treatment (Figure 2(c)).
These results indicated that tTG-regulated TGF-𝛽1 promoted
hepatic fibrosis in mice during Sj infection, and TGF-𝛽1
proteins located in Sj are partially regulated by tTG of host
origin.

3.3. TGF-𝛽1 Protein Was Detected in Sj. Similar to the
findings of Hirata et al. [24], our results showed that TGF-𝛽
subfamily immunoreactive molecules are probably expressed
in adult worms and eggs of Sj (Figure 2(c)). We validated
these results through an IHC assay using sections of male
and female adult worms (Figure 3(a)). Moreover, we detected
TGF-𝛽1 protein in the SEA, SWA of Sj, and in the culture
medium of Sj adult worm using ELISA (Figures 3(b) and
3(c)). Figure 3(a) shows that TGF-𝛽1 immunoreactivity was
apparent in subtegumental cells and the lining gut epithelial
cells of male and female worms, especially in female worms.
TGF-𝛽1 concentrations in SEA and SWA were 17.9 and
20.7 pg/mL, respectively (Figure 3(b)). Furthermore, higher
concentration of TGF-𝛽1 was secreted in culture medium of
adult worms than in the control medium (Figure 3(c)).

3.4. Amplification of TGF-𝛽1 cDNA Sequence Selectively Using
Sj as Template. To clarify whether or not TGF-𝛽1 gene
exists in Sj, we designed a pair of primers according to the
cDNA sequence of mouse TGF-𝛽1 mature peptide because
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Figure 1: TGF-𝛽1 level increased gradually in mice liver during the courses of Sj infection. (a) TGF-𝛽1 level in serum was determined by
ELISA in BALB/c mice with 20 ± 3 infective Sj cercariae for 5, 6, 8, and 12 weeks, and uninfected mice were used as control. Data are shown
as means ± SD of 10 mice/group. Experiment was performed four times (∗𝑃 < 0.05; and ∗∗𝑃 < 0.01 compared with uninfected group).
(b) Equal amounts of proteins of mouse liver tissue lysates at indicated time points were used in the Western blot assay to detect protein
expression levels of TGF-𝛽1, p-Smad2, and Smad2. GAPDH was used as loading control. (c) Mouse livers at indicated time points were fixed
in paraformaldehyde, embedded in paraffin, and then sliced and immunohistochemically stained for TGF-𝛽1. Representative staining for
TGF-𝛽1 is shown at ×400 magnification. Top: TGF-𝛽1 expression in egg, Sj egg granuloma, and the surrounding tissue. Bottom: TGF-𝛽1
expression in hepatic cell and liver tissue around the liver sinusoid.

the amino acid sequence of TGF-𝛽1 mature peptide is highly
conserved.This primer pair and Sj adult worm cDNA isolated
from mice as template were used for PCR amplification of
Sj TGF-𝛽1 mature peptide cDNA, and a 339 bp product was
obtained, sequenced, and analyzed using bioinformatics.The
5 and 3 ends of the fragment were extended via RACE-
PCR using primers designedwithin the known sequence.The
extended TGF-𝛽1 cDNA sequence (792 bp long) was loaded
into National Center for Biotechnology Information (NCBI)
GenBank with number GQ338152.1.The deduced amino acid
sequence comprised 263 amino acid residues and contained
partial sequence of TGF-𝛽1 propeptide and complete TGF-
𝛽1-like domain. The nucleotide sequence of extended TGF-
𝛽1 gene from Sj was 85% identical to that from mouse
(Figure 4(a)), whereas the amino acid sequence of TGF-𝛽1
was 88% identical (Figure 4(b)), as revealed by BLAST search
results.The nucleotide sequence of SjTGF-𝛽1 mature peptide

was different from that of mouse by multiple nucleotides,
but the amino acid sequence of Sj TGF-𝛽1 mature peptide
had merely two amino acid differences compared with that
of mouse (Figure 4(b)). To identify species-specific TGF-𝛽1,
we designed and identified primers of Sj and mouse-specific
primers (the primer sequences have been underlined in solid
and dashed lines, resp., as shown in Figure 4(a)). Figure 4(c)
shows that positive bands appeared in the agarose gel only
when we used specific primer pairs and the corresponding
templates for PCR amplification. Moreover, the transcription
level of TGF-𝛽1 was higher in eggs than in adult Sj worms.
These results suggested the existence of TGF-𝛽1 gene in Sj
adult worms and eggs.

3.5. High TGF-𝛽1 Transcription Level in SjWasConsistent with
the Extent of Liver Fibrosis in Mice. To gain a better under-
standing of the source of TGF-𝛽1 in hepatic fibrogenesis,
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Figure 2: CTM reduced TGF-𝛽1 expression profile in the liver of Sj-infected mice. tTG activity of BABL/c mouse liver was inhibited by
CTM intraperitoneal injection from day 3 to day 10 after Sj infection. Mice were sacrificed at week 8 after infection. (a) Activated TGF-𝛽1
concentration inmouse serum of normal or Sj-infectedmice with or without CTM treatment was detected using ELISA. Data were presented
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stained for TGF-𝛽1. Representative stainings for TGF-𝛽1 were shown at 40x magnification. Bottom: TGF-𝛽1 expression in egg, Sj egg
granuloma, and the surrounding tissue. Top: TGF-𝛽1 expression in hepatic cell and liver tissue around the liver sinusoid; “−” = without,
“+” = with.

the transcriptional levels of TGF-𝛽1 in mice and Sj were
evaluated using RT-PCR and SYBR Green quantitative PCR.
Sj-infected mouse liver cDNA was prepared as a PCR tem-
plate, and the specific primer pairs shown in Figure 4(a) were
also used. TGF-𝛽1 mRNA expression level in Sj increased,
especially at week 8 (Figures 5(a) and 5(b)), and this level was
comparable with the TGF-𝛽1 protein level in blood plasma
and livers of infected mice, as shown in Figures 1(a) and
1(b). However, the mRNA expression level of mouse TGF-𝛽1
decreased significantly in all time courses after Sj infection
(Figure 5(c)). These results suggested that high protein level

of TGF-𝛽1 was transcribedmainly from Sj, but not frommice.
This finding was consistent with the low transcriptional level
of TGF-𝛽1 in the liver during Sj infection, as reported by
Bartley et al. [35], although Bartley et al. did not test TGF-𝛽1
from the parasite.

4. Discussion

Infection with the parasitic helminth Schistosoma accounts
for a significant portion of liver fibrosis cases in humans.The
causative factors of hepatic fibrogenesis and the host-parasite
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Figure 3: TGF-𝛽1 proteinwas expressed in Sj andwas secreted. (a) Sj adult female andmalewormswere fixed in paraformaldehyde, embedded
in paraffin, and then sliced and stained for TGF-𝛽1. Representative staining (brown) is shown at 40x magnification (large panel) and ×200
(inset). Dotted red arrow: gut epithelial cells; solid red arrow: subtegumental cells. (b) Equal amounts of Sj soluble adult worm antigen and
soluble egg antigen were tested for TGF-𝛽1 by ELISA. Data were shown as means ± SD. Experiment was performed four times (∗𝑃 < 0.05;
and ∗∗𝑃 < 0.01 compared with negative PBS control). (c) Twenty pairs of adult worms were freshly collected, washed thrice using PBS,
transferred into 2mL sterile RPMI 1640medium supplementedwith 1mMglutamine, 1000 units/mL penicillin, and 1000 𝜇g/mL streptomycin
for 2 h, and finally cultured in 2mL sterile RPMI 1640 medium supplemented with 20% FBS, 1mM glutamine, 100 units/mL penicillin, and
100𝜇g/mL streptomycin for 16 h. Sjworm culturemediumwas collected for TGF-𝛽1 detection by ELISA, and conditionmedium (sterile RPMI
1640 medium supplemented with 20% FBS, 1mM glutamine, 100 units/mL penicillin, and 100 𝜇g/mL streptomycin) was used as control.
Experiment was performed four times (∗𝑃 < 0.05; and ∗∗𝑃 < 0.01 compared with control medium without Sj adult worms).

interaction mechanisms need to be elucidated. TGF-𝛽1 is
one of the strongest factors promoting liver fibrosis by
activating HSC [2–4]. Sj-infected mouse model did not
exhibit high TGF-𝛽1 transcription level, but chronic schis-
tosomiasis patients showed high TGF-𝛽1 transcription level

compared with healthy individuals [35, 36]. Hirata et al. [24]
revealed the expression of TGF-𝛽1-, TGF-𝛽2-, and TGF-𝛽3-
like molecules in Sj. Some members of TGF-𝛽 superfamily,
including InACT, BMP, receptors of TGF-𝛽, and Smad1,
Smad2, and Smad4 and other signaling pathway-associated
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Figure 4: Continued.
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Figure 4: TGF-𝛽1 gene in Sj was cloned and identified. (a) TGF-𝛽1 mature peptide cDNA in Sj was amplified using Sj adult worm cDNA
collected from infected mice as template and primers designed according to mouse TGF-𝛽1 mature peptide sequence, and the 5 and 3 ends
of TGF-𝛽1 in Sjwere extended via RACE.The alignment of TGF-𝛽1 cDNA sequences of Sj andmouse is shown (Query is Sj TGF-𝛽1 and Sbjct.
is mouse TGF-𝛽1 cDNA sequence). Solid lines: specific mouse TGF-𝛽1 primer pairs for PCR amplification; dotted lines: specific Sj TGF-𝛽1
primer pairs for PCR amplification. Gray: TGF-𝛽1 mature peptide cDNA sequence. (b) The alignment of TGF-𝛽1 amino acid sequences of
Sj and mouse is shown (Query is Sj TGF-𝛽1 and Sbjct. is mouse TGF-𝛽1 amino acid sequence). Gray: TGF-𝛽1 mature peptide amino acid
sequence. (c) TGF-𝛽1 primers of mouse- or Sj-specific source were identified through PCR using Sj adult worms or normal mice liver cDNA
as template, respectively. M: DL2000 DNA Marker; 1: mouse cDNA as template and specific Sj TGF-𝛽1 primer; 2: mouse cDNA as template
and specific mouse TGF-𝛽1 primer; 3: Sj cDNA as template and specific Sj TGF-𝛽1 primer; 4: Sj cDNA as template and specific mouse TGF-𝛽1
primer.

molecules have been identified in Schistosoma [14–22]. In
addition, tTG is the principal enzyme controlling TGF-𝛽
maturation rate [29–31]. Upregulation of tTG increases the
concentrations of active TGF-𝛽 in various pathological states
[31–33]. Thus, we systemically detected the level and source
of TGF-𝛽1, its relationship with tTG, and the extent of liver
fibrosis in mice.

Our results showed that a high level of TGF-𝛽1 mature
peptide existed in liver tissue and blood stream, and the
overexpression of TGF-𝛽1 in Sj-infected liver section was
mainly observed in cells near the Sj adult worms parasites
or the deposited Sj eggs. TGF-𝛽1 was downregulated by
tTG inhibitor CTM treatment. The protein level of TGF-𝛽1
mature peptide was highly consistent with the level of tTG
protein and activity. In mouse models and human patients
with alcoholic steatohepatitis, tTGprovokes hepatocyte death
and is associated with alcohol-induced liver fibrosis [37–39].
Our previous study demonstrated that HSC of Sj-infected-
mice liver were activated and the extent of liver fibrosis
gradually worsened from week 5 to week 12, and these
changes were associated with tTG and IL-13 levels [34]. This
study indicated that tTG-regulated TGF-𝛽1 is also correlated
with liver fibrosis.

IHC, qPCR, and ELISA results revealed the presence of
TGF-𝛽1 in Sj adult worm sections, Sj eggs, and the cultured
medium of Sj adult worms. Furthermore, we extended and
cloned the sequence of TGF-𝛽1 in Sj. Although Sj whole-
genome shotgun (WGS) sequence has been loaded into the
NCBI GenBank [40], we failed to find any identical or
even similar sequence using NCBI BLASTN to analyze the
homology of the extended TGF-𝛽1 cDNA sequence with
the Sj WGS sequence. We also could not amplify its DNA
sequence using Sj DNA as template and many alternative
primer pairs. Parasites were nutritionally dependent on their
host organisms and generally have an intimate, long-term
physical association with their hosts [41]. Horizontal gene
transfer (HGT) is rampant in prokaryotes [42]. Numerous
independent studies have implicated schistosomes as agents

(donors or recipients) of HGT [43]. Schistosomes cover their
body surface with host antigens to avoid being detected by
the host’s immune system [44, 45] and this form of molecular
mimicrymight be due toHGTs [46–50]. Retroviruses such as
transposable elements (TEs)may have the capacity to transfer
genes [51]. Long terminal repeat (LTR) retrotransposons
encode envelope-like proteins that provide infective capacity
similar to viruses [52, 53]. Schistosome genomes are relatively
large and known to be rich in TEs. Approximately half of
their genetic material consists of TEs and repeat sequences,
including LTR retrotransposons [26, 40, 54].Therefore, TGF-
𝛽1 in Sj might be transferred through HGTs or retroviruses
(TEs). Multiple lines of evidence are needed for conclusive
documentation while avoiding false positives.

High transcription level of Sj-specific TGF-𝛽1, but not
mice-specific TGF-𝛽1, was consistent with the extent of liver
fibrosis. tTG, being the principal enzyme, controls the rate
of TGF-𝛽1 maturation [29–31]. Our previous report also
confirmed that tTG is involved in the development of Sj
infection-induced liver fibrosis in mice, and the mechanism
may be associated with tTG-regulated IL-13 expression [34].
Thus, we demonstrated the relationship between tTG and
TGF-𝛽1. In our study, TGF-𝛽1 is upregulated in Sj-infected
mice liver (Figure 1), and TGF-𝛽1 level is suppressed by CTM
along with Sj-induced liver fibrosis remission (Figure 2),
thereby suggesting that tTG-regulated Sj TGF-𝛽1 is involved
in liver granuloma and fibrosis in Sj-infected mice.

In summary, we confirmed that tTG-regulated TGF-𝛽1
and IL-13 were associated with liver fibrosis in mice after Sj-
infection; thus, tTG might serve as a potent treatment target.
Whether TGF-𝛽1 was of Sj and not of host origin requires
further study.

5. Conclusion

In Sj-infected mice, TGF-𝛽1 level in Sj is regulated by tTG
and is consistent with the extent of liver granuloma and
fibrosis. The origin or transfer route of TGF-𝛽1 gene in Sj
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Figure 5: TGF-𝛽1 is transcribed in Sj and Sj-infectedmouse liver. Equal amounts of total RNA from left lobes of BALB/cmice liver with 20±3
infective cercariae of Sj for 5, 6, 8, and 12 weeks were detected for TGF-𝛽1 mRNA expression in Sj by using PCR (a) and SYBR Green-based
quantitative PCR (b). Sj tubulin-𝛼 was detected as an input control. ∗𝑃 < 0.05, ∗∗𝑃 < 0.01. (c) Equal amounts of total RNA from infected
mice livers at indicated time points were detected for mouse TGF-𝛽1 mRNA expression by SYBR Green-based quantitative PCR. GAPDH
was detected as an input control. ∗𝑃 < 0.05, ∗∗𝑃 < 0.01.

needs to be confirmed in the future. Host tTG helps with
TGF-𝛽1 maturation in the parasite, thereby showing that tTG
is probably a potential drug target.
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