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ABSTRACT

Objective: Contact tracing of reported infections could enable close contacts to be identified, tested, and quar-

antined for controlling further spread. This strategy has been well demonstrated in the surveillance and control

of COVID-19 (coronavirus disease 2019) epidemics. This study aims to leverage contact tracing data to investi-

gate the degree of spread and the formation of transmission cascades composing of multiple clusters.

Materials and Methods: An algorithm on mining relationships between clusters for network analysis is pro-

posed with 3 steps: horizontal edge creation, vertical edge consolidation, and graph reduction. The constructed

network was then analyzed with information diffusion metrics and exponential-family random graph modeling.

With categorization of clusters by exposure setting, the metrics were compared among cascades to identify

associations between exposure settings and their network positions within the cascade using Mann-Whitney U

test.

Results: Experimental results illustrated that transmission cascades containing or seeded by daily activity clus-

ters spread faster while those containing social activity clusters propagated farther. Cascades involving work or

study environments consisted of more clusters, which had a higher transmission range and scale. Social activ-

ity clusters were more likely to be connected, whereas both residence and healthcare clusters did not preferen-

tially link to clusters belonging to the same exposure setting.

Conclusions: The proposed algorithm could contribute to in-depth epidemiologic investigation of infectious dis-

ease transmission to support targeted nonpharmaceutical intervention policies for COVID-19 epidemic control.
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INTRODUCTION

The role of contact tracing is paramount when an infectious agent

has been newly introduced into a jurisdiction. Immediate identifica-

tion of close contacts of the infected persons followed by subsequent

quarantine and testing could break the chain of transmission, if

these can be implemented during the short but highly infectious pe-

riod as demonstrated in the coronavirus disease 2019 (COVID-19)

epidemics caused by severe acute respiratory syndrome coronavirus

2 (SARS-CoV-2).1 An investigation of the chains of transmission

further reveals the degree of spread and the presence of multiple

transmission clusters and their interrelationships.2 The process of

contact tracing uncovers a broad range of data covering index cases,
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their contacts, and the characteristics of clusters formed in the

course of time. With such big data, further exploration in mining

would generate useful information for enhancing epidemiologic un-

derstanding of the COVID-19 outbreaks.

Contact tracing data constituted one unique form of big data of

public health importance. Relationships from large dataset could be

mined from large datasets using different approaches, such as coau-

thorship,3 spatiotemporal co-occurrence,4 and mutual interests.5

Mined networks could be used for identifying advisory relationships

between academics,6 uncovering potential drugs for diseases,7 and

inferring social support for improving adherence to medical treat-

ment.8 Through systematic analyses, it is possible to further quantify

and characterize the importance of transmission role of patients in

the networks as has been applied in COVID-199 and human immu-

nodeficiency virus (HIV)10 epidemics. One potentially impactful

outcome for such research could be the design of a useful tool for

predicting future transmission such that targeted intervention could

be developed and adopted for disease control.11,12

So far, most of the published works that explored transmission

networks using contact tracing data have focused on the relation-

ships between individuals to identify superspreaders.9,13,14 Limited

studies were concerned with the macroscopic linkages among multi-

ple transmission clusters, the understanding of which could be im-

portant in guiding public health interventions.15 This article

describes an algorithm for constructing a network of transmission

clusters from contact tracing data by capturing both temporal and

network topological features for social network analysis to identify

SARS-CoV-2 clusters of public health importance.

MATERIALS AND METHODS

Data
Contact tracing data

For each laboratory confirmed SARS-CoV-2 infected patient identi-

fied in Hong Kong, the Centre for Health Protection of the Depart-

ment of Health conducted contact tracing interviews to identify

persons potentially exposed to the virus for quarantine and testing.

If 2 or more persons had been to the same place, or had their contact

relationship confirmed, they were assigned to a transmission cluster.

The index patient of each cluster would have been identified. To-

gether with demographics, clinical data including symptom onset

date and reporting date were retrieved from the surveillance data.

Each epidemiologically unlinked cluster or “cascade” containing

multiple linked clusters was given a unique identifier to facilitate

processing. Data access approval was obtained from the Department

of Health. This study was approved by the Survey and Behavioural

Research Ethics Committee of The Chinese University of Hong

Kong (Ref. no. SBRE-19-595).

Exposure setting

Following the prior definition,15 each transmission cluster was clas-

sified into 1 of the following 5 categories of exposure settings: resi-

dences, daily activities, social activities, work/study, and healthcare.

These categories were differentiated by population size, relationship

type, environment, and exposure duration and frequency, and they

could be subdivided into specific subsetting type. Residences in-

cluded co-living and non–co-living households, dormitories, hotels

and neighborhood. Daily activities included eateries, shopping,

transportation, and other often one-to-one personalized services.

Mass events, parties, religious gatherings, and entertainment were

classified as social activities. Workplaces, schools, and training ses-

sions were in the work/study category. Last, healthcare setting in-

cluded long-term-care facilities and public and private health

services.

Algorithm design
Purpose

The objective of the algorithm was to construct a directed network

with minimum edges from contact tracing data to evaluate relation-

ships between transmission clusters. The contact tracing data were

used to construct affiliation network composed of SARS-CoV-2

infected patient belonging to 1 or more clusters. As the assessment

of cluster-cluster relationships required a one-mode network, it was

necessary to transform the two-mode network into a one-mode net-

work.

Data structure

Prerequisites include 2 column vectors and a matrix. A bit vector I of a

size of number of patients indicated the index patient of each cluster by

1, otherwise 0. There can only be 1 index per cluster. The second col-

umn vector D contains positive integers denoting unique cascade identi-

fier. The matrix M coded the relationship between patients and clusters

with rows denoting patients and columns denoting generation of clus-

ters. Each cluster id can only appear in one column, and the placement

of column is assigned by generation. For example, the first column

stores all primary generation clusters and the second column marks sec-

ondary generation clusters. Therefore, Mij is the cluster identifier, in

contrast to an adjacency matrix in which it could only be a binary value

or weight. It is instead akin to adjacency list in which each list describes

a node’s relationship, with a notable variation here that the order mat-

ters. Empty cells are replaced by 0. No subclusters shall be included in

the matrix or they have to be removed before processing.

Algorithm
The algorithm could be described in 3 steps: horizontal edge crea-

tion, which forms the backbone of the network; vertical edge consol-

idation; and last, graph reduction (Figure 1).

Horizontal edge creation

The principle is to make an out-star or a directed path from each pa-

tient horizontally across columns, then merge them all to become a

network. Let S be the index clusters vector, T be the processed clus-

ters vector, and E be an edge list. Given the 3 prerequisites, M will

first be subset per cascade as K, then the index patient ı̂ will be iden-

tified and the primary cluster ĵ will be defined. All nonzero values in

row Mı̂ will be put into S, which then has a higher precedence over

T in the next step. If there are more than 1 nonzero values, the pri-

mary cluster will link to each and every other clusters, otherwise it

will link to a value -1. All links are put into E as an edge list. After

creating edges, the entire row will be removed from K. While the

size of matrix K is not 0, each row will be processed for edge crea-

tion before removing from K. Edge creation for nonindex patients

started with checking if a patient’s affiliating cluster has been proc-

essed, first evaluating the values in S then in T. If not, the row will

be ignored and check the next until there is one. When found, the

primary cluster will be defined as the one that linked with any in S

or T according to the sequence within the vector. This design pre-

serves the order of occurrence of cluster since the index cluster. Simi-

larly, the primary cluster will link to all other clusters, or -1 if there

is only 1. All processed clusters will then be appended to T. After
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processing all cascades, edges in E can then be amalgamated to con-

struct a directed multigraph N’ with each connected component as a

cascade and number of edges between 2 nodes as number of patients

affiliating with both clusters. N’ is subsequently simplified to be-

come a simple graph N, after removing the node -1 and all associ-

ated edges.

Algorithm 1: Horizontal edge creation (M, I, D)

Input: Patient-cluster matrix M, Index vector I, Cascade identifier vector D

Output: Edge list E

1. For each cascade d 2 D do

2. K ¼ MDi¼d

3. Î ¼ IDi¼d

4. ı̂¼ i 2 Î: Îi¼1

5. ĵ ¼ min(j 2 Zþ: Kı̂ĵ 6¼ 0)

6. Put Kı̂ĵ into S

7. If the patient is associated with only 1 cluster then

8. Put hKı̂ĵ, -1i into E

9. Else

10. Put hKı̂ĵ, Kı̂ji into E where j 6¼ ĵ \ Kı̂j 6¼ 0

11. Put Kı̂j into S where j 6¼ ĵ \ Kı̂j 6¼ 0

12. Remove Kı̂* from K

13. While jKj > 0 do

14. For each row i in K do

15. ĵ ¼ min(j 2 Zþ: Kij¼1 \ Kij 2 S)

16. If @ĵ then

17. min(j 2 Zþ: Kij¼1 \ Kij 2 T)

18. If @ĵ then

19. Next i

20. For each j in 1..jK*jj where Kij¼1 \ j 6¼ ĵ do

21. Put hKiĵ, Kiji into E

22. Put Kij into T

23. If no edges were newly created then

24. Put hKiĵ, -1i into E

25. Remove Ki* from K

Algorithm 2. Vertical edge consolidation (E, N)

Input: Edge list E, Simple graph N

Output: Simple graph N

1.Put all clusters without a target node of -1 in E into Q

2.Find all shortest paths from the index to all leaf nodes in N

3.For each cluster q 2 Q do

4. If q does not present in any shortest paths then

5. Remove node q from N

6. Remove q from Q

7.While jQj > 0 do

8. Find all shortest paths from the index to all leaf nodes in N

9. For each shortest path P in descending order of path length > 2 do

10. For each node p 2 P in reverse sequence do

11. If node p-1 2 Q then

12. If node p-2 =2 Q then

13. For each node r being pointed by node p-1 do

14. Add an edge from node p-2 to r in N

15. Remove node p-1 from N

16. Remove node p-1 from Q

17. If an edge was drawn then

18. Break For
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Vertical edge consolidation

Some clusters did not contain any patients uniquely belonging to it

but served the bridging role between 2 other clusters. For example,

patients A and B belonged to cluster X, patients C and D belonged

to cluster Z, and patients B and C belonged to cluster Y. Clusters X

and Z were not directly linked but were related through Y. The in-

termediate cluster Y had a feature in E that they do not have a target

node of �1. This step aims at consolidating these relationships verti-

cally across patients.

Let Q be a vector of intermediate clusters. The topology of a

transmission cascade was likened to that of a tree. All shortest paths

from root to leaf were first identified. Any intermediate clusters

which did not exist in any shortest paths were removed. It is noted

that intermediate clusters can only be present in paths of length 3 or

above by definition. Starting from the longest shortest path from

root to leaf, traverse back from the leaf node to check if the upper

node is an intermediate node and the one further up being noninter-

mediate, remove the intermediate node by linking the upstream

node and downstream ones if so. If there are 2 adjacent intermediate

nodes, the one closer to the leaf would retain, then continue the tra-

versal. After processing the path, the list of shortest paths will be

regenerated and the whole process of traversal would be repeated

until all intermediate clusters are dealt with.

Graph reduction

The network so far consisted of 021D (out-star), 021C (directed

line), and 030T (transitive semicycle) triads. With the goal of mini-

mizing the number of edges to achieve an arborescence, or a rooted

directed tree with all out-going edges, a reduction step was required

for each cascade. Our design minimized transmission cascade’s

range but maximize its scale by removing the edge between 2 child

nodes in a 030T triad to become a 021D one. It was the inverse of

transitive reduction where the reachability matrices were meant to

be retained. The rationale here was to minimize the number of hops

from one cluster to another, as there has been known transmission

history between the two. In such a scenario, it was unnecessary for a

mediating cluster to present, therefore a shortest path approach was

adopted. The implication on network structure was that out-stars,

rather than directed lines, were selected.

Analysis
Information diffusion metrics

Derived from graph theory and with reference to a previous study,16

3 information diffusion metrics were measured: scale, range, and

speed. Scale refers to the number of persons one can transmit to,

range refers to the number of generations can an infection be passed

on, and speed refers to the average time for the infection to traverse

from root to tip along the transmission path. In our study, we de-

fined the 3 metrics per cascade as the maximum out-degree of a clus-

ter within a cascade, the length of the longest directed path, and the

number of edges divided by the difference between the first symptom

onset date and the last reporting date. To describe the full extent of

transmission of a cascade, we calculated its order, which is the num-

ber of nodes within the cascade. Triad census was performed to

evaluate the distribution of out-stars (021D) and directed lines

(021C). The metrics were compared among cascades containing and

seeded by different exposure settings using Mann-Whitney U test. R

was used to perform these analyses with igraph package. The net-

work graph was visualised by Cytoscape 3.8.2.

Exponential-family random graph modeling

To understand the roles of network structure and dyadic relationship

between nodes in network formation, exponential-family random

graph modeling (ERGM) was applied. As described previously, the

network was founded by out-stars and directed lines. One of them (di-

rected lines, also known as two-paths in the package) was selected in

the model. To assess the relationship between exposure settings, mix-

ing pattern of settings of clusters was incorporated at 2 levels in sepa-

rate models: overall mixing, and individual setting mixing. As a

positive log-odds could compute a higher probability, a negative value

for two-paths meant it is less likely for a new edge to be created to

form a two-path and vice versa. Positive and negative conditional log-

odds with a significant P value of lower than .05 represented a homo-

Figure 1. Illustration of data structure and algorithm. Vectors D and I and matrix M are inputs in Algorithm 1. Step (i) illustrated horizontal edge creation, while

step (ii) denoted consolidation of 2 horizontal edges into a vertical one. Step (iii) graphically showed the graph reduction process by removing the transitive edge

from 030T to become a 021D triad.
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geneous and heterogeneous mixing pattern, respectively. R package

ergm was used for the construction of 2 models.

RESULTS

During the second wave of COVID-19 outbreak between June 20

and October 23, 2020, in Hong Kong, a total of 138 connected com-

ponents (cascades) consisting of 441 nodes (clusters) and 303 edges

were identified. The number of clusters within each cascade ranged

from 2 to 20, of which 87 were dyads consisting of 2 nodes. The

remaining 51 cascades with a size of at least 3 were formed by 397

out-stars (021D) and 54 directed lines (021C) were included for fur-

ther analyses (Figure 2). In term of index cluster’s exposure setting,

the most popular setting was residence (n¼28), followed by 8 and 6

cascades seeded by daily activity and work/study clusters, respec-

tively. Six cascades had their initiation identified in a social activity

setting, while the remaining 4 were in healthcare settings.

All cascades contained residence clusters therefore no compari-

sons could be made to distinguish cascades without involving resi-

dence settings (Table 1). Cascades containing daily activity clusters

had a higher transmission speed (median 0.25 vs 0.16; interquartile

range [IQR], 0.17-0.28 vs 0.12-0.25; P¼ .017). Social activity clus-

ter–containing cascades had a longer range of transmission (median

2.00 vs 1.00; IQR, 1.25-2.75 vs 1.00-2.00; P¼ .021). Cascades in-

volving work/study environment had a greater number of nodes

(median 6.00 vs 3.00; IQR, 3.25-10.25 vs 3.00-4.00; P¼ .0031), a

longer range (median 2 vs 1; IQR, 1-2 vs 1-2; P¼ .026), and a wider

scale (median 3.50 vs 2.00; IQR, 2.00-7.00 vs 2.00-3.00; P¼ .026).

If the cascade was seeded by a daily activity cluster, the speed of

propagation between clusters appeared to be faster (median 0.27 vs

0.18; IQR, 0.20-0.40 vs 0.13-0.25; P¼ .0096), whereas those seeded

by healthcare clusters transmitted more slowly (median 0.11 vs

0.19; IQR, 0.07-0.17 vs 0.13-0.25; P¼ .045). Residence-initiated

cascades had a lower scale of transmission (median 2 vs 3; IQR, 2-3

vs 2-7; P¼ .017), but it was higher in work/study-seeded cascades

(median 6.00 vs 2.00; IQR, 4.25-10.75 vs 2.00-3.00; P¼ .0047).

The latter also had a higher number of clusters within the cascade

(median 7 vs 3; IQR, 5.50-13.25 vs 3.00-5.50; P¼ .0044).

Results from an ERGM showed that, it was less likely for an

edge to be added to form a directed line (P< .0001) or to connect 2

clusters of the same setting category (P< .0001) (Table 2). The

probability of adding an edge forming an out-star with another cate-

gory was 1.42%, while the probability of adding a directed line with

Figure 2. Network of transmission cascades composing of at least 3 epidemiologically linked clusters during the second wave of the COVID-19 (coronavirus dis-

ease 2019) epidemic in Hong Kong. Cascades are laid out hierarchically. Length of edges is for illustration only. Nodes with bold borders are index clusters. Node

color represents categories of exposure settings (blue: residence, purple: daily activities, red: healthcare, orange: social activities, green: work/studies).
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the same category and with a different category was 0.10% and

0.55%, respectively. To examine the mixing pattern of exposure cat-

egories, another ERGM was performed. A homogeneous mixing

pattern among social activities clusters (P¼ .013) and heterogeneous

mixing patterns among residence (P< .0001) and healthcare clusters

(P< .0001) was found. It was noted that daily activities (P¼ .74)

and work/study (P¼ .45) clusters did not mix preferably with either

the same or a different category of cluster.

DISCUSSIONS

In our study, the actor focused in the transmission cascades is the

cluster/event, rather than an individual in conventional network

analyses. This approach highlighted the important roles of clusters

and their associated exposure setting in the propagation of SARS-

CoV-2 in the community. Epidemiologically, the severity of an out-

break is dependent on the sizes and extents of transmission clusters

instead of the linear relationship between an infected person and

their contact.17 The main data fields for the network analyses in the

present study was the history of gathering events, which would

likely be more reliable than one’s self report symptom onset or the

later report or diagnosis date. The algorithm presented herein there-

fore defined direction of edges by the order of cluster co-occurrence

instead of one’s symptom onset date or case report date. One may

also need to assert assumptions on the network structure, such as

one-to-many relationships or a clique among all cases within the

same cluster, which by design greatly prejudices the analysis result.

The directed networks constructed by this algorithm consist of

out-stars and directed lines only, which is suitable for computing in-

formation diffusion metrics.16 For the same number of nodes, an

out-star would have a higher scale, while a directed line would have

a higher range. The feature of different components could be easily

contrasted in describing the epidemiological spread of SARS-CoV-2.

As per the algorithm design, out-stars and directed lines were funda-

mental building blocks of the transmission network but out-stars

were more prevalent in the second wave of COVID-19 outbreak in

Hong Kong. It was observed that mixing pattern of categories was

also crucial in the formation of transmission cascades. Notably, so-

cial activities setting clusters tended to connect with related clusters,

whereas residence settings were more likely to be connected with a

cluster of another exposure setting. It showed that people were at-

tending more than 1 social activities during the period and were able

to pass on the virus to another social activity after getting it from a

social function.13 On the other hand, transmission between residen-

ces was rare, which could be related to fomite transmission or

through defective wastewater plumbing system18 within a neighbor-

hood or in the same building, but that was apparently not mani-

fested in Hong Kong during the second wave, even in the hospital

setting.19

The information diffusion metrics could be used in comparing

the clustered transmission of SARS-CoV-2 between exposure set-

tings. In our result, we have demonstrated that social and work/

study setting–containing cascades had a higher range of transmis-

sion, while the latter one, particularly being the index cluster, also

had a higher transmission scale and a higher order. Transmission oc-

curring in work or study environments in which people from differ-

ent households came together was evidenced to have connections

with multiple clusters, which gave a higher measure of scale.20 These

subsequent clusters were primarily household transmissions with

high secondary attack rates.21 The engagement of family members

in other activities could further propagate the virus through different

indoor settings resulting in cascades with long range.21 The product

of wide scale and long range gave a high order. Among cascades

having longer propagation history, social activities setting clusters

were more likely to be involved. This signified the important role of

social events in bridging transmission between clusters. Cascades in-

volving daily activity clusters, particularly as the index cluster, had a

higher transmission speed. This observation highlighted the high so-

cial connectivity of certain environments facilitating virus transmis-

sion within a short time, and therefore these settings should be

specifically dealt with in controlling the spread of epidemic.22 In

practice, nonpharmaceutical interventions such as limiting the oper-

ating hours and maximum capacity of business are relevant policies

to contain transmissions through daily activity clusters.23 The low

speed of healthcare setting–initiated cascade indicated these trans-

mission was limited.24 The transmission scales of residence showed

that it did not play an important role in population spread.

The analyses in this study were founded on the syntheses of con-

tact tracing data. Importantly, effective contact tracing relied on

individual’s voluntary disclosure of the location and time of visit

prior to diagnosis. Noncooperation could lead to delay or failure to

identify exposed individuals and events, and would affect any subse-

quent analyses. While the emergence of the COVID-19 pandemic

has shown the importance of superspreader, their identification as

Table 1. Association between information diffusion metrics and ex-

posure settings during the second wave of COVID-19 outbreak in

Hong Kong

Daily Healthcare Social Residence Work/study

Contained setting

Order a .0031

Range .021 a .026

Scale a .026

Speed .017 a

Index setting

Order .0044

Range

Scale .017b .0047

Speed .0096 .045b

Only significant P values of positive association were shown.

COVID-19: coronavirus disease 2019.
aAll clusters contained residence settings; therefore, no comparisons could

be made.
bSignificant negative associations.

Table 2. Exponential random-graph models

Conditional log-

odds

Standard er-

ror

P value

Model 1

Edge �4.24 0.10 <.0001

Two-path �0.97 0.11 <.0001

Same category �1.70 0.17 <.0001

Model 2

Edge �4.24 0.10 <.0001

Two-path �0.95 0.11 <.0001

Same category: daily 0.16 0.48 .74

Same category: healthcare a a <.0001

Same category: residence �1.90 0.19 <.0001

Same category: social 1.69 0.68 .013

Same category: work/study �0.74 0.98 .45

aThe small sample size caused negative infinity conditional log-odds.

2390 Journal of the American Medical Informatics Association, 2021, Vol. 28, No. 11



individuals could result in moral blame.25 Despite the public health

importance of the contact tracing mechanism, there was concern of

stigma that individuals may withhold information to protect the

confidentiality of one’s identity. Similar limitations on recall bias

and social desirability bias exist, particularly if someone has been to

a place that they wanted to conceal from the public or family mem-

bers. Although the network was primarily constructed from the se-

quence of cluster co-occurrence, in the presence of multiple clusters,

the order of the generation of clusters would be taken into account.

With a cluster-oriented perspective, the actual case load of each clus-

ter was not taken into account when performing the analysis. There-

fore, cluster size did not affect network construction. Missed

contacts, however, could affect network structure if and only if they

were the only ones who bridged 2 clusters. It could be represented as

the edge weight in future implementation of this algorithm. Incorpo-

rating edge weights for measuring relationship between clusters

could enrich the analysis. Likewise, the reachability matrix was not

the same after graph reduction, performance of further path analysis

should be cautioned as this might affect the result. Although ERGM

could be useful for predicting future growth of network, we did not

perform simulation, as incidentally the outbreak wave in Hong

Kong had reached its end. Definition of exposure settings could vary

among different cultures or societies. The method of classification

could be adopted in other places but the actual categorization has to

be tailored to the unique social norms and habits.

CONCLUSION

The study results proved that the algorithm was useful in mining

relationships between disease transmission clusters, identifying im-

portant clusters and assessing cluster relationships by applying it on

the second wave of COVID-19 outbreak in Hong Kong. In control-

ling an epidemic, population intervention policies should rely on sci-

entific evidence. Homogeneous mixing among social setting clusters

highlighted control on social events has to come in place at a right

time with a proportionate force. Transmission resulting in house-

hold clusters are inevitable, and therefore testing and quarantining

close contact was useful and has to be continued before further

transmission from the household. Daily and work or study environ-

ments posed significant transmission risk when people got together.

Depending on local epidemic situation and cultural context, the met-

rics adapted in this study could be used as an objective scale for serv-

ing policy implementation purposes. By identifying setting-specific

clusters of public health importance, targeted nonpharmaceutical

interventions could be in place to strike the balance between out-

break control and daily lives.
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