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Abstract 

Glioblastoma (GBM) is one of the lethal tumors with poor prognosis. However, prognostic prediction 
approaches need to be further explored. Therefore, we developed an evaluation system that could be used for 
prognostic prediction of GBM patients. Published mRNA expression datasets from The Cancer Genome Atlas 
(TCGA), Gene Expression Omnibus (GEO) and Chinese Glioma Genome Atlas (CGGA) were analyzed. 
Quantitative Realtime-PCR of signature genes and molecular aberrations of 178 Xiangya GBM patients were 
used for confirmation. Gene set enrichment analysis (GSEA) was performed for functional annotation. As a 
result, we established a 13-gene signature which named Combined Therapy Sensitivity Index (CTSI). Based on 
a cutoff point, we divided patients into high-risk group and low-risk group. Based on Kaplan-Meier analysis and 
multivariate Cox regression analysis, we found that patients in the high-risk group had a shorter overall survival 
time than patients in the low-risk group (p<0.001 in TCGA and CGGA datasets, p=0.047 in GSE4271 dataset, 
p=0.008 in Xiangya GBM cohort, HR: 1.65-3.42). By comparing the status of IDH mutation, TERT promoter 
mutation (TERTp-mut) and MGMT promoter methylation, CTSI was predictable in IDH wild-type 
(IDH-wt)/MGMT promoter unmethylated (MGMTp-unmeth) patients (p=0.037 in 
IDH-wt/TERTp-mut/MGMTp-unmeth subgroup, HR: 1.98; p=0.032 in IDH-wt/TERTp-wt/MGMTp-unmeth 
subgroup, HR: 2.09). Based on GESA, the Gene Ontology (GO) gene sets were enriched differently between 
CTSI high-risk and low-risk groups. Our results showed CTSI risk score can predict the prognosis of 
IDH-wt/MGMTp-unmeth GBM patients. Based on CTSI, combined with the status of IDH mutation, TERT 
promoter mutation and MGMT promoter methylation, a stepwise prognosis evaluation system which can 
provide precise prognosis prediction for GBM patients was established. 
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Introduction 
Glioblastoma (GBM) is one of the most common 

and lethal malignant primary brain tumors in adults 
with a median survival time of only 14 months. Less 
than 5% of the patients live more than 5 years after 
diagnosis [1, 2]. The mainstay of treatment is maximal 

resection, followed by radiation and chemotherapy. 
Despite multimodality therapy, the outcomes are 
dismal [3, 4]. Therefore, novel diagnostic/prognostic 
biomarkers and better therapeutic targets are urgently 
needed [5]. 
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In the past two decades, IDH mutation, MGMT 
promoter methylation, TERT promoter mutation, 
RTK, PI3K and p53 pathways alterations, molecular 
subtype and G-CIMP phenotype were identified to 
play crucial roles in the pathogenesis of GBM and also 
be of prognostic value [6-17]. These studies above 
made a better understanding of GBM’s landscape and 
disrupted signaling pathways, and provided more 
practical pathological classifications and personalized 
treatment regimens [18-22]. However, they can’t fully 
cover all cases such as IDH-wt/MGMTp-unmeth 
patients. Therefore, unearthing novel prognostic 
biomarkers, molecular targets and molecular 
signatures, and illustrating their expression with 
molecular features of GBM, are meaningful for 
improving the outcome of GBM patients.  

In this study, we analyzed gene expression 
profiles of GBM patients in TCGA dataset, CGGA 
dataset and GEO dataset, respectively. By using these 
datasets, we identified and validated 13 signature 
genes that have prognostic value and proposed a risk 
score index named as Combined Therapy Sensitivity 
Index, CTSI. We tested 178 GBM samples from 
Xiangya GBM cohort and identified the prognostic 
value of CTSI in IDH-wt/MGMTp-unmeth patients. 
As a result, we established a stepwise algorithm for 
outcome prediction of the all GBM patients from the 
worst to the best outcome. 

Results 
Identification of signature genes for CTSI risk 
scoring model  

The workflow of data processing and data 
filtering is shown in Figure 1. 529 TCGA GBM 
patients’ mRNA expression profile from Affymetrix 
HG-U133 Plus 2.0 was acquired from published 
database. First, we picked out 1349 GBM tissue 
specific genes (profile A) of 529 GBM patients 
comparing to normal brain tissue. Then we chose 195 
patients who receive both radio- and chemotherapy 
and found out 1399 related gene (profile B). After 
filtering profile B in profile A, we discovered 137 
GBM specific and radio-chemotherapy sensitivity 
correlated genes. We evaluated the prognostic impact 
of those genes in training set using univariate Cox 
regression analysis. Finally, 13 genes were identified 
as significantly associated with survival (P<0.01) 
(Supplementary Table S2). And their expression levels 
were shown in Figure 2A. All these13 genes were 
further analyzed using multivariable Cox regression 
analysis. Finally, we calculated a risk score by 
integrating the gene expression data and the 
corresponding coefficients derived from the 
multivariate Cox regression analysis. This risk scoring 
model was named as Combined Therapy Sensitivity 
Index (CTSI). The CTSI calculation formula is 
described as below:  

 

 
Figure 1. The workflow of data processing. 529 TCGA GBM patients’ mRNA expression profile from Affymetrix HG-U133 Plus 2.0 was acquired from published database. 
By data filtering, a matrix with 137 genes and 195 samples was generated as training set to establish the CTSI risk score model. CGGA GBM dataset, GSE 4721 GBM dataset, 
TCGA 529 patient cohort and 178 Xiangya GBM cohort were used as validation sets. In Xiangya GBM cohort, TERT promoter mutation, MGMT promoter methylation and IDH 
mutation were sequenced for strata analysis. 
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CTSI risk score= (-1.18 × PCNA) + (1.84 × EIF3D) + 
(-1.93 × ATP6V1E1) + (1.52 × ECHS1) + (0.93 × 

PLOD1) + (-0.95 × ERCC1) + (0.72 × ADI1) + (-0.97 × 
CALCOCO2) + (0.70 × NEDD9) + (-1.09 × MTDH) + 

(-0.26 × RCAN2) + (0.34 × GPNMB) + (0.87 × VTI1B).  

We calculated the CTSI risk score for each 
patient in the training set (TCGA 195 patient cohort) 

first. Then we ranked them according to their scores 
and calculated the cutoff point by maximizing 
Youden index through ROC analysis. As a result, 
-0.2248 was set as the cutoff point. Subsequently, the 
patients were divided into CTSI low-risk (n=91) and 
CTSI high-risk (n=104) groups (Supplementary Figure 
S1).  

 

 
Figure 2. Prognostic value of CTSI risk score. A. Distribution of gene expression, CTSI risk score, overall survival and molecular features in TCGA 195 patient cohort. 
Overall survival time, CTSI risk scoring and expression of signature genes were converted into Z-score to regain the heatmap. Survival status, CTSI group, molecular subtypes, 
G-CIMP phenotypes, IDH mutation and MGMT promoter methylation were added for annotation. Signature genes were ranked by coefficients from multivariate Cox regression 
analysis. The CTSI risk score of each patient was plotted under the heatmap. B. Kaplan-Meier analysis for CTSI risk score model in TCGA 195 patient cohort.  C. Distribution 
of gene expression, CTSI risk score, overall survival and molecular pathological features in CGGA dataset, GSE4271 dataset and TCGA 529 patient cohort. Kaplan-Meier analysis 
revealed the prognostic value of CTSI risk score model in CGGA dataset (D), GSE4271 dataset (E) and TCGA 529 patient cohort (F). 
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A significant difference in overall survival (OS) 
between the CTSI high-risk group and the low-risk 
group. The median OS in the high-risk group was 
378.0 days versus 661.0 days in the low-risk group 
(p<0.001) (Figure 2B). We also performed multivariate 
Cox regression analysis to examine the independence 
of CTSI risk score on prognosis prediction. Clinical 
data including age, gender, KPS, extent of resection, 

G-CIMP phenotype and molecular subtype were used 
for multifactor analysis. The result showed that 
G-CIMP phenotype and CTSI risk score were both 
prognostic for GBM patients’ prognosis. The 
coefficient of CTSI risk score was 1.26 with the hazard 
ratio (HR) at 3.54 (95% confidence interval: 2.26-5.46) 
(Table 1).  

 

Table 1. Cox proportional hazard model for overall survival 

  Univariate Cox regression 
Method: Enter 

Multivariate Cox regression 
Method: Backward likewise 

  Co.ef Std.Err P value HR (95% CI) Co.ef Std.Err P value HR (95% CI) 
TCGA 195 patients cohort 
 Age 0.80 0.11 <0.001 1.33 (1.09-1.62)     
 Gender 0.10 0.10 0.34 2.33 (1.79-3.05)     
 KPS -0.85 0.14 <0.001* 0.45 (0.36-0.56) -0.46 0.26 0.081 0.63 (0.37-1.06) 
 Surgical Resection 0.24 0.24 0.316 1.27 (0.78-2.02)     
 G-CIMP -1.15 0.20 <0.001* 0.81 (0.70-0.95) -1.12 0.21 <0.001* 0.80 (0.69-0.96) 
 Molecular subtype 0.01 0.10 0.892 1.01 (0.83-1.24)     
 CTSI risk score 1.27 0.24 <0.001* 3.55 (2.23-5.64) 1.26 0.22 <0.001* 3.54 (2.26-5.46) 
  No. of subject=161, No. of event=106, No. of censored=55, Log likelihood=835.008 
TCGA 529 patients cohort 
 Age 0.53 0.14 <0.001* 1.69 (1.29-2.21) 0.55 0.14 <0.001* 1.73 (1.33-2.26) 
 Gender -0.08 0.13 0.558 0.93 (0.72-1.19)     
 KPS -3.34 0.15 0.027* 0.71 (0.53-0.96) -0.34 0.15 0.021* 0.71 (0.53-0.95) 
 Surgical Resection 0.14 0.17 0.398 1.15 (0.83-1.61)     
 G-CIMP -1.15 0.26 <0.001* 0.32 (0.19-0.53) -0.99 0.24 <0.001* 0.37 (0.23-0.59) 
 Molecular subtype 0.07 0.06 0.024* 1.07 (0.95-1.21)     
 Treatment modality -3.45 0.234 0.137 0.71 (0.45-1.12) -0.39 0.23 0.084 0.67 (0.43-1.06) 
 CTSI risk score 0.49 0.13 <0.001* 1.63 (1.27-2.09) 0.49 0.13 <0.001* 1.65 (1.29-2.11) 
  No. of subject=369 , No. of event=279, No. of censored=90, Log likelihood=2722.843 
   
GSE4271 dataset 
 Age 1.77 1.58 0.263 5.89 (1.26-9.83)     
 Gender -0.41 0.82 0.619 0.67 (0.13-3.31)     
 Necrosis -0.09 1.19 0.939 0.91 (0.09-9.36)     
 CTSI risk score 2.28 1.22 0.048* 5.73 (1.18-9.31) 1.54 0.84 0.047* 4.65 (1.12-8.02) 
  No. of subject=54, No. of event=42, No. of censored=12, Log likelihood=424.526 
CGGA dataset 
 Recurrence 0.41 0.22 0.059 1.50 (0.98-2.29)     
 CTSI risk score 0.99 0.24 <0.001* 2.69 (1.68-4.32) 0.94 0.34 <0.001* 2.56 (1.56-4.08) 
  No. of subject=138, No. of event=92, No. of censored=46, Log likelihood=743.422 
Xiangya GBM cohort 
 Age 0.48 0.19 0.016* 1.61 (1.09-2.38) 0.48 0.19 0.016* 1.61 (1.09-2.38) 
 Gender -0.55 0.45 0.221 0.58 (0.24-1.39)     
 KPS -0.48 0.21 0.021* 0.62 (0.41-0.93) -0.48 0.21 0.021* 0.62 (0.41-0.93) 
 Surgical Resection 0.01 0.32 0.970 1.01 (0.54-1.88)     
 Treatment modality -0.82 0.22 <0.001* 0.44 (0.29-0.68) -0.82 0.22 <0.001* 0.44 (0.29-0.67) 
 CTSI risk score 0.52 0.19 0.008* 1.68 (1.14-2.46) 0.52 0.19 0.008* 1.68 (1.15-2.46) 
 TERT promoter 

mutation 
0.62 0.20 0.003* 1.85 (1.24-2.76) 0.61 0.20 0.003* 1.85 (1.24-2.75) 

 MGMT promoter  
methylation 

-0.98 0.24 <0.001* 0.38 (0.23-0.61) -0.98 0.24 <0.001* 0.38 (0.23-0.61) 

 IDH mutation -1.98 0.62 0.002* 0.14 (0.04-0.47) -1.97 0.62 0.001* 0.14 (0.04-0.47) 
  No. of subject=178, No. of event=122, No. of censored=56, Log likelihood=1014.674 

Age: 0=Age<65 years, 1= Age>65 years. 
Gender: 0=Female, 1= Male. 
KPS: 0= KPS<70, 1=KPS>=70. 
Surgical resection: 0 = Others, 1= total resection. 
G-CIMP: 0=Non-C-CIMP, 1=G-CIMP 
Molecular subtype: 0= Non-proneural subtype. 1= Proneural subtype. 
Treatment modality: 0= Without chemotherapy or radiotherapy, 1= Chemotherapy with/or radiotherapy. 
Necrosis: 0= No necrosis, 1=Necrosis. 
Recurrence: 0= No recurrence, 1= Recurrence. 
CTSI risk score: 0= Low risk score group; 1= High risk score group. 
TERT promoter mutation: 0=Wildtype; 1=Mutated. 
MGMT promoter methylation: 0=Unmethylated; 1=Methylated. 
IDH mutation: 0=Wildtype; 1=Mutated. 
*,p<0.05 accepted as significance. 
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Validation of CTSI risk score on survival 
prediction 

To examine the reliability of CTSI on survival 
prediction, we analyzed the CGGA dataset (n=144), 
the GSE4271 dataset (n=54) and all GBM patients in 
the TCGA dataset (n=529) as validation dataset. Based 
on the CTSI cutoff point defined by the training 
dataset, patients in all these validation datasets were 
divided into CTSI high-risk group and CTSI low-risk 
group, respectively. The Kaplan-Meier survival 
analysis verified that patients in the low-risk group 
had better prognosis in each dataset (median OS, 
days, CTSI low-risk vs CTSI high-risk: 412.0+/-61.9 vs 
345.0+/-24.6, p<0.001, in CGGA dataset; 
770.0+/-182.3 vs 434.0+/-165.2, p=0.039, in GES4271 
dataset; 484.0+/-25.7 vs 370.0+/-19.4, p<0.001, in 
TCGA 529 patients cohort) (Figure 2 C, D, E & F). 
More importantly, the multivariate Cox regression 
analysis confirmed that the CTSI risk score was a 
significant predictive factor. The hazard ratio of CTSI 
high-risk group ranged from 1.45 to 4.65 (Table 1). 

Evaluation of CTSI risk score performance 
We performed receiver operating characteristic 

(ROC) analysis to examine the sensitivity and 
specificity of CTSI on prognosis prediction, using 
MGMT promoter methylation, IDH mutation and 
TERT promoter mutation as references. The area 
under the curve (AUC) of CTSI was 0.820 (p=0.004) 
(Supplementary Figure S2A). 

IDH mutation, MGMT promoter methylation, 
TERT promoter mutation and CTSI risk score 

To further investigate the influence of MGMT 
promoter methylation, IDH mutation and TERT 
promoter mutation on prognostic value of CTSI, we 
performed subgroup analysis based on TCGA dataset. 
For IDH-wt patients, the high CTSI risk score was 
associated with the worse outcome (median OS, days, 
CTSI low-risk vs CTSI high-risk: 422.0+/-24.1 vs 
357.0+/-20.3, p=0.012). However, for IDH-mut 
patients, the CTSI risk score cannot show prognostic 
value (Supplementary Figure S2B). For 
MGMTp-unmeth patients, CTSI low-risk score group 
showed a better prognosis (median OS, days, CTSI 
low-risk vs CTSI high-risk:485.0+/-34.7 days vs 
362.0+/-23.0, p=0.013). However, for MGMTp-meth 
patients, there was no significant difference 
(Supplementary Figure S2C). For TERT promoter 
mutation, patients in the CTSI high-risk group had 
shorter overall survival time in both strata (median 
OS, days, CTSI low-risk vs CTSI high-risk: 
484.0+/-45.2 vs 382.0+/-34.8, p=0.018, in TERTp-wt 
group; 485.0+/-46.7 vs 372.0+/-24.2, p=0.002, in 
TERTp-mut group) (Supplementary Figure S2D). 

These results demonstrated that CTSI risk score can 
predict the prognosis of IDH-wt/MGMTp-unmeth 
GBM patients. 

Combined CTSI risk score and TERT 
promoter mutation for prognosis prediction in 
IDH-wt and MGMTp-unmeth patients 

For further validation, we performed 
quantitative real-time PCR for the 13 signature genes 
and detected the status of IDH mutation, TERT 
promoter mutation and MGMT promoter methylation 
in 178 Xiangya GBM patients. Compared with normal 
brain tissue, PCNA, CALCOCO2, ADI1, GPNMB, 
MTDH, EIF3D, NEDD9, ERCC1 and PLOD1 were 
up-regulated while ATP6V1E1, VTI1B, ECHS1 and 
RCAN2 were down-regulated in GBM patients 
(Supplementary Figure S3). The mutation rate of IDH 
was only 6.2%. Most of the GBM patients showed an 
IDH-wt phenotype. The TERT promoter had a 
mutation rate of 46.6%. The methylation rate of 
MGMT promoter was 25.8% (Supplementary Table 
S3). The mRNA expression of these 13 genes are 
transferred into z score and plotted in heatmap as 
shown in Figure 3A. 

We validated the prognostic value of CTSI risk 
score in all patients of Xiangya GBM cohort. The 
median OS of CTSI high-risk group was 350.0+/-22.6 
days versus 455.0 +/- 22.6 days in CTSI low-risk 
group (p=0.002) (Figure 3B). CTSI was a significant 
prognostic factor on multivariate Cox regression 
analysis with a hazard ratio of 1.68 for CTSI high-risk 
group (Table 1).  

For IDH-wt patients, depending on TERT 
promoter mutation and MGMT promoter methylation 
together, we divided these patients into four 
subgroups: TERT promoter mutated (TERTp-mut)/ 
MGMTp-unmeth, TERT promoter wild-type (TERTp- 
wt)/MGMTp-unmeth, TERTp-mut/MGMTp-meth 
and TERTp-wt/MGMTp-meth. The Kaplan-Meier 
analysis showed that the pronosis of TERTp-mut/ 
MGMTp-unmeth subgroup was the worst, the 
TERTp-wt/MGMTp-unmeth subgroup was moderate 
while other two subgroups were relatively good 
(Figure 3C). Pairwise comparison between each 
subgroup showed that for MGMTp-meth patients, the 
status of TERT mutation didn’t affect the OS (Figure 
3C). These results were similar as reported by 
Hideyuki Arita et al. previously [23]. 

Next, we tested the prognostic value of CTSI in 
each of the four subgroups. We found that in both 
TERTp-mut/MGMTp-unmeth and TERTp-wt/ 
MGMTp-unmeth subgroups, CTSI was an 
independent prognostic factor on Kaplan-Meier 
analysis (median OS, CTSI low-risk vs CTSI high-risk: 
294.0 +/-42.2 vs 185.0+/-32.1 days, p=0.045, in 
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TERTp-mut/MGMTp-unmeth subgroup; 485.0+/ 
-22.5 vs 314.0+/-42.8 days, p=0.012, in 
TERTp-wt/MGMTp-unmeth subgroup) and 
multivariate Cox regression analysis (CTSI low-risk vs 
CTSI high-risk: p=0.037, HR=1.98, in TERTp-mut/ 
MGMTp-unmeth subgroup; p=0.032, HR=2.09, in 
TERTp-wt/MGMTp-unmeth subgroup) (Figure 3D,E, 
Table 2 and Table 3). For TERTp-mut/MGMTp-meth 
and TERT-wt/MGMTp-unmeth subgroups, CTSI risk 

score was not a significant prognostic factor (Figure 
3F and Figure 3G). 

Then we combined CTSI and TERT promoter 
mutation in IDH-wt/MGMTp-unmeth patients and 
divided these patients into four subgroups: 
TERTp-mut/CTSI-low, TERTp-mut /CTSI-high, 
TERTp-wt/CTSI-low and TERTp-wt/CTSI-high. The 
TERTp-wt/CTSI-low subgroup had the best outcome, 
while the TERTp-mut/CTSI-high subgroup suffered 
the worst outcome (Figure 3H).  

 

 
Figure 3. Identification of prognostic value of CTSI risk score in IDH-wt/MGMTp-unmeth patients. A. Distribution of gene expression, CTSI risk score, overall 
survival, IDH mutation, MGMT promoter methylation and TERT promoter mutation in Xiangya GBM cohort. B. Overall survival of the two groups according to CTSI risk score. 
C. Pairwise comparison of subgroups’ overall survival according to TERT promoter mutation and MGMT promoter methylation for IDH-wt GBM patients. TERT promoter 
mutation was a prognostic factor for MGMTp-unmeth patients, but not for MGMTp-meth patients. D. Overall survival of CTSI in IDH-wt/TERTp-mut/MGMTp-unmeth patients. 
E. Overall survival of CTSI in IDH-wt/TERTp-wt/MGMTp-unmeth patients. F. Overall survival of CTSI in IDH-wt/TERTp-mut/MGMTp-meth patients. G. Overall survival of CTSI 
in IDH-wt/TERTp-wt/MGMTp-meth patients. H. Pairwise comparison of subgroups’ overall survival based on TERT promoter mutation and CTSI in IDH-wt/MGMTp-unmeth 
patients. CTSI was a distinct prognostic factor in both the TERTp-wt and TERTp-mut subgroups. I. Survival of the six subgroups combining IDH mutation, TERT promoter 
mutation, MGMT promoter methylation and CTSI risk score together. IDH-mut patients received the best outcomes and IDH-wt/MGMTp-unmeth/TERTp-mut/CTSI-high 
patients received the worst. 

 



 Journal of Cancer 2019, Vol. 10 

 
http://www.jcancer.org 

5542 

Table 2. Cox proportional hazard model for IDH 
wildtype, TERT promoter mutated and MGMT 
promoter unmethylated patients (No. of subject=58, No. of 
event=44, No. of censored=14, Log likelihood=269.149). 

  Univariate Cox regression 
Method: Enter 

Multivariate Cox regression 
Method: Backward likewise 

  Co.ef Std.Err P 
value 

HR (95% 
CI) 

Co.ef Std.Err P 
value 

HR (95% 
CI) 

 Age 0.05 0.37 0.895 1.05 
(0.51-2.18) 

    

 Gender 0.28 0.35 0.415 1.33 
(0.67-2.66) 

    

 KPS -0.01 0.33 0.969 0.98 
(0.51-1.92) 

    

 Surgical 
Resection 

-0.44 0.58 0.450 0.65 
(0.21-1.99) 

    

 Treatment 
modality 

-1.19 0.38 0.002* 0.30 
(0.14-0.65) 

-1.06 0.33 0.001* 0.35 
(0.18-0.67) 

 CTSI risk 
score 

0.63 0.37 0.091 1.87 
(0.90-3.86) 

0.68 0.33 0.037* 1.98 
(1.04-3.75) 

Age: 0=Age<65 years, 1= Age>65 years. 
Gender: 0=Male; 1=Female. 
KPS: 0= KPS<70, 1=KPS>=70. 
Surgical resection: 0 = Others, 1= total resection. 
Treatment modality: 0= Without chemotherapy or radiotherapy, 1= Chemotherapy 
with radiotherapy. 
CTSI risk score: 0= low risk score group; 1= high risk score group. 
*, p<0.05 accepted as significance. 

 

Table 3. Cox proportional hazard model for IDH 
wildtype, TERT promoter wildtype and MGMT promoter 
unmethylated patients (No. of subject=67, No. of event=46, 
No. of censored=21, Log likelihood=293.099). 

  Univariate Cox regression 
Method: Enter 

Multivariate Cox regression 
Method: Backward likewise 

  Co.ef Std.Err P 
value 

HR (95% 
CI) 

Co.ef Std.Err P 
value 

HR (95% 
CI) 

 Age 0.58 0.33 0.079 0.40 
(0.21-0.77) 

    

 Gender -0.74 0.36 0.137 0.48 
(0.24-1.06) 

    

 KPS -0.89 0.34 0.008* 0.41 
(0.21-0.79) 

-0.91 0.33 0.006 0.40 
(0.21-0.77) 

 Surgical 
Resection 

-0.47 0.54 0.381 0.63 
(0.22-0.79) 

    

 Treatment 
modality 

-1.34 0.41 0.001* 0.26 
(0.12-0.59) 

-1.25 0.40 0.002* 0.29 
(0.13-0.63) 

 CTSI risk 
score 

0.84 0.37 0.022* 2.32 
(1.13-4.76) 

0.74 0.34 0.032* 2.09 
(1.07-4.08) 

Age: 0=Age<65 years, 1= Age>65 years. 
Gender: 0=Male; 1=Female. 
KPS: 0= KPS<70, 1=KPS>=70. 
Surgical resection: 0 = Others, 1= total resection. 
Treatment modality: 0= Without chemotherapy or radiotherapy, 1= Chemotherapy 
with radiotherapy. 
CTSI risk score: 0= low risk score group; 1= high risk score group. 
*, p<0.05 accepted as significance. 

 
Finally, combing IDH mutation, MGMT 

promoter methylation, TERT promoter mutation and 
CTSI risk score together, we made pairwise 
comparisons among these subgroups. We found that 
the IDH-mut patients had the best outcome followed 
by IDH-wt/MGMTp-meth patients, IDH-wt/ 
MGMTp-meth patients, IDH-wt/MGMTp-unmeth/ 
TERTp-wt/CTSI-low patients, IDH-wt/MGMTp- 
unmeth/TERTp-wt/CTSI-high patients and IDH-wt/ 
MGMTp-unmeth/TERTp-mut/CTSI-low patients. 

IDH-wt/MGMTp-unmeth/TERTp-mut/CTSI-high 
patients had the worst outcome (Figure 3I).  

Functional annotation of CTSI phenotypes 
For Gene Set Enrichment Analysis, tumors were 

classified into CTSI high-risk and CTSI low-risk 
phenotypes. According to GO gene sets, 1842 out of 
4058 gene sets were enriched in the CTSI high risk 
phenotype, while others were enriched in CTSI 
low-risk phenotype. 674 gene sets in the CTSI 
high-risk phenotype and 369 gene sets in the CTSI 
low-risk phenotype were significantly enriched 
(P<0.05). Many differences were unearthed between 
two phenotypes on Go biological process, GO cellular 
component and GO molecular function. Detailed 
information including plot of p-value vs NES, global 
ES histogram, heat map and gene list correlation 
profiles were exhibit exhibited in Supplementary 
Figure S4. 

For GO biological process, the top 20 enriched 
gene sets were shown in Figure 4A. The extracellular 
structure organization was most enriched process in 
CTSI high-risk group and neurotransmitter transport 
was most enriched process in CTSI low-risk group 
(Figure 4B and Figure 4C). Interestingly, CTSI 
high-risk phenotype show intense 
immunomodulatory including regulation of 
phagocytosis, inflammatory response, regulation of 
leukocyte migration, toll like receptor signaling 
pathway, granulocyte migration, regulation of mast 
cell activation, and so on (Supplementary Table S4). 
Besides inflammatory, CTSI high-risk phenotype also 
tend to closely communicate to environment such as 
extracellular structure organization, cellular response 
to biotic stimulus, multicellular organismal 
macromolecule metabolic process. Meanwhile, CTSI 
low-risk phenotype was found to related to 
neurobiological activity including neurotransmitter 
transport, presynaptic process involved in synaptic 
transmission, and cell proliferation including DNA 
biosynthetic process, DNA replication initiation, DNA 
repair, DNA recombination, microtubule based 
movement, sister chromatid segregation, cell cycle 
phase transition, and so on. The biological process of 
CTSI high- risk and low-risk phenotype reveal 
different function features, that is CTSI high-risk 
phenotype were prone to react to extracellular 
environment while low-risk phenotype tended to 
focus on cell activity especially proliferation. This can 
also be applied to GO cellular component and GO 
molecular function. As to component function, CTSI 
high-risk phenotype also tended to show high 
enrichment in function related to extracellular 
support structure, such as extracellular matrix 
component, basement membrane, external side of 
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plasma membrane, protein complex involved in cell 
adhesion., while CTSI low-risk phenotype was more 
likely to show to intracellular structures such as 
condensed chromosome, chromosomal region, 
microtubule organizing center part. Referring to 
molecular function, CTSI high- risk phenotype was 
enriched in extracellular signal delivery such as 
integrin binding, cytokine receptor activity, growth 
factor binding, while low-risk phenotype was 
enriched intracellular activities such as microtubule 
motor activity, tubulin binding, DNA helicase activity 
(Supplementary Figure S5). 

The enrichment map revealed that CTSI 
high-risk phenotype were active to environment 
response which may contribute to immune escape 
while CTSI low-risk phenotype was more excited in 
cancer cell proliferation including mitosis, DNA and 
RNA metabolism, epigenetic modification, and 
cytoskeleton/microtubule metabolism (Figure 5 and 
Supplementary Figure S6). 

Discussion 
As the most common primary intracranial 

malignancy, GBM is revealed as a molecularly 
heterogeneous disease. Recent studies through novel 
molecular platforms have provided molecular 
classifications of this tumor. In this study, based on 
transcriptome profile, we established a risk score 
model based on a 13-gene signature and validated its 
prognostic value by using differently published 
datasets and one retrospective clinical cohort from our 
local institution. Our findings of CTSI risk score 
provided a novel approach for prognosis evaluation 
of GBM patients and can serve as an important 
addition to the contemporary GBM prognosis 

evaluation system. 
Recently, several gene signatures have been 

shown to be associated with the prognosis of glioma 
patients. Zhang et al. discovered that GPR85, SHOX2 
and HMBOX1 had both diagnostic and prognostic 
values for patients with anaplastic glioma [24]. Wang 
et al. reported a 3-gene signature (FPR3, IKBIP and 
S100A9) for prognostic evaluation of MGMTp-meth 
GBM patients [25]. Compared with Wang’s study, 
CTSI also provided good prognostic prediction of 
IDH-wt/MGMTp-unmeth patients. Consequently, it 
serves good complement to the 3-gene signature by 
Wang et al. to portrait the overall prognosis 
prediction map for GBM patients. 

Out of the 13 signature genes, ATP6V1E1, EIF3D, 
ERCC1, GPNMB, MTDH, PCNA and NEDD9 have 
been reported to play crucial roles in various 
pathways and mechanism of glioma. Some of them 
were associated with prognosis [26-32]. Other genes, 
such as CALCOCO2, RCAN2, ADI1, ECHS1, PLOD1 
and VTI1B were associated with tumorigenesis or 
angiogenesis in some other cancers [33-35]. Our study 
is the first one to report the involvement of those 
genes in GBM patients.  

Gene set enrichment analysis revealed important 
genetic differences between the CTSI high-risk group 
and the CTSI low-risk group in our study. We found 
more than 1000 signaling pathways and biological 
processes that were differentially enriched in the two 
phenotypes. Gene sets related to cell cycle, mitosis, 
mRNA regulation, transcription, translation, DNA 
replication, DNA repair, neural biological processes 
and neural development were enriched in CTSI 
low-risk phenotype, while gene sets enriched in CTSI 
high-risk phenotype were mainly involved in 

 

 
Figure 4. Enriched gene sets of GO biological process based on both CTSI risk score phenotypes. A. Top 20 up-regulated gene sets of GO biological process in 
both CTSI high-risk phenotype and CTSI low-risk phenotype. EXTRACELLULAR STRUCTURE ORGANIZATION was with the highest normalized enrichment scores (NES) in 
CTSI high-risk phenotype. NEUROTRANSMITTER TRANSPORT was the most enriched gene set in CTSI low-risk phenotype. Statistics as NES, nominal p-value (NOM p-value) 
and false discovery rate q-value (FDR q-value) were also shown. B. GSEA enriched profile and heatmap of enriched EXTRACELLULAR STRUCTURE ORGANIZATION in CTSI 
high-risk score phenotype. C. GSEA enriched profile and heatmap of enriched NEUROTRANSMITTER TRANSPORT in CTSI low-risk score phenotype. 
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immune responses, cell surface interactions, 
extracellular matrix, cell junction, cellular responses, 
apoptosis and energy metabolism. These genetic 
differences may offer some insights into the reason 
why GBM patients can have drastically different 
prognosis.  

IDH mutation, MGMT promoter methylation 
and TERT promoter mutation are widely recognized 

as prognostic biomarkers in GBM patients. Patients 
with IDH mutation or wild-type TERT promoter have 
better outcomes compared with their counterparts 
[9,14]. Patients with MGMT promoter methylation are 
more sensitive to temozolomide therapy [36]. 
According to our analysis, CTSI risk score was unable 
to predict the prognosis of IDH-mut patients and 
MGMTp-meth patients. This indicates that the 

 

 
Figure 5. Enrichment map contrasting both CTSI risk score phenotypes. The gene set networks illustrated the results of GSEA targeted GO biological processes 
contrasting CTSI high-risk and CTSI low-risk phenotypes. Each node represents a gene set. Links between nodes represented the genes shared by both gene sets (filtered with 
p<0.05, FDR<0.05, Jaccard coefficient <0.95). The node color represented the strength and direction of enrichment (red gene sets were enriched in CTSI high-risk phenotype, 
green ones were enriched in CTSI low-risk phenotype). The figure was made by the Enrichment Map from Cytoscape 3.2. 

 
Figure 6. Stepwise strategy for GBM prognosis evaluation. The stepwise GBM prognosis evaluation system combined IDH mutation, MGMT promoter methylation, 
TERT promoter mutation and CTSI together. The color changed from green to black representing the patients’ outcome from the good to the worst. 
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prognostic difference of CTSI risk score for overall 
GBM patients was majorly contributed by IDH-wt 
and MGMTp-unmeth patients. On the other hand, for 
GBM patients, TERT promoter mutation was 
predictive only in IDH-wt/MGMTp-unmeth 
subgroup. This finding agreed with another study 
focusing on TERT promoter mutation and MGMT 
promoter methylation for GBM patients [23]. It 
suggests that the prognostic value of TERT promoter 
mutation is also majorly contributed by IDH-wt and 
MGMTp-unmeth patients. CTSI was a significant 
prognostic factor for patients with TERT promoter 
mutation. Based on these results, we suggest CTSI is a 
significant prognostic indicator for 
IDH-wt/MGMTp-unmeth GBM patients. And 
combined with TERT promoter mutation, CTSI is 
capable of further predicting the prognosis of GBM 
patients.  

Finally, combining IDH mutation, TERT 
promoter mutation, MGMT promoter methylation 
with CTSI, we established a stepwise 4-level strategy 
for GBM prognosis evaluation (Figure 6). First, IDH 
mutation is the most important factor to divide GBM 
patients into those with good outcomes (IDH-mut) 
and bad outcomes (IDH-wt) (level 1). Second, for 
IDH-wt patients, MGMTp-meth patients have a better 
prognosis than MGMTp-unmeth patients (level 2). 
Third, TERT promoter mutation can predict outcome 
in MGMTp-unmeth patients, but not in 
MGMTp-meth patients (level 3). Finally, for 
IDH-wt/MGMTp-unmeth patients, CTSI is an 
important predictive factor and together with TERT 
promoter mutation, the prognosis of GBM patients 
can be more precisely predicted (level 4). 

In conclusion, CTSI risk score is a predictable 
factor for IDH-wt/MGMTp-unmeth GBM patients. 
Based on CTSI, IDH mutation, TERT promoter 
mutation and MGMT promoter methylation, a 4-level 
stepwise prognosis evaluation system providing more 
precise outcome prediction for GBM patients was 
established. 

Materials and Methods 
Gene expression datasets and clinical data 

GBM gene expression profiles and 
corresponding clinical data were obtained from three 
public databases: the TCGA dataset 
(http://cancergenome.nih.gov), the GEO GSE4271 
dataset (https://www.ncbi.nlm.nih.gov/geo/query/ 
acc.cgi?acc=GSE4271) and the CGGA dataset 
(http://cgga.org.cn). All these datasets were 
generated on Affymetrix platform HG-U133a.  

Based on TCGA dataset, we selected 195 patients 
received post-operationally combined radio-chemo-

therapy to regain a new cohort, TCGA 195 patient 
cohort, as training set to identify the gene expression 
signature. This dataset is a subset of TCGA dataset, 
and the data was also generated on Affymetrix 
platform HG-U133a. On the other hand, the TCGA 
529 patient cohort, GSE4271 dataset (54 patients) and 
CGGA dataset (144 patients) were included as 
validation sets. 

Microarray data processing 
The Robust Multichip Average (RMA) algorithm 

was used for background adjustment [37]. The probes 
(or probe sets) from Affymetrix HG-U133a were 
re-mapped to the human genome (GRCh38) using 
hgu133a.db (R/Bioconductor package). Multiple 
probes (or probe sets) mapping to the same gene were 
averaged using the mean values of those probes (or 
probe sets) to generate a single expression value (on 
the log2 scale). Two differential gene expression 
profiles from the TCGA dataset were created. Profile 
A was the differential gene expression profile 
between GBM and normal brain tissues. Profile B was 
generated as the following: 1. We used the median 
survival time as the cutoff point, and divided the 195 
patient cohort into the radio-chemotherapy resistant 
group (n=85, median: 44.6 months) and the 
radio-chemotherapy sensitive group (n=110, median: 
79.8 months). 2. By comparing gene expression 
patterns between the two groups, a differential gene 
expression profile was generated. As a result, Profile 
A contained 1349 genes and Profile B contained 1399 
genes. Finally, we intersected Profile A with Profile B 
and a new data matrix containing 137 genes and 195 
samples emerged. These 137 genes were GBM 
tissue-specific and associated with radio-chemo-
therapy sensitivity. The workflow of data processing 
was shown in Supplementary Figure S1. 

Risk scoring model 
We performed univariable Cox regression 

analysis to evaluate the relationship between the 
expression levels of each of the 137 genes and the 
patient’s overall survival (OS) time in the training 
dataset. Multivariable Cox regression analysis was 
performed on those genes in the training dataset, with 
OS as the dependent variable and other clinical 
information as the covariables. The genes significantly 
associated with survival (p<0.01) were used to create 
a risk scoring model for prognosis prediction. The risk 
scoring model, which we named Combined Therapy 
Sensitivity Index, CTSI, was defined as a linear 
combination of the expression values of the 
prognostic genes and the multivariable Cox 
regression coefficients as the weight. The risk score 
was calculated as previously described [24, 25, 38-41]: 
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CTSI = ∑ (𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖 ∗ 𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖)𝑁𝑁
𝑖𝑖=1 . 

In this formula, N stands for the number of 
prognostic genes. Expi is the relative expression level 
of genei. Coei is the estimated regression coefficient of 
genei in the multivariable Cox regression analysis.  

Tissue samples, patients’ information and 
follow-up 

To further validate the CTSI risk scoring system, 
we collected 178 GBM surgical specimens from the 
tissue archive in our hospital. Those patients were 
admitted between Oct. 2008 – Nov. 2015. 
Age-matched normal brain tissues were obtained 
from patients with severe brain trauma. The 
expression of those 13 signature genes were 
quantified by real-time RT-PCR. Post-therapy MR 
images of the brain was performed to evaluate the 
response to the recurrence of tumors at 1-year 
intervals for follow-up. Data on death were defined as 
failure events for the overall survival rate. All 
follow-ups in this study ended in May 2016. The 
study was approved by the Committee on Medicine 
Ethics of Xiangya Hospital of Central South 
University. All patients were well informed and 
written informed consent was provided.  

RT-PCR and Quantitative real-time PCR 
The RT-PCR and quantitative real-time PCR 

were performed as previously described [42]. Briefly, 
total RNA isolation (Invitrogen), first strand cDNA 
synthesis (Fermentas) and qPCR (SYBR-Premix Ex 
TaqTM kit; Takara) were performed according to 
manufacturer’s protocol. Thirty-five cycles were 
conducted on the ABI PRISM_ 7900 HT. Reported 
values were calculated using the 2-ΔΔCt method, 
normalized against endogenous GAPDH. 
Quantitative real-time PCR was conducted in 
triplicate for each sample. For data analysis, gene 
expression in normal brain tissue was used as 
reference to calculate relative expression level. Primer 
sequences were shown in Supplementary Table S1. 

IDH mutation, TERT promoter mutation and 
MGMT promoter methylation 

Genomic DNA from 178 GBM tissue samples 
was isolated by using the QIAamp DNA mini kit 
(Qiagen) according to the manufacturer’s instructions.  

IDH1 and IDH2 mutation analysis were 
performed using previously described methods by 
pyrosequencing [43, 44]. The regions spanning 
wild-type R132 of IDH1 and wild-type R172 of IDH2 
were amplified by PCR. The PCR analysis was 
performed in 25 ul reaction volume, containing 0.2 
uM each forward and reverse primer, 1×buffer, 2.0 
mM dNTPs, 0.04 U of HotstartTaq (Qiagen), 1 mM 

MgCl2 and 2 ml of 10-20 ng DNA. The PCR conditions 
were as follows: 95°C for 9 minutes; 45 cycles of 95°C 
for 15 seconds, 56°C for 25 seconds, 72°C for 1minute 
(ABI PCR system 9700). DNA was purified and 
subjected to pyrosequencing on PyroMark Q96 ID 
System (QIAGEN). IDH mutated means that the 
subject was IDH1 or IDH2 mutated. All primers for 
IDH1 and IDH2 mutation analysis are listed in 
Supplementary Table S1b.  

We used Sanger sequencing to determine the 
TERT promoter mutational status as described by 
Eckel-Passow JE and Lachance DH [14]. Sequences 
covering C228T and C250T mutations in TERT 
promoter was amplified, which yield a 244-bp 
product. A total volume of 20 ul reaction mixture was 
prepared for PCR, consisting of 10-100ng DNA in 
solution, Platinum Taq DNA polymerase (1.5 unit), 
0.2mM dNTPs, 0.25mM for each primer and 0.5X PCR 
Enhancer. The first PCR cycling conditions were set at 
95°C for 2 minutes, 40 cycles at 95°C for 15 seconds, 
62°C for 20 seconds and 72 °C for 10 minutes.1 uL of 
the amplified DNA from the first PCR was used for 
second PCR in a 20 uL reaction mixture, containing 
0.5×PCR Enhancer, 10×dNTP mix that contained 1.5 
mM dGTP, 0.5mM deaza-GTP (Sigma-Aldrich) and 
0.5mM primers. The reaction cycling condition of was 
the same with the first PCR. Products of second PCR 
were purified and subjected to Sanger sequencing by 
using the BigDye Terminator cycle sequencing kit 
(Applied Biosystems) with the forward PCR primer as 
a sequencing primer. All primers are listed in 
Supplementary Table S1c. 

We analyzed the methylation status of MGMT 
by bisulfite modification of the genomic DNA 
followed by pyrosequencing as previously described 
[45]. We averaged the methylation values across the 
16 CpG sites tested within the MGMT promoter. With 
an average methlyation above 10%, the samples were 
considered as MGMTp-meth. Primers for MGMT 
promoter methylation analysis are listed in 
Supplementary Table S1d. 

Gene set enrichment analysis 
Gene Set Enrichment Analysis (GSEA) was used 

to identify associated signaling pathways between 
CTSI high-risk and CTSI low-risk groups. 6466 
Annotated gene sets were downloaded from the 
molecular signatures database (MSigDB) C5 GO gene 
sets collection [46]. Changes in gene expression and 
gene sets were evaluated using Permutation testing 
(1,000 permutations). The gene sets with a false 
discovery rate (FDR) < 0.05 were considered to be 
significantly enriched [46]. The GSEA results were 
visualized using Cytoscape 3.2 and Enrichment Maps 
[47, 48].  
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Statistical analysis  
The receiver operating characteristic (ROC) 

curve was used to evaluate the prognostic 
performance of CTSI. Youden’s index was calculated 
in the training dataset to identify the cutoff point of 
the CTSI score. The calculation formula of Youden’s J 
statistic is shown as below: 

J = sensitivity + specificity − 1 

With the two right-hand quantities being 
sensitivity and specificity, the formula is: 

J =
true positives

ture positives + flase negatives

+
𝑡𝑡𝑡𝑡𝑡𝑡𝐶𝐶 𝑛𝑛𝐶𝐶𝑛𝑛𝑛𝑛𝑡𝑡𝑛𝑛𝑛𝑛𝐶𝐶𝑛𝑛

𝑡𝑡𝑡𝑡𝑡𝑡𝐶𝐶 𝑛𝑛𝐶𝐶𝑛𝑛𝑛𝑛𝑡𝑡𝑛𝑛𝑛𝑛𝐶𝐶𝑛𝑛 + 𝑓𝑓𝑛𝑛𝑓𝑓𝑛𝑛𝐶𝐶 𝐸𝐸𝐶𝐶𝑛𝑛𝑛𝑛𝑡𝑡𝑛𝑛𝑛𝑛𝐶𝐶𝑛𝑛
− 1 

The GBM patients in the training and validation 
datasets were divided into the high-risk group and 
the low-risk group. The Kaplan-Meier method was 
used to estimate survival time for all the datasets and 
Xiangya GBM cohort. Multivariate Cox regression 
analysis was performed to test whether CTSI risk 
score was a significant predictor of survival after 
taking into account other important variables. The 
receiver operating characteristic curves was used to 
analyze the sensitivity and specificity of CTSI risk 
score in the TCGA 529 patient cohort dataset. Area 
under the curve (AUC) was calculated based on ROC. 
All analyses were performed using R/Bio-Conductor 
(version 3.2.2). 
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