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Abstract: This work studied the effects of centrifugal block freeze crystallization (CBFC) on physic-
ochemical parameters, total phenolic compound content (TPCC), antioxidant activity (AA), and
process parameters applied to fresh murta and arrayan juices. In the last cycle, for fresh murta
and arrayan juices, the total soluble solids (TSS) showed values close to 48 and 54 Brix, and TPCC
exhibited values of approximately 20 and 66 mg gallic acid equivalents/100 grams dry matter (d.m.)
for total polyphenol content, 13 and 25 mg cyanidin-3-glucoside equivalents/100 grams d.m. for
total anthocyanin content, and 9 and 17 mg quercetin equivalents/100 grams d.m. for total flavonoid
content, respectively. Moreover, the TPCC retention indicated values over 78% for murta juice,
and 82% for arrayan juice. Similarly, the AA presented an increase over 2.1 times in relation to the
correspondent initial AA value. Thus, the process parameters values were between 69% and 85%
for efficiency, 70% and 88% for percentage of concentrate, and 0.72% and 0.88 (kg solutes/kg initial
solutes) for solute yield. Therefore, this work provides insight about CBFC on valuable properties in
fresh Patagonian berries juices, for future applications in health and industrial scale.

Keywords: freeze crystallization; murta; arrayan; physicochemical properties; bioactive compounds;
antioxidant activity; process parameters

1. Introduction

In the last decades, berries have gained a lot of attention due to their attractive
colors, interesting physicochemical properties, and excellent nutritional and organoleptic
characteristics. Thus, berries are not only consumed for their physical appearance but also
for their countless and positive effects on the consumers’ health, since these fruits have a
significant source of micronutrients, phenolic compounds, and antioxidant activity that
provide important beneficial effects for human health [1,2].

In this context, Chile has an important diversity of wild and endemic berries due to
the different ecosystems of each region, since Chile presents from dry desert climate (North)
to high-intensity rainfall rate and low temperatures (South) [3]. Hence, in southern-central
Chile, there are various endemic berries such as maqui (Aristotelia chilensis), calafate (Berberis
microphylla), Chilean strawberry (Fragaria chiloensis ssp. chiloensis), murta (Ugni molinae),
and arrayan (Luma apiculata), and till date, murta and arrayan have been poorly studied.
However, these berries have been used since ancient times as food, ingredients, colorants,
and/or traditional medicines [4,5], and it opens the possibility of future scientific analysis
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in the fresh fruits and/or the development of studies for commercial exploitation through
new processing technologies.

Specifically, murta and arrayan are two interesting and exotic berry fruits recognized
as “superfruits,” since these fruits present high levels in terms of fiber, vitamins, minerals,
nutrients, and phytochemical composition [6]. Murta (also called murtilla, myrtle berry,
or mutilla) is a wild Myrtaceae bush, with black/purple color and an intense sweet taste,
and it grows from Talca (35◦25′36” S, 71◦40′18” W, Maule Region, central Chile) to the
Palena River (41◦28′18” S, 72◦56′12” W, Los Lagos Region, southern Chile) [7]. Similarly,
arrayan (also called cauchao) is other wild Myrtaceae endemic plant that grows in forests
from Valparaíso (33◦03′47” S, 71◦38′22” W, Valparaiso Region, central Chile) to Aysen
(45◦34′12” S, 72◦03′58” W, Aysen del General Carlos Ibáñez del Campo region, southern
Chile). The fruits have nearly globular shape with characteristic aroma [8]. Moreover, these
fruits present an important content of phenolic compounds (phenolic acids, anthocyanins,
flavonoids, flavonols, and tannins), and thus, it contributes significantly to the high value
of antioxidant activity measured for these fruits [9–14]. Therefore, murta and arrayan have
excellent potential to be incorporated into the diet for daily consumption, either as fresh
fruits or derived products such as yogurt, jams, jellies, purees, and fruit juices [15].

Additionally, different innovations have been adopted in the food industry due to
the demands of consumers, every day more interested and aware, for healthy, safe, tasty,
and ideal functional foods with low impact on the environment [16]. Furthermore, these
innovations can be made at any stage during the food processing, and in recent years,
the changes have been observed through the implementation of emerging thermal and
non-thermal technologies with the intention to increase the extraction of components,
efficiency, percentage of recovery, stability, and preservation of nutritional and organoleptic
characteristics in each food product [17–19].

Accordingly, freeze crystallization (FC) has attracted increasing attention as emerging
non-thermal technology due to their important implications for the concentration of food
solutions. Specifically, FC uses low temperatures to concentrate liquid solutions and it
is based on the freezing of the water, and then, the unfrozen solution (cryoconcentrated)
is separated from the ice crystals (frozen fraction). Thereby, FC allows increasing the
solutes and bioactive compounds in the cryoconcentrated fraction. In turn, FC had a
significant energy advantage compared to the traditional concentration technologies, since
FC uses only 14% of the total energy used in evaporative concentration [20]. Hence, FC
has been positively applied in various liquid foods, presenting an increase in solutes and
extraordinary retention of phenolic compounds and antioxidant activity [21–25]. However,
to our best knowledge, there are a few studies available about the application of FC on
valuable “superfruit” juices [26,27].

Thus, the objective of this study was to evaluate the use of block FC assisted by
centrifugation technology on two wild endemic Chilean berry juices (murta and arrayan)
in terms of physicochemical properties, process parameters, and quality characteristics.

2. Materials and Methods
2.1. Raw Materials

Fresh murta (Ugni molinae) and arrayán (Luma apiculata) were obtained from Valle
Exploradores Ltda (46◦37′27” S, 72◦40′36” W, Puerto Río Tranquilo, XI Región de Aysén,
Chile), with standard commercial maturity, i.e., uniform size and color, and without visual
damage (injured) or being immature. Thus, the samples were transported in covered
insulated boxes at Chillán (XVI Región del Ñuble, Chile) and were kept in a refrigerated
chamber until their further analysis.

2.2. Fruit Juice Preparation

The fruits were washed with tap water to remove dust and dirt, and then subjected
to manual pressure to obtain the juice, and then, the fresh juice was filtered using a nylon
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cloth (0.8 mm fine-mesh) to separate large fragments such as pulp, seeds, and peels from
the liquid. Later, the fresh juice was stored at 4 ◦C until analysis or processing.

2.3. Freeze Crystallization (FC)

The FC process at three cycles was based on the protocol described by Orellana-Palma
et al. [27] (Figure 1). First, the plastic centrifugal tubes with 45 mL of juice were isolated
with foamed polystyrene. Then, the tubes with juice were frozen through axial freezing
front propagation in a static freezer (model 280, M&S Consul, Sao Paulo, Brazil) overnight
at −20 ◦C. Later, the cryoconcentrated fraction was separated from the ice fraction by
centrifugation (Eppendorf 5430R, Hamburg, Germany) at 20 ◦C for 20 min at 4000 rpm, and
thus, this procedure can be called the first cycle (C1). The cryoconcentrate juice obtained
from C1 was collected. Subsequently, the C1 solution was used as the new feed solution
for the second (C2) cycle, and thus, the C2 solution was used as new feed solution for
the third (C3) cycle. All the cycles were performed under the same FC procedure (axial
freezing front propagation at −20 ◦C and centrifugation conditions). Specifically, different
quality properties such as physicochemical properties, total phenolic compound content,
and antioxidant activity were determined in the cryoconcentrated fraction from C1, C2,
and C3.
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2.4. Physicochemical Profile

The physicochemical profile in the samples was measured based on the method
described by Orellana-Palma et al. [27]. Thus, the TSS content was measured using a digital
refractometer (PAL-3, Atago Inc., Tokyo, Japan) with wide range (0–93%), and the results
were expressed as Brix. The pH measurements were determined with a digital pH meter
(HI-2221, Hanna Instruments, Woonsocket, RI, USA). The total titratable acidity (TTA)
(grams of malic acid (MA) per liter of sample, g MA/L) was obtained by titrimetric method.
The density (kg/m3) was obtained using a pycnometer at 25 ◦C. The color properties were
evaluated using a colorimeter (CM-5, Konica Minolta, Osaka, Japan), and the results were
provided in accordance with CIELab system (L*: darkness-whiteness, a*; greenness-redness
axis, and b*: blueness-yellowness axis). The total color difference (∆E*) was calculated in
accordance with Equation (1).

∆E∗ =
√(

L∗ − L∗0
)2

+
(
a∗ − a∗0

)2
+
(
b∗ − b∗0

)2, (1)

where ∆E* is the change variation between fresh juices and cryoconcentrated samples. The
subscript 0 corresponds to the initial CIELab values in the fresh juice, and L*, a*, and b* are
the color properties in each cryoconcentrated sample.

2.5. Determination of Total Phenolic Compound Content (TPCC)

TPCC were determined by the total polyphenol content (TPC), total anthocyanin
content (TAC), and total flavonoid content (TFC) assays.

TPC, TAC, and TFC assays were measured with a spectrophotometer UV/Vis (T70, Oa-
sis Scientific Inc., Greenville, SC, USA) based on the method described by Sekizawa et al. [28],
Lee et al. [29], and Zhishen et al. [30], where gallic acid (GA), cyanidin-3-glucoside (C3G),
and quercetin (Q) were used for the standard curve, respectively, and the results were ex-
pressed in mg of GA equivalents (GAE) per grams (g) of dry matter (mg GAE/g d.m.), mg
of C3G equivalents per grams (g) of dry matter (mg C3G/g d.m.), and mg of Q equivalents
(QE) per grams (g) of dry matter (mg QE/g d.m.), respectively.

Additionally, the TPCC retention represents the TPCC retained from the fresh juice in
the cryoconcentrated solution. The TPCC retention was determined by Equation (2) [31].

TPCC retention (%) =

(
Co

Cc

)
×
(

TPCCc

TPCCo

)
× 100, (2)

where Co is the initial TSS; Cc is the TSS at each cycle in the cryoconcentrated fraction;
TPCCc is the value of TPC, TAC, and TFC at each cycle; and TPCCo is the initial value of
TPC, TAC, and TFC.

2.6. Determination of Antioxidant Activity (AA)

Antioxidant activity was determined by means of the 2,2-diphenyl-1-picrylhydrazyl
(DPPH), 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), ferric reducing
antioxidant power (FRAP), and oxygen radical absorbance capacity (ORAC) assays.

DPPH, ABTS, and FRAP assays were measured with a spectrophotometer UV/Vis
(T70, Oasis Scientific Inc., Greenville, SC, USA) based on the method described by Zorzi
et al. [32], Garzón et al. [33], and Chen et al. [34], respectively.

ORAC assay was evaluated based on the method described by Ou et al. [35] with a
multimode plate reader (Victor X3, Perkin Elmer, Hamburg, Germany). The absorbance
was measured at 485 nm (λexcitation) and at 520 nm (λemission) every 1 min for 60 min.

Trolox (T) was used for the standard curve, and the AA assays were expressed as µM
Trolox equivalents (TE) per gram (g) of dry matter (µM TE/g d.m.).
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2.7. Process Parameters in FC
2.7.1. Efficiency (η)

η (%) is defined as the solutes in the cryoconcentrated fraction relative to the solutes
remaining in the ice fraction. The η (%) was determined by Equation (3).

η (%) =
Cc − CI

Cc
∗ 100%, (3)

where Cc and CI are the TSS at each cycle in the cryoconcentrated and ice fractions,
respectively.

2.7.2. Solute Yield (Y)

Y (kg solutes/kg initial solutes, kg/kg) represents the relation between the recovered
solute mass in the initial solution and cryoconcentrated solution. The Y (kg/kg) was
determined by Equation (4).

Y
(

kg
kg

)
=

mc

m0
, (4)

where mc is the solute mass in the cryoconcentrated fraction and m0 is the initial solute
mass.

2.7.3. Percentage of Concentrate (PC)

PC (%) represents the weight in the initial sample relative to the weight remaining in
the ice fraction. The PC was determined by Equation (5).

PC (%) =
W0 −Wi

W0
× 100%, (5)

where W0 and Wi are the initial and final weights in the ice fraction, respectively.

2.8. Statistical Analysis

The treatments were conducted in triplicate at ambient temperature (≈22 ◦C), and
the results were presented as mean ± standard deviation. One-way analysis of variance
(ANOVA) was used to the evaluation of statistical analysis and the treatment means were
compared via Fisher’s least significant difference (Fisher’s LSD) test at a confidence level
of 0.95 (p ≤ 0.05). The data were analyzed through Statgraphics Centurion XVI software
(v. 16.2.04, StatPoint Technologies Inc., Warrenton, VA, USA).

3. Results and Discussion
3.1. Physicochemical Characteristics

The physicochemical properties in the fruit juices and CBFC-treated juices are shown
in Figure 2 and Table 1. Additionally, the TSS, pH, TTA, and color (L*, a*, b* and ∆E*)
values presented significant differences when each BFC cycle was compared with their
respective fresh juice.

The fresh murta juice presented lower physicochemical characteristics values than
those indicated by Ah-Hen et al. [36]. However, our results were higher than previous
results found in the same fruit juice by Ah-Hen et al. [37]. Moreover, the fresh arrayan juice
values were higher than previous values reported by Fuentes et al. [13]. The differences can
be connected to the fact that the studies were carried out with fruits from different areas
of the Southern Chile, and these zones are characterized by various climatic conditions,
equivalent to constant rains and low temperatures throughout the year [38]. Additionally,
various factors such as type/time of harvesting, ripening process, and/or the interaction
genotype-environment can change the properties of the fruit and juice [39].
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Figure 2. Total soluble solids (TSS) values at each BFC cycle: (a) murta juice and (b) arrayan juice. The bars represent
the standard deviations. The number on the bar is the concentration index (CI), and CI is a dimensionless number that
represents the increase in solutes at each BFC cycle (in both cryoconcentrated and ice fractions) with respect to the initial
TSS value (C0) (14.0 Brix for murta juice and 15.1 ◦Brix for arrayan juice), i.e., CI = Cc/C0, where Cc is the TSS value at each
cycle.

First, independent of fresh juice, the TSS values showed an increasing trend with
increasing BFC cycles (Figure 2). Hence, in the last cycle, for murta juice (Figure 2a), the
solutes reached a TSS value close to 48.2 ◦Brix, and for arrayan juice (Figure 2b), the TSS
value was approximately 54.0 ◦Brix, which is comparable to an increase in 3.4 and 3.6 times,
in relation to the initial TSS values (14.0 and 15.1 ◦Brix), respectively. In comparison with
previous studies in our laboratory, the results (third cycle) presented lower concentration in-
dex value than those obtained in orange juice (5.7) [40] and apple juice (3.9) [41], but higher
than those achieved in calafate juice (3.0) [27], pineapple juice (3.3) [42], and blueberry juice
(2.5) [43]. The variation in TSS values is due to the different and specific characteristics
(pH, TTA, and density, among others) in the fresh juice, since each characteristic interacts
under various forms in the cryoconcentration process [44]. It is worth to mention that, all
the studies used the same freezing and centrifugation conditions.

The pH, TTA, and CIELab (L*, a*, and b*) values are given in Table 1.
In terms of pH, the values showed a significant decrease in both fresh murta juice

(pH = 3.7) and fresh arrayan juice (pH = 5.1), since the values (third cycle) had a decrease
in 27% (pH = 2.4) and 25% (pH = 3.8), in comparison to the correspondent pH value of
the fresh juice, respectively. By contrast, the fresh murta juice and fresh arrayan juice
increased the TTA values to 2.3 and 1.6 for C1, 3.1 and 2.1 for C2, and 3.8 and 2.6 for C3,
indicating an increase in 224% and 217% (in the last cycle) in relation to the initial TTA
values, respectively. The opposite behavior among pH and TTA values has been observed
in various cryoconcentrated food liquids such as calafate juice [27], pineapple juice [42],
and sapucaia nut cake milk [45]. The pH and TTA changes have been attributed to the
continuous increases in TSS at each cycle, since it provokes an increase in the organic
acids of the cryoconcentrates, causing the opposite phenomenon between pH and TTA
values [41].

In terms of colorimetric CIELab parameters, the color measurement is considered an
indicator of food quality and can also be used indirectly in the analysis of colored compo-
nents contained in fruits, particularly in berries, providing an estimation of antioxidants
and polyphenolic compounds [46,47].



Foods 2021, 10, 466 7 of 14

Table 1. Physicochemical characteristics of the samples.

Sample pH TTA L* a* b* ∆E*

Murta Arrayan Murta Arrayan Murta Arrayan Murta Arrayan Murta Arrayan Murta Arrayan

Fresh juice 3.7 ± 0.0 a 5.1 ± 0.1 a 1.7 ± 0.2 a 1.2 ± 0.0 a 51.9 ± 1.4 a 12.2 ± 0.1 a 3.8 ± 0.8 a 8.7 ± 0.8 a 2.6 ± 0.5a 1.1 ± 0.2 a - -
Cycle 1 3.3 ± 0.2 b 4.7 ± 0.2 b 2.3 ± 0.1 b 1.6 ± 0.2 b 40.6 ± 0.7 b 7.5 ± 0.5 b 8.2 ± 0.4b 22.0 ± 0.2 b 5.9 ± 0.1b 14.0 ± 0.2 b 12.5 ± 0.7 a 19.1 ± 0.5 a

Cycle 2 2.8 ± 0.1 c 4.2 ± 0.2 c 3.1 ± 0.4 c 2.1 ± 0.1 c 28.2 ± 0.4 c 4.1 ± 0.2 c 14.7 ± 0.4 c 31.0 ± 1.4 c 10.1 ± 0.9c 22.6 ± 1.3 c 27.2 ± 0.9 b 32.0 ± 1.1 b

Cycle 3 2.4 ± 0.1 d 3.8 ± 0.0 d 3.8 ± 0.2 d 2.6 ± 0.3 d 14.4 ± 1.4 d 0.4 ± 0.5 d 34.9 ± 0.3 d 38.9 ± 1.2 d 15.1 ± 0.9d 33.4 ± 0.4 d 50.3 ± 1.2 c 45.7 ± 0.7 c

a–d: Different superscript letters in the same column indicate significant differences (p ≤ 0.05) according to Fisher’s LSD test. L*, a*, b*, and ∆E*, are the darkness-whiteness axis, greenness-redness axis,
blueness-yellowness axis, and the total color difference, respectively.
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Thus, all the samples presented an important change during the cycles, since each
parameter had significant modifications, and thus, in C3, the L* values decrease from 52 to
14 CIELab units and from 12 to 0.4 CIELab units, for fresh murta and arrayan juices, which is
equivalent to a decrease in 72% and 96%, respectively, signifying that the cryoconcentrated
samples were darker than the original juice. However, as cycles advanced, a progressive
increase in a* and b* values was observed, with values from 4 to 35 CIELab units and
from 3 to 15 CIELab units, for murta juice, and from 9 to 39 CIELab units and from 1 to
33 CIELab units, for arrayan juice, respectively, indicating that the juices had a darkish
red color (most noticeable in arrayan juice), and thus, the final cryoconcentrated samples
presented a very dark visual appearance with red coloration (Figure 3). These results
suggested that the changes in visual color of fresh juices treated by BFC can be linked to
the notable increase in the TSS concentration and total phenolic compound content at each
cycle [48]. Additionally, the ∆E* between the samples (fruit juices and CBFC-treated juices)
specified that the highest ∆E* values were assessed for the final cycle, since the values
ranged from 13 to 50 CIELab units and from 19 to 46 CIELab units, from the first to the
third cycle, for murta juice and for arrayan juice, respectively. Specifically, Krapfenbauer
et al. [49] defined that a ∆E* ≥ 3.5 CIELab units denote visual differences by the consumers
between food products. Therefore, our values indicate that the human eye can perceive
visual differences between the original sample and each cryoconcentrated sample, since all
the ∆E* values were higher than 13 CIELab units. All the data and visual color had similar
trend to the results reported in various studies on FC applied to fresh juices [27,31,43].
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Figure 3. Effect on visual color of fresh murta juice and fresh arrayan juice under centrifugal block
freeze crystallization (CBFC): (a) fresh murta juice, (b) cryoconcentrated murta juice, (c) fresh arrayan
juice, and (d) cryoconcentrated arrayan juice.

3.2. Total Phenolic Compound Content (TPCC)

The levels of TPCC in the fruit juices and CBFC-treated juices are shown in Table 2.
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Table 2. Total phenolic compound content of fresh juices and cryoconcentrated samples.

Sample
TPC

(mg GAE/g d.m.)
TAC

(mg C3G/g d.m.)
TFC

(mg QE/g d.m.)

Murta Arrayan Murta Arrayan Murta Arrayan

Fresh juice 6.4 ± 0.8 a 20.5 ± 2.1 a 4.2 ± 0.1 a 8.2 ± 0.9 a 3.2 ± 0.0 a 6.0 ± 0.2 a

Cycle 1 8.1 ± 0.2 b 28.7 ± 1.1 b 5.1 ± 0.9 b 10.5 ± 0.5 b 3.6 ± 0.1 b 6.9 ± 0.2 b

TPCC retention (%) 70.0 ± 2.1 A 76.9 ± 0.5 A 66.6 ± 1.0 A 70.8 ± 0.6 A 62.1 ± 0.9 A 63.2 ± 0.1 A

Cycle 2 13.4 ± 1.0 c 47.0 ± 2.9 c 8.3 ± 1.3 c 17.0 ± 2.0 c 5.8 ± 0.4 c 11.4 ± 1.4 c

TPCC retention (%) 78.6 ± 0.9 B 85.9 ± 1.2 B 73.1 ± 1.4 B 77.9 ± 1.1 B 67.8 ± 1.3 B 71.1 ± 2.9 B

Cycle 3 19.9 ± 1.2 d 65.6 ± 3.8 d 12.5 ± 1.7 d 24.8 ± 1.7 d 8.6 ± 0.9 d 17.0 ± 2.3 d

TPCC retention (%) 91.1± 1.5 C 93.1 ± 0.2 C 85.6 ± 2.0 C 88.0 ± 0.7 C 78.1 ± 2.4 C 82.5 ± 1.2 C

a–d: Different small letters in the same column indicate significant differences (p ≤ 0.05) between the fresh juice and their cycles, according
to Fisher’s LSD test. A–D: Different capital letters in the same column indicate significant differences (p ≤ 0.05) between the TPCC retention
at each cycle, according to Fisher’s LSD test. TPCC, TPC, TAC, and TFC, are the total phenolic compound content, total polyphenol content,
total anthocyanin content, and total flavonoid content, respectively.

First, fresh murta juice had TPCC values close to 6.4 mg GAE/g d.m., 4.2 mg C3G/g
d.m., and 3.2 mg QE/g d.m., while fresh arrayan juice had TPCC values of approximately
20.5 mg GAE/g d.m., 8.2 mg C3G/g d.m., and 6.0 mg QE/g d.m., for TPC, TAC, and
TAC, respectively. These results were lower than the ones reported by Ramirez [50], who
reported the phenolic compounds content profile of six small berries from the VIII Region
del Bio-Bío of Chile. However, the differences in TBCC values between the studies might be
explained by the different harvest areas, since the VIII Region del Bio-Bío has dry temperate
climates in summer and rainy temperate climates in winter, and thus, the temperature
varies from 0 to 30 ◦C throughout the year, while the Southern Chile has constant rains
and low temperatures throughout the year [38,51,52]. Hence, the climatic conditions and
geographical characteristics contribute to various differences on fruit maturation, and
in addition, other factors such as genetic and species variabilities, harvesting year, and
growing season affect the phenolic compounds content in final fruits [53].

Concerning TPCC results, a similar behavior to the TSS values was observed, since a
significant increase in TPC, TAC, and TFC values was detected as cycles advanced. Thus,
in the last cycle, for murta juice, the values were close to 20.0 mg GAE/g d.m., 12.5 mg
C3G/g d.m., and 8.6 mg QE/g d.m., and for arrayan juice, the values were approximately
65.6 mg GAE/g d.m., 24.8 mg C3G/g d.m., and 17.0 mg QE/g d.m., for the first, second,
and third cycle, respectively, and thus, these values were over 2.7 times higher than the
correspondent initial TPCC value. This upward trend in TPCC values post-FC has been
observed in numerous food liquids such as green tea extract [21], fruit juices [22–24],
broccoli extract [25], coffee extract [54], and wine [55]. Additionally, the retention specified
a high amount of TPCC in the cryoconcentrated fraction, since the retention values (third
cycle) were close to 91%, 86%, and 78%, for murta juice, and 93%, 88%, and 82%, for arrayan
juice, for TPC, TAC, and TFC, respectively. The results were consistent with the values
informed by Orellana-Palma et al. [41], Casas-Forero et al. [31], and Correa et al. [56], who
reported TPCC retention close to 85%, 71–91%, and 90%, in apple juice, blueberry juice,
and coffee extract, respectively. Therefore, the TPCC value and retention results allow
corroborating that the FC technology can be visualized as a novel alternative due to the
low temperatures used to concentrate, preserve, and retain an endless number of phenolic
components such as polyphenols, anthocyanins, and flavonoids in the cryoconcentrated
fraction [20].

3.3. Antioxidant Activity (AA)

Table 3 shows the AA values of the samples.
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Table 3. Antioxidant activity (µM TE/g d.m.) of fresh juices and cryoconcentrated samples.

Sample DPPH ABTS FRAP ORAC

Murta Arrayan Murta Arrayan Murta Arrayan Murta Arrayan

Fresh juice 33.4 ± 3.7 a 62.0 ± 7.4 a 48.1 ± 7.6 a 84.8 ± 9.9 a 62.6 ± 5.9 a 92.6 ± 3.1 a 21.7 ± 3.0 a 43.4 ± 4.4 a

Cycle 1 96.9 ± 10.1 b 167.3 ± 11.6 b 110.6 ± 19.1 b 229.0 ± 10.4 b 156.5 ± 15.7 b 287.0 ± 17.2 b 45.6 ± 7.4 b 99.8 ± 11.7 b

Cycle 2 120.2 ± 8.5 c 266.4 ± 20.3 c 187.6 ± 10.7 c 373.1 ± 20.5 c 256.7 ± 13.9 c 416.6 ± 20.7 c 80.3 ± 5.9 c 204.0 ± 17.0 c

Cycle 3 157.0 ± 12.3 d 353.1 ± 14.0 d 250.1 ± 17.2 d 407.0 ± 7.6 d 338.0 ± 21.4 d 509.1 ± 23.1 d 108.5 ± 10.1 d 221.3 ± 20.5 d

a–d: Different superscript letters in the same column indicate significant differences (p ≤ 0.05) according to Fisher’s LSD test.

First, in both murta and arrayan juices, the AA values (µM TE/g d.m.) were approx-
imately 33.4, 48.1, 62.6, and 21.7, and 62.0, 84.8, 92.6, and 43.4, for DPPH, ABTS, FRAP,
and ORAC, respectively. These values were lower than those found by Ramirez et al. [48],
Augusto et al. [57], and Rodríguez et al. [58], who studied some quality properties of
native berries species from different regions of Chile, explicating that the high variability in
AA values can be justified by the interaction of factors such as edaphoclimatic conditions
(climate, light, temperature, and other conditions), geographical zone, cultivar/genotype,
harvesting period, cultivation practice, fruit maturation, type of storage, and even, the type
of juice extraction from the fruit [59].

Once the fruit juices were subjected to three CBFC cycles, an important increase in
the AA values (µM TE/g d.m.) was detected, with AA values from 96.9 to 157.0 and from
167.3 to 353.1, for DPPH, from 110.6 to 250.1 and from 229.0 to 407.0, for ABTS, from 156.5
to 338.0 and from 287.0 to 590.1, for FRAP, and from 45.6 to 108.5 and from 99.8 to 221.3,
for ORAC, from the C1 to C3, for murta juice, and for arrayan juice, which is equivalent
to an increase over 2.1, 2.5, 2.7, and 2.8 times, in comparison to the AA values from the
fresh juices, respectively. In this way, Orellana-Palma et al. [27], Samsuri et al. [60], and
Casas-Forero et al. [61] also observed higher AA values post-FC than the original sample,
demonstrating the positive effects of the FC on TPCC, and in turn, these components allow
concentrating and preserving the antioxidant activity from the fresh juice [21].

3.4. Process Parameters

The η, PC, and Y results at each cycle are presented on Figure 4.
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Figure 4. Process parameters at each CBFC cycle: (a) efficiency and percentage of concentrate and (b) solute yield.

The η (Figure 4a) showed a significant decreasing trend from C1 to C3, with values
close to 76%, 72%, and 69%, and 85%, 83%, and 79%, for murta juice and for arrayan
juice, respectively. The results have similar ranges established by Bastías-Montes et al. [26],
Orellana-Palma et al. [41], and Zielinski et al. [62], who studied the effect of FC in various
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liquid samples, specifying that the η can be related to the TSS values. Specifically, the
decrease in η values can be related to the continuous increase in TSS values in the feed
solution at each cycle, since the viscosity increases as the solutes increase, and thus, the flow
of solutes was slowed in the third cycle than in the previous cycles, causing a difficulty in the
separation process. In addition, the high viscosity reduces the ice purity postcentrifugation
(increase in TSS values in the ice fractions cycle to cycle) [43].

The PC (Figure 4a) displayed an increasing tendency as the cycles passed, with values
from 70% to 81%, for murta juice, and from 78% to 88%, for arrayan juice, from the C1
to C3, respectively. The values were similar to those reported in other samples [22,40,62],
suggesting that the PC values can be connected to the components in the fresh juice, since
each juice has multiple components that interact differently in the FC process, and later,
in the separation process, these components can facilitate or complicate the extraction of
cryoconcentrates from the ice fraction [63].

The Y parameter (Figure 4b) showed a significant increasing trend as the cycles
advanced, with values of approximately 0.72, 0.75, and 0.79 (kg solutes/kg initial solutes),
for murta juice, and 0.82, 0.85, and 0.88 (kg solutes/kg initial solutes), for arrayan juice,
for the C1, C2, and C3, respectively. The results had comparable performance that prior
studies [40,41,62], associating the Y values with the recovered mass from the original mass,
i.e., for each applied cycle, a high quantity of mass can be extracted and collected as a
cryoconcentrated sample [64].

4. Conclusions

The application of CBFC allowed obtaining higher solutes than the original sample,
with an intensification of the natural color of the fresh juices, leading to increase in the
phenolic compounds and antioxidant capacity in the cryoconcentrates samples, since the
TPCC and AA results were over 2.7 and 2.1 times higher than the correspondent initial
values, respectively. Moreover, the centrifugation improves the possibility to efficiently
extract more cryoconcentrate from the ice fraction due to the high values in η, PC, and
Y. These data suggest that FC can effectively improve the quality properties as well as
visual appearance in any fruit juices. Thereby, the FC creates a unique opportunity for
food industry, since this novel emerging non-thermal technology concentrates at low
temperatures, and thus, various characteristics from the fresh juice can be retained in
the final concentrated product. Therefore, the next challenge could be linked to FC in the
production of concentrated juice rich in phenolic components and high antioxidant capacity
from endemic fruits at pilot plant scale, and then at industrial scale, and in addition, the
cryoconcentrated samples could be studied with a nutritional perspective.
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