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The increasing prevalence of type 2 diabetes poses
a major challenge to societies worldwide. Blood-based
factors like serum proteins are in contact with every
organ in the body to mediate global homeostasis and
may thus directly regulate complex processes such as
aging and the development of common chronic dis-
eases. We applied a data-driven proteomics approach,
measuring serum levels of 4,137 proteins in 5,438 elderly
Icelanders, and identified 536 proteins associated with
prevalent and/or incident type 2 diabetes. We validated
a subset of the observed associations in an independent
case-control study of type 2 diabetes. These protein
associations provide novel biological insights into the
molecular mechanisms that are dysregulated prior to
and following the onset of type 2 diabetes and can be
detected in serum. A bidirectional two-sampleMendelian
randomization analysis indicated that serum changes of
at least 23 proteins are downstream of the disease or
its genetic liability, while 15 proteins were supported as
having a causal role in type 2 diabetes.

Type 2 diabetes is a progressive disease characterized by
decreasing sensitivity of peripheral tissues to plasma in-
sulin, accompanied by compensatory hyperinsulinemia,
and a gradual failure of the pancreatic islet b-cells to
maintain glucose homeostasis. In the past decade, the
use of data-driven omics technologies has led to a signif-
icant advancement in the discovery of new biomarker
candidates and biological insights for complex diseases.

More than 240 genetic loci have been associated with type
2 diabetes in genome-wide association studies (GWAS)
(1–5), and blood-based biomarker candidates for type
2 diabetes have begun to emerge, perhaps most notably
the branched-chain amino acids (BCAAs) (6,7), the catab-
olism of which has recently been proposed as a novel
treatment target for obesity-associated insulin resistance
(8). However, only fragmentary data are available for
serum protein links to type 2 diabetes (9). While few
biomarker candidates provide much improvement in
type 2 diabetes prediction over conventional measures
of glycemia and adiposity (9), they may provide insight
into biological processes that are important in the disease
pathogenesis.

Proteins are the key functional units of biology and
disease; however, high-throughput detection and quanti-
fication of serum proteins in a large human population
have been hampered by the limitations of available pro-
teomic profiling technologies. The Slow-Off rate Modified
Aptamer (SOMAmer)-based technology has emerged as
a powerful proteomic profiling platform in terms of sen-
sitivity, dynamic range of detection, and multiplex capacity
(10–12). A custom-designed SOMAscan platform was re-
cently developed to measure 5,034 protein analytes in
a single serum sample, of which 4,782 SOMAmers bind
specifically to 4,137 distinct human proteins (13). We
applied this platform to 5,457 subjects of the Age,
Gene/Environment Susceptibility (AGES)-Reykjavik study
(13,14) and demonstrate novel serum protein associations
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with prevalent and incident type 2 diabetes. A subset of
these associations replicated in the Qatar Metabolomics
Study on Diabetes (QMDiab) with use of a different version
of the SomaLogic platform. By applying a bidirectional
Mendelian randomization (MR) analysis, we identify a sub-
set of proteins that may be causally related to type 2 di-
abetes and another set of proteins that may be affected by
the disease itself or its genetic liability.

RESEARCH DESIGN AND METHODS

Study Populations
An overview of the cohort and study workflow is shown
in Supplementary Fig. 1. Cohort participants aged 66–96
years were included from the AGES-Reykjavik Study (14),
a prospective study of deeply phenotyped subjects (North-
ern Europeans). After exclusion of individuals without
a fasting glucose measurement or with established type
1 diabetes, 5,438 individuals remained for analysis in the
current study (mean age 76.66 5.6 years). Type 2 diabetes
was defined from self-reported diabetes, diabetes medica-
tion use, or fasting plasma glucose $7 mmol/L (15). Of
4,784 AGES-Reykjavik participants free of diabetes at
baseline, 2,940 attended a 5-year follow-up visit (AGESII).
Manifest type 2 diabetes at the follow-up visit was clas-
sified as an incident case, using the same criteria as for the
baseline visit. Blood samples were collected at the baseline
visit after overnight fasting and serum lipids, glucose, HbA1c,
and insulin measured using standard protocols. Serum
creatinine was measured with the Roche Hitachi 912 instru-
ment and estimated glomerular filtration rate (eGFR) de-
rived with the four-variable MDRD study equation (16).

External validation analysis was performed in the
QMDiab study, which is a cross-sectional case-control
study for type 2 diabetes that was carried out in 2012 at
the Dermatology Department in Hamad Medical Corpo-
ration (HMC) (Doha, Qatar). This study has previously
been described and comprises 388 study participants from
Arab and Asian ethnicities (17). A subset of 356 partic-
ipants with proteomics data were used in this study
(ncases 5 179).

Protein Profiling
Each protein has its own detection reagent selected
from chemically modified DNA libraries, referred to as
SOMAmers (18). The custom version of the SOMApanel
platform included proteins known or predicted to be found
in the extracellular milieu (18). Serum levels of 4,137
human proteins, targeted by 4,782 SOMAmers, were de-
termined at SomaLogic (Boulder, CO) in samples from
5,457 AGES-Reykjavik participants as previously described
(13). Sample collection and processing for protein mea-
surements were randomized and all samples run as a single
set. The SOMAmers that passed quality control had me-
dian intra-assay and interassay coefficients of variation
(CV) ,5%, similar to that reported on variability in the
SOMAscan assays (11,13). In addition to multiple types of
inferential support for SOMAmer specificity toward target

proteins including cross-platform validation and detection
of the cis-acting genetic effects (13), direct measures of the
SOMAmer specificity for 779 of the SOMAmers in complex
biological samples were performed using tandem mass
spectrometry (13). Hybridization controls were used to
correct for systematic variability in detection, and calibra-
tor samples of three dilution sets (40%, 1%, and 0.005%)
were included so that the degree of fluorescence was
a quantitative reflection of protein concentration. In the
QMDiab cohort, the kit-based SOMAscan platform run by
the Weill Cornell Medicine - Qatar (WCM-Q) proteomics
core was used to quantify a total of 1,129 protein measure-
ments in 356 plasma samples from QMDiab (19), with
median intra- and interassay CVs ,7%. Here, 1,079
SOMAmers targeting 1,050 proteins were shared with
the platform used in AGES-Reykjavik. Protocols and in-
strumentation were provided and certified using reference
samples by SomaLogic. Experiments were conducted under
supervision of SomaLogic personnel. No samples or probes
were excluded.

Genotyping and Imputation
Genetic data were available for 3,219 AGES-Reykjavik par-
ticipants. Genotyping was performed using the Illumina
370CNV BeadChip array, and genotype calling was per-
formed using the Illumina BeadStudio. Samples were ex-
cluded based on sample failure, genotype mismatch with
reference panel, and sex mismatch on genotypes (20). Im-
putation (1000 Genomes Phase 1 v3 reference panel) was
performed using MaCH (version 1.0.16), and the following
quality control filtering was applied at the variant level: call
rate (,95%), Hardy Weinberg equilibrium (P, 13 1026),
PLINK mishap haplotype-based test for nonrandom missing
genotype data (P , 1 3 1029), and mismatched positions
between Illumina, dbSNP, and/or HapMap.

Statistical Analysis
Box-Cox transformation was applied on the protein data
(21). Extreme outlier values were excluded, defined as
values above the 99.5th percentile of the distribution of
99th percentile cutoffs across all proteins after scaling,
resulting in the removal of an average 11 samples per
SOMAmer. Associations between serum protein levels and
prevalent or incident type 2 diabetes were determined
using a logistic regression adjusted for age and sex (base
model), where Bonferroni-corrected P , 0.05/4,782
SOMAmers 5 1.1 3 1025 was considered statistically
significant. In subsequent models, the following covariates
were included: fasting glucose (only for incident type
2 diabetes), BMI, fasting insulin, HDL, triglycerides
(TG), eGFR, systolic blood pressure (SBP), abdominal
circumference, and parental history of diabetes. These
covariates include the components of the Framingham
Offspring Risk Score (FORS) clinical prediction model
(22) in addition to fasting insulin and eGFR. Fasting
insulin and TG were log transformed due to a skewed
distribution. Most of these clinical risk factors were
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significantly different between individuals with type 2 di-
abetes and those without (Supplementary Table 1). When
more than one SOMAmer was available for the same
protein, the one with the lowest P value in the age- and
sex-adjusted model was retained in downstream analyses.
Similar analysis was performed in the QMDiab cohort,
except a P value threshold of P , 0.05/1,129 SOMAmers
was considered statistically significant and the following
study-specific covariates were included: the first three
principal components (PCs) of genotyping data and the
first three PCs of the proteomics data. These PCs are
considered as standard covariates of the QMDiab study
(19). The genetic PCs account for the ethnic variability of
the QMDiab cohort, and the proteomics PCs account for
a moderate level of observed cell lysis. Sex-specific protein
associations were defined as follows: P , 0.05/4,782 in
one sex but P . 0.05 for the other sex, and sex 3 protein
interaction term P , 0.05 in the combined sample. Func-
tional enrichment analysis was performed with g:Profiler
(23), using the full set of proteins targeted by the SOMA-
panel as background and a significance threshold of
Benjamini-Hochberg false discovery rate (FDR) ,0.05.
Tissue-specific gene expression enrichment analysis was
performed using TissueEnrich (24) with data from the
Human Protein Atlas (25). K-means clustering was used to
group AGES-Reykjavik participants with prevalent type
2 diabetes into subgroups based on clinical variables
(age of diagnosis, BMI, HbA1c, HOMA of insulin resistance
and HOMA of b-cell function), as proposed by Ahlqvist
et al. (26) (Supplementary Material).

For the two-sample bidirectional MR analysis, we identi-
fied genetic instruments as follows. For each protein, single
nucleotide polymorphisms (SNPs) within a ciswindow of 100
kb up- or downstream of the respective protein-encoding
gene were tested for an association with protein levels in
a linear regression model adjusted for age and sex and
assuming an additive genetic model. SNPs were included
as genetic instruments if the association was window-wide
significant (P , 0.05/n SNPs in window, as previously de-
scribed [13]) and F statistic $10. The genetic instruments
per protein were filtered to only include independent signals
(r2 . 0.1, .500 kb), using the clump_data command in the
TwoSampleMR R package (27). Genetic instruments for type
2 diabetes were selected from the DIAMANTE (DIAbetes
Meta-ANalysis of Trans-Ethnic association studies) GWAS in
European individuals (5). Of 403 independent variants,
319 with minor allele frequency .5% and passing quality
filters in AGES-Reykjavik were used as instruments for type
2 diabetes. The strength of the instruments was evaluated by
the association of a polygenic risk score (constructed from the
319 SNPs and weighted by the b-values available from
DIAMANTE summary statistics) with type 2 diabetes in
AGES-Reykjavik using a logistic regression adjusted for age
and sex. We investigated cell type–specific enhancer enrich-
ment of the genetic instruments for proteins compared with
established GWAS loci through HaploReg v4.1 (28) using the
SNP with the lowest association P value per protein.

The bidirectional two-sample MR analysis was per-
formed using the TwoSampleMR R package (27). To test
a causal effect of proteins on type 2 diabetes, we used the
DIAMANTE GWAS (5) for type 2 diabetes without adjust-
ment for BMI in European individuals as a primary out-
come (effective sample size [Neff] 5 231,436) and type
2 diabetes adjusted for BMI as a secondary outcome
(Neff 5 157,401). To test the reverse causal effect of
type 2 diabetes on proteins, we used SNP-protein associ-
ations in AGES-Reykjavik as outcome. The inverse variance–
weighted (IVW) method was used for the mainMR analysis
unless only one genetic instrument was available, in
which case the Wald ratio was used, and a Benjamini-
Hochberg FDR ,0.05 was considered statistically signif-
icant. For sensitivity analyses we used MR-Egger and IVW
with penalization (29), which minimizes the effect of ge-
netic variants with heterogeneous causal estimates. Cochran
Q statistic was used to evaluate heterogeneity of instru-
ments and MR-Egger regression intercept for indication of
horizontal pleiotropy.

Ethics Approval and Consent
The study was conducted in concordance with the Decla-
ration of Helsinki of ethical principles for medical research
involving human subjects. AGES-Reykjavik was approved
by the National Bioethics Committee in Iceland (approval
number VSN-00-063), the National Institute on Aging
Intramural Institutional Review Board (U.S.), and the
Data Protection Authority in Iceland. Informed consent
was obtained from all study participants. QMDiab was
approved by the institutional review boards of HMC and
WCM-Q under research protocol number 11131/11. All
study participants provided written informed consent.

Data and Resource Availability
The custom-design Novartis SOMAscan is available through
a collaboration agreement with the Novartis Institutes for
BioMedical Research (lori.jennings@novartis.com). Data
from the AGES-Reykjavik study are available through col-
laboration (AGES_data_request@hjarta.is) under a data us-
age agreement with the Icelandic Heart Association. All data
supporting the conclusions of the article are presented in
the main text and Supplementary Material.

RESULTS

The full AGES-Reykjavik cohort included 654 individuals
with prevalent type 2 diabetes and 4,784 individuals free
of diabetes at baseline (Supplementary Table 1). Out of
2,940 individuals without diabetes at baseline who par-
ticipated in the 5-year AGESII follow-up visit, 112 devel-
oped type 2 diabetes within the period. As expected, both
individuals with prevalent and individuals with incident
type 2 diabetes differed markedly from individuals free of
diabetes in terms of metabolic phenotypes at baseline and
many already had prediabetes at the baseline visit (Sup-
plementary Table 1). Characteristics for the QMDiab co-
hort are shown in Supplementary Table 2.
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Serum Protein Profile of Prevalent Type 2 Diabetes
We first compared the serum protein profile of individuals
with prevalent type 2 diabetes with that of individuals
without. (See study workflow in Supplementary Fig. 1.)
We identified 520 unique proteins that were significantly
(Padjusted , 0.05) associated with prevalent type 2 diabetes
(Supplementary Table 3), with odds ratios ranging from 0.47
(for ARFIP2) to 1.96 (for CPM) per SD increase of protein levels
(Fig. 1A) and the most significant associations observed for
ARFIP2, MXRA8, CPM, and CILP2 (Fig. 1B). In a secondmodel
including adjustment for BMI, 339 proteins were statistically
significant and 157 in the model additionally adjusted for
fasting insulin, indicating a large effect of these two variables
on the overall protein profile of prevalent type 2 diabetes (Fig.
1C and Supplementary Table 3). In the fully adjusted model,
142 proteins remained robustly associated with prevalent type
2 diabetes (Fig. 1C), of which 30 had not reached statistical

significance in the base model. Many of the 520 proteins
associated with prevalent type 2 diabetes (base model) were
intercorrelated, with pairwise Pearson r ranging from 20.60
to 0.97 (Supplementary Fig. 2A), andwere enriched for proteins
involved in extracellular matrix (ECM)-receptor interaction,
complement and coagulation cascades, metabolic processes,
and extracellular region (Supplementary Fig. 3A and Sup-
plementary Table 4). The genes encoding the 520 proteins
were furthermore enriched for liver-specific gene expres-
sion, followed by other tissues such as kidney, gastrointes-
tinal tract, and pancreas (Supplementary Fig. 4A).

We next sought to externally validate the observed
associations in an independent population. In the QMDiab
study (n 5 356), measurements for 1,050 of the proteins
measured in AGES-Reykjavik were available. In the base
model, 43 proteins were associated with type 2 diabetes at
a Bonferroni-corrected P , 0.05/1,129 in the QMDiab

Figure 1—Serum protein associations for prevalent type 2 diabetes. A: Volcano plot demonstrating positive (blue) and negative (red) serum
protein associations with prevalent type 2 diabetes; points are colored where P , 0.05/4,782. B: Violin and box plots showing serum protein
levels for the AGES cohort (n5 5,438) stratified by prevalent type 2 diabetes status for the top four most significant proteins. Box plots indicate
median value, 25th and 75th percentile. Whiskers extend to smallest/largest value no further than 1.53 interquartile range. Outliers not shown.
****P , 0.0001. C: Spaghetti plot providing an overview of the P values (2log10 [y-axis]) for SOMAmer associations with prevalent type
2 diabetes, using six different models (x-axis). The full model includes age, sex, BMI, fasting insulin, TG, HDL, SBP, eGFR, abdominal
circumference, and parental history of diabetes. The black and gray dashed lines denote the Bonferroni-corrected (P, 0.05/4,782) and nominal
(P, 0.05) significance thresholds, respectively. The numbers above denote howmany unique proteins are significant at a Bonferroni-corrected
threshold in each model. The color of the points/lines indicates positive (blue) or negative (red) associations. D: Venn diagram illustrating the
overlap between 161 proteins that were significantly (Padjusted , 0.05) associated with type 2 diabetes in either the AGES or the QMDiab cohort
andmeasured in both. E: For each cohort, the proportion of significant proteins that were also significant (Padjusted, 0.05) in the other cohort are
shown, as well as the proportion of proteins that were nominally significant (P , 0.05) and directionally consistent in the other cohort. F:
Comparison of b-coefficients for prevalent type 2 diabetes between the two cohorts. The colors indicate significant (Padjusted , 0.05)
associations in either or both cohorts. ins, fasting insulin; nd, nondiabetic; neg, negative; nom, nominally significant; OR, odds ratio; pos,
positive; pT2D, prevalent type 2 diabetes; sig, significant.
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study (Supplementary Table 5), of which 33 were also
significantly associated with prevalent type 2 diabetes in
AGES-Reykjavik (Fisher exact test P 5 3.5 3 10221),
amounting to 22% and 77% of the significantly associated
proteins included in the comparison between AGES-
Reykjavik and QMDiab, respectively (Fig. 1D). With con-
sideration of a second validation tier as being nominally
significant and directionally consistent in the other
cohort, these proportions amounted to 57% and 88%
for AGES-Reykjavik and QMDiab, respectively (Fig.
1E). Notably, of the 161 proteins that were signifi-
cantly associated with type 2 diabetes in either cohort
and measured in both, 143 (89%) were directionally
consistent between the two cohorts (binomial test P 5
2.4 3 10225) (Fig. 1F).

Type 2 diabetes is a heterogeneous disease, and further
subgrouping of patients has been proposed that may better
represent the primary biological defects driving disease
onset (26). Such subgroups are likely to differ in terms of
their serum proteomic profile. We therefore used a similar
approach as described by Ahlqvist et al. (26) to cluster the
type 2 diabetes patients in AGES-Reykjavik into five sub-
groups based on their clinical features (Supplementary
Material, Supplementary Fig. 5, and Supplementary Fig.
6A). A PC analysis (PCA) of the 520 proteins associated
with prevalent type 2 diabetes distanced the two sub-
groups distinguished by high BMI or high insulin resis-
tance (subgroups 3 and 4) from those with seemingly
milder disease (groups 1 and 5) (Supplementary Fig.
6B), in line with the large effect of adjustments for these
covariates on the protein associations described above.

Serum Protein Associations With Incident
Type 2 Diabetes
The serum protein profiles of patients with type 2 diabetes
observed in a cross-sectional analysis may represent shifts
that occurred either before or after the onset of the
disease. To identify serum protein signatures that precede
the onset of type 2 diabetes, we next focused our analysis
on the 2,940 AGES-Reykjavik participants without diabe-
tes at baseline who participated in the AGESII follow-up
visit. We identified 99 unique proteins significantly
(Padjusted , 0.05) associated with incident type 2 diabetes,
with odds ratios ranging from 0.35 (IGFBP2) to 2.42 (LEP)
per SD increase of protein levels (Fig. 2A and Supplemen-
tary Table 6) and the most significant associations ob-
served for IGFBP2, APOM, INHBC, and GHR (Fig. 2B). The
majority of protein associations with incident type 2 di-
abetes were attenuated after adjustment for fasting glu-
cose (Fig. 2C and Supplementary Table 6), which is not
surprising, as fasting glucose is a defining feature of
diabetes. No single protein remained significant at a
Bonferroni-corrected threshold after further adjustment
for BMI (Fig. 2C and Supplementary Table 6). Again, we
observed extensive correlations between many of the serum
proteins, with pairwise Pearson r ranging from 20.55 to
0.97 (Supplementary Fig. 2B). Many of the proteins

associated with incident type 2 diabetes were also associated
with prevalent type 2 diabetes (84 of 99 proteins or 85%)
(Fig. 2D), and the direction of effect was generally consis-
tent (Spearman correlation coefficient5 0.82 [Fig. 1E]). The
99 proteins associated with incident type 2 diabetes were
enriched for numerous gene ontology terms related to
metabolism, lipid transport, and response to insulin, while
enriched pathways included leptin signaling and adipogen-
esis (Supplementary Fig. 3B and Supplementary Table 4).
Tissue expression enrichment analysis revealed enrich-
ment for genes expressed in liver, followed by adipose tissue
(Supplementary Fig. 4B). The 99 proteins associated with
incident type 2 diabetes yielded a similar separation of type
2 diabetes patient subgroups as the proteins associated with
prevalent type 2 diabetes (Supplementary Fig. 6B). Thus, the
functional annotation of the serum proteins associated with
incident type 2 diabetes was characterized by tissue-specific
signatures and pathways that reflect dyslipidemia and in-
sulin resistance. We compared our findings with previously
described protein biomarker candidates for incident type
2 diabetes (11). Of 58 previously suggested candidates that
were targeted in our study, we found 26 to be at least
nominally associated (P , 0.05) with incident type 2 di-
abetes in our data and an additional 15 with prevalent type
2 diabetes (Supplementary Table 7).

Sex-Specific Serum Protein Associations for
Type 2 Diabetes
Sex differences in cardiometabolic disorders have previ-
ously been described (30), and we therefore investigated
whether any proteins exhibited sex-specific associations
with incident or prevalent diabetes in the AGES-Reykjavik
cohort. The b-coefficients from a sex-stratified analysis
(age-adjusted model) were strongly correlated between
males and females (Spearman correlation coefficient
0.85 and 0.73 for prevalent and incident type 2 diabetes,
respectively). A sex-stratified analysis yielded 15 female-
specific and 6 male-specific protein associations for
prevalent type 2 diabetes and 4 female-specific protein
associations for incident type 2 diabetes (Supplementary
Fig. 7 and Supplementary Table 8). Of the 25 proteins with
sex-specific associations for type 2 diabetes, 11 were not
Bonferroni significant in the original combined analysis.
The proteins with sex-specific associations included nu-
merous hormones, growth factors, and related proteins,
such as growth hormone 2 (GH2), follicle-stimulating
hormone (CGA FSHB), the thyroid hormone carrier pro-
tein thyroxine-binding globulin (SERPINA7), a component
of the progesterone-binding protein complex (PGRMC1),
the epidermal growth factor betacellulin (BTC), and the
hepatocyte growth factor receptor (MET). Of seven pro-
teins measured in the QMDiab cohort, the protein * sex
interaction was validated (P , 0.05) for four proteins
(CGA FSHB, MET, CHRDL1, and MATN2), all of which had
stronger inverse association with type 2 diabetes in
females than males (Supplementary Table 8).
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Potentially Causal Associations Between Serum
Proteins and Type 2 Diabetes
While it is not a requirement for clinically useful bio-
markers to be causally related to disease, identifying causal
disease pathways can provide important insights for the
development of new therapeutic strategies. We therefore
performed a bidirectional two-sample MR analysis (31) to
identify proteins with a potentially causal role in the
development of type 2 diabetes and proteins with changes

that may be downstream of the disease (Supplementary
Fig. 8). Of 536 proteins significantly associated with
prevalent or incident type 2 diabetes, we identified suitable
genetic instruments for 246 proteins (Supplementary
Table 9). Of those, 164 proteins had GWAS summary
statistics available from the independent INTERVAL study
(32), where 162 (99%) had a directionally consistent
estimate for its lead SNP as identified in AGES-Reykjavik
and 138 (84%) were nominally significant (P , 0.05)

Figure 2—Serum protein associations for incident type 2 diabetes. A: Volcano plot demonstrating positive (blue) and negative (red) serum
protein associations with incident type 2 diabetes; points are colored where P , 0.05/4,782. B: Violin and box plots showing serum protein
levels for the AGES cohort with follow-up data (n 5 2,940) stratified by incident type 2 diabetes status for the top four most significant
proteins. Box plots indicate median value, 25th and 75th percentile. Whiskers extend to smallest/largest value no further than 1.53
interquartile range. Outliers not shown. ****P, 0.0001.C: Spaghetti plot providing an overview of the P values (2log10 [y-axis]) for SOMAmer
associations with incident type 2 diabetes, using six different models (x-axis). The full model includes age, sex, fasting glucose, BMI, fasting
insulin, TG, HDL, SBP, eGFR, abdominal circumference, and parental history of diabetes. The black and gray dashed lines denote the
Bonferroni-corrected (P , 0.05/4,782) and nominal (P , 0.05) significance thresholds, respectively. The numbers above denote how many
unique proteins are significant at a Bonferroni-corrected threshold in each model. The color of the points/lines indicates positive (blue) or
negative (red) associations.D: Venn diagram showing the overlap between unique proteins associated with prevalent (blue) and incident (red)
type 2 diabetes. E: b-Coefficients for associations between proteins and prevalent or incident type 2 diabetes. The colors denote significant
associations with prevalent type 2 diabetes (blue), incident type 2 diabetes (red), or both (yellow). glu, fasting glucose; ins, fasting insulin;
iT2D, incident type 2 diabetes; nd, nondiabetic; OR, odds ratio; pT2D, prevalent type 2 diabetes; T2D, type 2 diabetes.
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(Supplementary Table 9). On average, we identified 5
(range 1–20) genetic instruments per protein, where the
lead variant per protein explained on average 10% (range
0.4–48) of the variance in their respective protein levels
and with a mean F statistic of 229 (range 13–3,014). Of
note, the genetic variants regulating the levels of the type
2 diabetes–associated proteins were enriched within en-
hancer regions mapped in liver and hepatocytes from the
ENCyclopedia Of DNA Elements (ENCODE) and the Road-
map Epigenomics Project (Supplementary Fig. 4C and D),
supporting the previously observed enrichment for liver
expression of the genes encoding the same proteins.

In the two-sample MR analysis, 16 proteins were sup-
ported (FDR,0.05) as potentially having a causal effect on
the development of type 2 diabetes (Fig. 3A), of which
15 showed no significant signs of heterogeneity or hori-
zontal pleiotropy (Supplementary Fig. 9 and Supplemen-
tary Table 10). Three of those (WFIKKN2, TNFSF12, and
PLXNB2) remained significant (FDR,0.05) in a secondary
MR analysis with a smaller sample size using type 2 di-
abetes adjusted for BMI as outcome, and one additional
protein (CRTAC1) reached statistical significance (Supple-
mentary Table 10). We next investigated the reverse di-
rection, i.e., whether a genetic predisposition to type 2
diabetes has an effect on serum protein levels. A poly-
genic risk score of 319 type 2 diabetes SNPs selected from
the DIAMANTE GWAS (5) (RESEARCH DESIGN AND METHODS)
was associated with type 2 diabetes in AGES-Reykjavik
(b 5 0.82, SE 5 0.09, P 5 2.3 3 10219, likelihood ratio
test statistic 5 85.6), indicating a suitable instrument.
The two-sample MR analysis indicated a significant (FDR
,0.05) effect of type 2 diabetes on serum levels of
40 proteins (Supplementary Table 11), of which three
(MMP12, MLN, and PLXNB2) also had a significant causal
estimate for type 2 diabetes (Fig. 3B). Sensitivity analyses
indicated that 17 of the 40 proteins showed significant
evidence of heterogeneity or horizontal pleiotropy (Sup-
plementary Table 11), leaving 23 proteins with support for
being affected by genetic predisposition to type 2 diabetes.
However, it should be noted that the MR-Egger method is
more sensitive to outlier variants (33), such as here: the
TCF7L2 variant rs7903146 that by far has the largest
effect for type 2 diabetes (b 5 0.31, SE 5 0.007) of all
the SNPs included as type 2 diabetes instruments, which
could contribute to some of the observed support for
pleiotropic effects on protein levels.

We compared the IVW MR and observational estimates
for all proteins that were indicated as significant in either
direction in the MR analysis. We found that all 40 type
2 diabetes–to–protein causal estimates were directionally
consistent with observational estimates for prevalent type
2 diabetes, supporting that their levels may be changed
downstream of the disease or its genetic liability (Supple-
mentary Fig. 10A). By contrast, the same was true for only
9 out of 16 (56%) protein–to–type 2 diabetes causal
estimates in comparison with the observational estimates
for incident type 2 diabetes (Supplementary Fig. 10B), to

exclude any possible effect of prevalent type 2 diabetes on
protein levels, where differing direction of effect was ob-
served even for proteins with very strong instruments such
as COLEC11 andHIBCH (lead variant F statistics5 917 and
775, respectively). However, the observational estimates for
the seven proteins that were not consistent with the
protein–type 2 diabetes causal estimate were instead all
directionally consistent with their type 2 diabetes–to–
protein causal estimates (Supplementary Fig. 10C), which
were statistically significant (FDR ,0.05) for two
(PLXNB2 and MMP12, Supplementary Table 11). Similar

Figure 3—Bidirectional Mendelian randomization analysis supports
causal associations for proteins on type 2 diabetes and vice versa.A:
Forest plot for the 16 proteins supported as causal (FDR ,0.05) for
type 2 diabetes in the two-sample MR analysis, together with the
number of SNPs used as instruments and the MR P value. MR
estimates were obtained using the inverse variance–weighted
method when more than one SNP was available for a given protein
but otherwise with the Wald ratio. B: Comparison of bidirectional
two-sample MR P values (2log10) for the 246 proteins that could be
investigated in both directions, where the x-axis indicates theP value
for a causal effect of type 2 diabetes on protein levels and the y-axis
indicates the P value for a causal effect of protein levels on type
2 diabetes. Proteins with FDR ,0.05 are colored as indicated in the
legend, while the dashed lines indicate P 5 0.05. OR, odds ratio.
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results were obtained using observational estimates for
prevalent type 2 diabetes (Supplementary Fig. 10D and
E), with the exception of one protein (SEMA4D) that had
divergent directions of effect for incident and prevalent type
2 diabetes (but only statistically significant for the latter).

Finally, we took advantage of the combined genetic and
protein data in the AGES-Reykjavik study to investigate
cis-acting associations in established type 2 diabetes GWAS
loci (5). Of 319 established risk variants for type 2 diabetes
included here, 127 were within 100 kb of a gene encoding
a protein targeted by the SOMApanel. Of those, 10 were
associated with one or more proteins acting in cis at
a genome-wide significant threshold (P , 5 3 1028)
(Supplementary Table 12). For eight of the observed
associations, the protein-coding gene was not the same
as the nearest gene, thus implicating potentially novel
causal candidates at those loci.

DISCUSSION

To our knowledge, the primary data used in the current
study comprise the largest protein data set described to
date in terms of number of proteins measured and human
samples screened. In the literature there are few descrip-
tions of plasma protein-based biomarkers and drug targets
for type 2 diabetes, and those available have been limited to
relatively few protein measurements (34–38). In this study
of a population-based sample of 5,438 elderly Icelanders,
we describe hundreds of proteins significantly associated
with prevalent and incident type 2 diabetes. Both obesity
and insulin resistance contribute considerably to the serum
protein changes associated with type 2 diabetes, but one-
third of the protein associations for prevalent type 2 di-
abetes were robust to adjustment for clinical factors and
reflect a major systemic shift in the serum proteome in the
diabetic state. Most protein associations for incident type
2 diabetes were explained by fasting glucose at baseline and
may thus be directly related to the pathophysiological
pathways leading to type 2 diabetes.

Importantly, when considering proteins measured in
both cohorts, we replicated 33 of 151 (22%) significant
protein associations for prevalent type 2 diabetes in AGES-
Reykjavik in the smaller QMDiab cohort and 33 of
43 (77%) QMDiab associations were replicated in AGES-
Reykjavik. The remarkably high directional consistency
between the two cohorts indicates robust patterns across
populations, but the difference in proportions replicated
between the two cohorts indicates that the statistical
power in QMDiab is a limiting factor for finding the
true overlap of associations. Given the enriched pathways
among these proteins, the proteomic shift in the diabetic
state to some extent reflects inflammatory processes and
ECM alterations. By contrast, those pathways were not
enriched among proteins associated with incident type
2 diabetes, suggesting they may be secondary to the onset
of the disease. Further studies are required to understand
whether and how these proteomic changes may affect
downstream complications of type 2 diabetes, as diabetes-

induced changes of the ECMmay for example contribute to
cardiovascular disease (39). In addition, several sex-specific
protein associations were observed in our data that can be
further explored to understand sex differences in relation
to type 2 diabetes onset and outcomes.

The proteins associated with 5-year incident type 2 di-
abetes represent changes in the serum proteome that take
place already in individuals free of diabetes. Most of these
associations were attenuated after adjustment for fasting
glucose at baseline, which is not surprising given that
fasting glucose is the strongest predictor of incident
type 2 diabetes and is essentially a part of the progression
toward the disease rather than comorbidity. Therefore,
these proteins may still hold important biological infor-
mation relevant to the disease. The proteins associated
with incident type 2 diabetes were mainly involved in lipid
transport, metabolism, and insulin response, supporting
the involvement of these pathways during the preclinical
stage of type 2 diabetes. Both sets of proteins associated
with prevalent and incident type 2 diabetes were enriched
for liver-specific gene expression compared with the full
set of measured proteins, consistent with the genetic
variants regulating their levels being enriched in enhancers
mapped in liver tissue and hepatocyte cell lines. These
results underscore that the diabetic serum proteomic
signatures identified here may mainly reflect processes
ongoing in the liver, although other tissues also contribute
as demonstrated by the enrichment of adipose tissue
expression among proteins associated with incident type
2 diabetes. Currently, similar proteomic data in cohorts
with information on incident type 2 diabetes are lacking,
and future efforts will have to be made for replication of
our findings in independent populations.

We used a bidirectional MR analysis to prioritize causal
relationships between proteins and type 2 diabetes. One
limitation of this analysis was that approximately one-half
of the proteins did not have a suitable instrument and
could thus not be tested for causality. The majority of
genetic instruments for protein levels could be validated in
external data (32) and, as cis-SNPs in the vicinity of the
respective protein-coding genes, are likely to be directly
involved in the regulation of the protein levels. We did not
observe much evidence for heterogeneity or pleiotropy
when considering the effects of proteins on type 2 diabetes,
whereas the opposite was the true when we investigated
the effect of genetic predisposition to type 2 diabetes on
protein levels, likely due to the more complex instrument
used for type 2 diabetes consisting of 319 variants that
may affect the disease through a myriad of biological
pathways. Thus, many of the type 2 diabetes–to–protein
effects require further study, although notably there was
complete agreement between the directionality of those
causal estimates and the observational estimates for prev-
alent type 2 diabetes in our data. By contrast, when
considering the causal effects of protein levels on type
2 diabetes, we often found causal and observational esti-
mates to disagree, even for proteins with very strong
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instruments. As an example, we found serum levels of
MMP12 to be increased in patients with type 2 diabetes,
consistent with previous reports (40), whereas our MR
estimate suggested a protective effect of MMP12 on type
2 diabetes risk. Similarly, a protective MR estimate for
MMP12 and risk of coronary heart disease has been
reported (32) whereas clinical and experimental studies
have consistently shown higher levels of MMP12 in car-
diovascular disease (40,41). In all such cases in our data, we
found the observational estimates instead to be direction-
ally consistent with the reverse causal effect of predispo-
sition to type 2 diabetes on the proteins. As this was the
case even when we considered observational estimates for
incident type 2 diabetes (thus, protein changes occurring
before the onset of disease), these results may suggest that
the genetic liability to type 2 diabetes, and the related
physiological changes that may develop before overt dis-
ease, already have an effect on these proteins and that
those effects may be greater than the effects of the
proteins themselves on the disease. Others have further-
more suggested that an effect of a disease polygenic risk
score on gene or protein levels may represent convergent
genetic effects on important disease pathways (42,43).
Further work is needed to establish the complex causal
chain from individual proteins to convergent pathways,
intermediate phenotypes, and overt type 2 diabetes, which
may then in turn affect serum protein levels.

The two-sample MR analysis revealed 15 proteins that
may be causally related to type 2 diabetes and did not
exhibit significance evidence of pleiotropy. Many of these
associations were attenuated in a secondary MR analysis
using type 2 diabetes adjusted for BMI as outcome, which
may partly be because of the smaller sample size and thus
reduced statistical power for this outcome but could also
indicate some causal effects being mediated through BMI.
Interestingly, the causal candidates included the BCAA
catabolic enzyme HIBCH, for which the causal estimate
suggested a protective effect on risk of type 2 diabetes.
Circulating BCAA levels have consistently been shown to
predict type 2 diabetes (44), although the underlying
mechanisms are complex and remain to be fully under-
stood (45). Our findings support a model where higher
protein expression of the BCAA catabolic pathway reduces
risk of type 2 diabetes. Another interesting causal candi-
date is WFIKKN2, also supported by a recent MR study
using the same outcome data as here but different instru-
ments (43). WFIKKN2 is a follistatin domain–containing
protein that binds GDF8/GDF11 proteins with high affin-
ity (46)—both of which have been implicated in diabetes
(47,48). Genetic variants in the WFIKKN2 region regulate
serum GDF8/11 levels in trans via WFIKKN2 protein levels
(13,32), although in the current study we did not find
a significant association between GDF8/11 and type 2 di-
abetes, so additional studies are required to understand
the mechanisms by which WFIKKN2 may affect risk of
type 2 diabetes. Other notable causal candidates from
the MR analysis included FABP4, a member of the

PPAR signaling pathway and a suggested inhibitor target
for novel therapeutic strategies for obesity and type 2 di-
abetes (49), and GDF15, consistently implicated in cardi-
ometabolic diseases (50), but previous MR studies have
failed to observe support for a causal effect on type 2 di-
abetes (51,52). Here, using a different set of genetic
instruments than in the previous MR studies, we find
suggestive evidence for a causal effect of higher circulating
GDF15 levels on type 2 diabetes risk.

To conclude, our results demonstrate a major shift in
the serum proteome before and during the diabetes stage.
Furthermore, proteins supported as potentially causal for
type 2 diabetes in our data could be of particular interest as
novel therapeutic targets, although in some cases their
effect may be masked by the downstream effects of type
2 diabetes or its genetic liability on the serum proteome.
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